Skip to main content
Top
Published in: Virology Journal 1/2016

Open Access 01-12-2016 | Research

Ecogenomic survey of plant viruses infecting Tobacco by Next generation sequencing

Authors: Ibukun A. Akinyemi, Fang Wang, Benguo Zhou, Shuishui Qi, Qingfa Wu

Published in: Virology Journal | Issue 1/2016

Login to get access

Abstract

Background

The invasion of plant by viruses cause major damage to plants and reduces crop yield and integrity. Devastating plant virus infection has been experienced at different times all over the world, which are attributed to different events of mutation, re-assortment and recombination occurring in the viruses. Strategies for proper virus management has been mostly limited to eradicating the vectors that spreads the plant viruses. However, development of prompt and effective diagnostic methods are required to monitor emerging and re-emerging diseases that may be symptomatic or asymptomatic in the plant as well as the genetic variation and evolution in the plant viruses. A survey of plant viruses infecting field-grown Tobacco crop was conducted in Anhui Province of China by the deep sequencing of sRNAs.

Methods

Survey of plant viruses infecting Tobacco was carried based on 104 samples collected across the province. Nine different sRNA libraries was prepared and custom-made bioinformatics pipeline coupled with molecular techniques was developed to sequence, assemble and analyze the siRNAs for plant virus discovery. We also carried out phylogenetic and recombination analysis of the identified viruses.

Results

Twenty two isolates from eight different virus species including Cucumber mosaic virus, Potato virus Y, Tobacco mosaic virus, Tobacco vein banding Mosaic virus, Pepper mottle virus, Brassica yellow virus, Chilli venial mottle virus, Broad bean wilt virus 2 were identified in tobacco across the survey area. The near-complete genome sequence of the 22 new isolates were determined and analyzed. The isolates were grouped together with known strains in the phylogenetic tree. Molecular variation in the isolates indicated the conserved coding regions have majorly a nucleotide sequence identity of 80-94 % with previously identified isolates. Various events of recombination were discovered among some of the isolates indicating that two or more viruses or different isolates of one virus infect the same host cell.

Conclusion

This study describes the discovery of a consortium of plant viruses infecting Tobacco that are broadly distributed in Anhui province of China. It also demonstrates the effectiveness of NGS in identifying plant viruses without a prior knowledge of the virus and the genetic diversity that enhanced mixed infection.
Appendix
Available only for authorised users
Literature
2.
go back to reference Adriaenssens EM, Cowan DA. Using signature genes as tools to assess environmental viral ecology and diversity. Appl Environ Microbiol. 2014;80:4470–80.CrossRefPubMedPubMedCentral Adriaenssens EM, Cowan DA. Using signature genes as tools to assess environmental viral ecology and diversity. Appl Environ Microbiol. 2014;80:4470–80.CrossRefPubMedPubMedCentral
4.
go back to reference Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants. Trends Genet. 2006;22:268–80.CrossRefPubMed Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants. Trends Genet. 2006;22:268–80.CrossRefPubMed
5.
go back to reference Covey SN, AlKaff NS, Langara A, Turner DS. Plants combat infection by gene silencing. Nature. 1997;385:781–2.CrossRef Covey SN, AlKaff NS, Langara A, Turner DS. Plants combat infection by gene silencing. Nature. 1997;385:781–2.CrossRef
6.
go back to reference Roy A, Shao J. A case study on discovery of novel citrus leprosis virus cytoplasmic type 2 utilizing small RNA libraries by next generation sequencing and bioinformatic analyses. Journal of Data Mining in Genomics & Proteomics. 2013;04. Roy A, Shao J. A case study on discovery of novel citrus leprosis virus cytoplasmic type 2 utilizing small RNA libraries by next generation sequencing and bioinformatic analyses. Journal of Data Mining in Genomics & Proteomics. 2013;04.
7.
go back to reference Wu Q, Ding SW, Zhang Y, Zhu S. Identification of viruses and viroids by next-generation sequencing and homology-dependent and homology-independent algorithms. Annu Rev Phytopathol. 2015;53:425–44.CrossRefPubMed Wu Q, Ding SW, Zhang Y, Zhu S. Identification of viruses and viroids by next-generation sequencing and homology-dependent and homology-independent algorithms. Annu Rev Phytopathol. 2015;53:425–44.CrossRefPubMed
8.
go back to reference Al Rwahnih M, Dave A, Anderson MM, Rowhani A, Uyemoto JK, Sudarshana MR. Association of a DNA virus with grapevines affected by red blotch disease in California. Phytopathology. 2013;103:1069–76.CrossRefPubMed Al Rwahnih M, Dave A, Anderson MM, Rowhani A, Uyemoto JK, Sudarshana MR. Association of a DNA virus with grapevines affected by red blotch disease in California. Phytopathology. 2013;103:1069–76.CrossRefPubMed
9.
go back to reference Giampetruzzi A, Roumi V, Roberto R, Malossini U, Yoshikawa N, La Notte P, Terlizzi F, Credi R, Saldarelli P. A new grapevine virus discovered by deep sequencing of virus- and viroid-derived small RNAs in Cv Pinot gris. Virus Res. 2012;163:262–8.CrossRefPubMed Giampetruzzi A, Roumi V, Roberto R, Malossini U, Yoshikawa N, La Notte P, Terlizzi F, Credi R, Saldarelli P. A new grapevine virus discovered by deep sequencing of virus- and viroid-derived small RNAs in Cv Pinot gris. Virus Res. 2012;163:262–8.CrossRefPubMed
10.
go back to reference Maliogka VI, Olmos A, Pappi PG, Lotos L, Efthimiou K, Grammatikaki G, Candresse T, Katis NI, Avgelis AD. A novel grapevine badnavirus is associated with the Roditis leaf discoloration disease. Virus Res. 2015;203:47–55.CrossRefPubMed Maliogka VI, Olmos A, Pappi PG, Lotos L, Efthimiou K, Grammatikaki G, Candresse T, Katis NI, Avgelis AD. A novel grapevine badnavirus is associated with the Roditis leaf discoloration disease. Virus Res. 2015;203:47–55.CrossRefPubMed
11.
go back to reference Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I, Simon R. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs. A generic method for diagnosis, discovery and sequencing of viruses. Virology. 2009;388:1–7.CrossRefPubMed Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I, Simon R. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs. A generic method for diagnosis, discovery and sequencing of viruses. Virology. 2009;388:1–7.CrossRefPubMed
13.
go back to reference Ding M, Yang C, Zhang L, Jiang ZL, Fang Q, Qin XY, Zhang ZK. Occurrence of Chilli veinal mottle virus in Nicotiana tabacum in Yunnan. China Plant Disease. 2011;95:357. Ding M, Yang C, Zhang L, Jiang ZL, Fang Q, Qin XY, Zhang ZK. Occurrence of Chilli veinal mottle virus in Nicotiana tabacum in Yunnan. China Plant Disease. 2011;95:357.
14.
go back to reference Tian YP, Liu JL, Zhang CL, Liu YY, Wang B, Li XD, Guo ZK, Valkonen JP. Genetic diversity of potato virus Y infecting tobacco crops in China. Phytopathology. 2011;101:377–87.CrossRefPubMed Tian YP, Liu JL, Zhang CL, Liu YY, Wang B, Li XD, Guo ZK, Valkonen JP. Genetic diversity of potato virus Y infecting tobacco crops in China. Phytopathology. 2011;101:377–87.CrossRefPubMed
15.
go back to reference Dong JH, Yin YY, Xu XY, Duan YM, Zhang ZK. First report of tomato spotted wilt virus in tomato and tobacco in China. J Plant Pathol. 2010;92:S121. Dong JH, Yin YY, Xu XY, Duan YM, Zhang ZK. First report of tomato spotted wilt virus in tomato and tobacco in China. J Plant Pathol. 2010;92:S121.
16.
go back to reference Wang F, Qi S, Gao Z, Akinyemi IA, Xu D, Zhou B. Complete genome sequence of tobacco virus 1, a closterovirus from Nicotiana tabacum. Arch Virol. 2016;161:1087–90.CrossRefPubMed Wang F, Qi S, Gao Z, Akinyemi IA, Xu D, Zhou B. Complete genome sequence of tobacco virus 1, a closterovirus from Nicotiana tabacum. Arch Virol. 2016;161:1087–90.CrossRefPubMed
17.
go back to reference Q-F LIU, M-D LI, H-Y WU, X-D WU, D-Y PENG. Geochemical characteristics of typical tobacco-planting soils in Zhangjiajie mountainous area. Chin J Eco-Agric. 2012;6:19. Q-F LIU, M-D LI, H-Y WU, X-D WU, D-Y PENG. Geochemical characteristics of typical tobacco-planting soils in Zhangjiajie mountainous area. Chin J Eco-Agric. 2012;6:19.
19.
go back to reference Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28:1086–92.CrossRefPubMedPubMedCentral Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28:1086–92.CrossRefPubMedPubMedCentral
20.
go back to reference Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.CrossRefPubMedPubMedCentral Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.CrossRefPubMedPubMedCentral
21.
go back to reference Kayode AB, Odu BO, Ako-Nai KA, Alabi OJ. Occurrence of cucumber mosaic virus subgroups IA and IB isolates in tomatoes in Nigeria. Plant Dis. 2014;98:1750.CrossRef Kayode AB, Odu BO, Ako-Nai KA, Alabi OJ. Occurrence of cucumber mosaic virus subgroups IA and IB isolates in tomatoes in Nigeria. Plant Dis. 2014;98:1750.CrossRef
22.
go back to reference Chen YF, Chen JS, Zhang HR, Tang XS, Du ZY. Molecular evidence and sequence analysis of a natural reassortant between Cucumber mosaic virus subgroup IA and II strains. Virus Genes. 2007;35:405–13.CrossRefPubMed Chen YF, Chen JS, Zhang HR, Tang XS, Du ZY. Molecular evidence and sequence analysis of a natural reassortant between Cucumber mosaic virus subgroup IA and II strains. Virus Genes. 2007;35:405–13.CrossRefPubMed
23.
24.
go back to reference Vance VB, Moore D, Turpen TH, Bracker A, Hollowell VC. The complete nucleotide sequence of pepper mottle virus genomic RNA: comparison of the encoded polyprotein with those of other sequenced potyviruses. Virology. 1992;191:19–30.CrossRefPubMed Vance VB, Moore D, Turpen TH, Bracker A, Hollowell VC. The complete nucleotide sequence of pepper mottle virus genomic RNA: comparison of the encoded polyprotein with those of other sequenced potyviruses. Virology. 1992;191:19–30.CrossRefPubMed
25.
go back to reference Adams MJ, Antoniw JF, Kreuze J. Virgaviridae: a new family of rod-shaped plant viruses. Arch Virol. 2009;154:1967–72.CrossRefPubMed Adams MJ, Antoniw JF, Kreuze J. Virgaviridae: a new family of rod-shaped plant viruses. Arch Virol. 2009;154:1967–72.CrossRefPubMed
26.
go back to reference Bonnet J, Fraile A, Sacristan S, Malpica JM, Garcia-Arenal F. Role of recombination in the evolution of natural populations of Cucumber mosaic virus, a tripartite RNA plant virus. Virology. 2005;332:359–68.CrossRefPubMed Bonnet J, Fraile A, Sacristan S, Malpica JM, Garcia-Arenal F. Role of recombination in the evolution of natural populations of Cucumber mosaic virus, a tripartite RNA plant virus. Virology. 2005;332:359–68.CrossRefPubMed
27.
go back to reference Davino S, Panno S, Rangel EA, Davino M, Bellardi MG, Rubio L. Population genetics of cucumber mosaic virus infecting medicinal, aromatic and ornamental plants from northern Italy. Arch Virol. 2012;157:739–45. Davino S, Panno S, Rangel EA, Davino M, Bellardi MG, Rubio L. Population genetics of cucumber mosaic virus infecting medicinal, aromatic and ornamental plants from northern Italy. Arch Virol. 2012;157:739–45.
28.
go back to reference Moury B, Morel C, Johansen E, Jacquemond M. Evidence for diversifying selection in Potato virus Y and in the coat protein of other potyviruses. J Gen Virol. 2002;83:2563–73.CrossRefPubMed Moury B, Morel C, Johansen E, Jacquemond M. Evidence for diversifying selection in Potato virus Y and in the coat protein of other potyviruses. J Gen Virol. 2002;83:2563–73.CrossRefPubMed
29.
go back to reference Singh RP, Valkonen JP, Gray SM, Boonham N, Jones RA, Kerlan C, Schubert J. Discussion paper: the naming of potato virus Y strains infecting potato. Arch Virol. 2008;153:1–13.CrossRefPubMed Singh RP, Valkonen JP, Gray SM, Boonham N, Jones RA, Kerlan C, Schubert J. Discussion paper: the naming of potato virus Y strains infecting potato. Arch Virol. 2008;153:1–13.CrossRefPubMed
30.
go back to reference Glais L, Tribodet M, Kerlan C. Genomic variability in Potato potyvirus Y (PVY): evidence that PVY(N)W and PVY(NTN) variants are single to multiple recombinants between PVY(O) and PVY(N) isolates. Arch Virol. 2002;147:363–78.CrossRefPubMed Glais L, Tribodet M, Kerlan C. Genomic variability in Potato potyvirus Y (PVY): evidence that PVY(N)W and PVY(NTN) variants are single to multiple recombinants between PVY(O) and PVY(N) isolates. Arch Virol. 2002;147:363–78.CrossRefPubMed
31.
go back to reference Cuevas JM, Delaunay A, Visser JC, Bellstedt DU, Jacquot E, Elena SF. Phylogeography and molecular evolution of potato virus Y. PLoS One. 2012;7:e37853.CrossRefPubMedPubMedCentral Cuevas JM, Delaunay A, Visser JC, Bellstedt DU, Jacquot E, Elena SF. Phylogeography and molecular evolution of potato virus Y. PLoS One. 2012;7:e37853.CrossRefPubMedPubMedCentral
32.
go back to reference Domingo E, Escarmis C, Sevilla N, Moya A, Elena SF, Quer J, Novella IS, Holland JJ. Basic concepts in RNA virus evolution. Faseb Journal. 1996;10:859–64.PubMed Domingo E, Escarmis C, Sevilla N, Moya A, Elena SF, Quer J, Novella IS, Holland JJ. Basic concepts in RNA virus evolution. Faseb Journal. 1996;10:859–64.PubMed
33.
go back to reference Hu XJ, Karasev AV, Brown CJ, Lorenzen JH. Sequence characteristics of potato virus Y recombinants. J Gen Virol. 2009;90:3033–41.CrossRefPubMed Hu XJ, Karasev AV, Brown CJ, Lorenzen JH. Sequence characteristics of potato virus Y recombinants. J Gen Virol. 2009;90:3033–41.CrossRefPubMed
34.
go back to reference Worobey M, Holmes EC. Evolutionary aspects of recombination in RNA viruses. J Gen Virol. 1999;80:2535–43.CrossRefPubMed Worobey M, Holmes EC. Evolutionary aspects of recombination in RNA viruses. J Gen Virol. 1999;80:2535–43.CrossRefPubMed
35.
go back to reference Acosta-Leal R, Duffy S, Xiong Z, Hammond RW, Elena SF. Advances in plant virus evolution: translating evolutionary insights into better disease management. Phytopathology. 2011;101:1136–48.CrossRefPubMed Acosta-Leal R, Duffy S, Xiong Z, Hammond RW, Elena SF. Advances in plant virus evolution: translating evolutionary insights into better disease management. Phytopathology. 2011;101:1136–48.CrossRefPubMed
36.
go back to reference Moodley V, Ibaba JD, Naidoo R, Gubba A. Full-genome analyses of a Potato Virus Y (PVY) isolate infecting pepper (Capsicum annuum L.) in the Republic of South Africa. Virus Genes. 2014;49:466–76.CrossRefPubMed Moodley V, Ibaba JD, Naidoo R, Gubba A. Full-genome analyses of a Potato Virus Y (PVY) isolate infecting pepper (Capsicum annuum L.) in the Republic of South Africa. Virus Genes. 2014;49:466–76.CrossRefPubMed
37.
go back to reference Wang F, Gao ZL, An MN, Zhou BG, Wu YH. Sequencing and phylogenetic analysis of potato virus Y Liaoning isolate in China. J Integr Agric. 2013;12:1195–200.CrossRef Wang F, Gao ZL, An MN, Zhou BG, Wu YH. Sequencing and phylogenetic analysis of potato virus Y Liaoning isolate in China. J Integr Agric. 2013;12:1195–200.CrossRef
38.
go back to reference Nouri S, Arevalo R, Falk BW, Groves RL. Genetic structure and molecular variability of Cucumber mosaic virus isolates in the United States. PLoS One. 2014;9, e96582.CrossRefPubMedPubMedCentral Nouri S, Arevalo R, Falk BW, Groves RL. Genetic structure and molecular variability of Cucumber mosaic virus isolates in the United States. PLoS One. 2014;9, e96582.CrossRefPubMedPubMedCentral
39.
go back to reference Kehoe MA, Coutts BA, Buirchell BJ, Jones RAC. Plant virology and next generation sequencing: experiences with a Potyvirus. Plos One. 2014;9. Kehoe MA, Coutts BA, Buirchell BJ, Jones RAC. Plant virology and next generation sequencing: experiences with a Potyvirus. Plos One. 2014;9.
40.
go back to reference Froissart R, Roze D, Uzest M, Galibert L, Blanc S, Michalakis Y. Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biol. 2005;3:e89.CrossRefPubMedPubMedCentral Froissart R, Roze D, Uzest M, Galibert L, Blanc S, Michalakis Y. Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biol. 2005;3:e89.CrossRefPubMedPubMedCentral
41.
go back to reference Malpica JM, Fraile A, Moreno I, Obies CI, Drake JW, Garcia-Arenal F. The rate and character of spontaneous mutation in an RNA virus. Genetics. 2002;162:1505–11.PubMedPubMedCentral Malpica JM, Fraile A, Moreno I, Obies CI, Drake JW, Garcia-Arenal F. The rate and character of spontaneous mutation in an RNA virus. Genetics. 2002;162:1505–11.PubMedPubMedCentral
43.
go back to reference Lin HX, Rubio L, Smythe AB, Falk BW. Molecular population genetics of Cucumber mosaic virus in California: evidence for founder effects and reassortment. J Virol. 2004;78:6666–75.CrossRefPubMedPubMedCentral Lin HX, Rubio L, Smythe AB, Falk BW. Molecular population genetics of Cucumber mosaic virus in California: evidence for founder effects and reassortment. J Virol. 2004;78:6666–75.CrossRefPubMedPubMedCentral
44.
go back to reference Yang X, Wang Y, Guo W, Xie Y, Xie Q, Fan L, Zhou X. Characterization of small interfering RNAs derived from the geminivirus/betasatellite complex using deep sequencing. PLoS One. 2011;6, e16928.CrossRefPubMedPubMedCentral Yang X, Wang Y, Guo W, Xie Y, Xie Q, Fan L, Zhou X. Characterization of small interfering RNAs derived from the geminivirus/betasatellite complex using deep sequencing. PLoS One. 2011;6, e16928.CrossRefPubMedPubMedCentral
45.
go back to reference Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CrossRefPubMed Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CrossRefPubMed
46.
go back to reference Ho T, Tzanetakis IE. Development of a virus detection and discovery pipeline using next generation sequencing. Virology. 2014;471:54–60.CrossRefPubMed Ho T, Tzanetakis IE. Development of a virus detection and discovery pipeline using next generation sequencing. Virology. 2014;471:54–60.CrossRefPubMed
47.
go back to reference Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CrossRefPubMedPubMedCentral Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CrossRefPubMedPubMedCentral
48.
49.
go back to reference Felsenstein J. Confidence-limits on phylogenies - an approach using the bootstrap. Evolution. 1985;39:783–91.CrossRef Felsenstein J. Confidence-limits on phylogenies - an approach using the bootstrap. Evolution. 1985;39:783–91.CrossRef
50.
go back to reference Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution. 2015;1:vev003.CrossRefPubMedPubMedCentral Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution. 2015;1:vev003.CrossRefPubMedPubMedCentral
51.
go back to reference Padidam M, Sawyer S, Fauquet CM. Possible emergence of new geminiviruses by frequent recombination. Virology. 1999;265:218–25.CrossRefPubMed Padidam M, Sawyer S, Fauquet CM. Possible emergence of new geminiviruses by frequent recombination. Virology. 1999;265:218–25.CrossRefPubMed
52.
go back to reference Salminen MO, Carr JK, Burke DS, McCutchan FE. Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscanning. AIDS Res Hum Retroviruses. 1995;11:1423–5.CrossRefPubMed Salminen MO, Carr JK, Burke DS, McCutchan FE. Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscanning. AIDS Res Hum Retroviruses. 1995;11:1423–5.CrossRefPubMed
53.
go back to reference Smith JM. Analyzing the mosaic structure of genes. J Mol Evol. 1992;34:126–9.PubMed Smith JM. Analyzing the mosaic structure of genes. J Mol Evol. 1992;34:126–9.PubMed
54.
go back to reference Posada D, Crandall KA. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A. 2001;98:13757–62.CrossRefPubMedPubMedCentral Posada D, Crandall KA. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A. 2001;98:13757–62.CrossRefPubMedPubMedCentral
55.
go back to reference Gibbs MJ, Armstrong JS, Gibbs AJ. Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics. 2000;16:573–82.CrossRefPubMed Gibbs MJ, Armstrong JS, Gibbs AJ. Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics. 2000;16:573–82.CrossRefPubMed
56.
57.
go back to reference Tomitaka Y, Ohshima K. A phylogeographical study of the Turnip mosaic virus population in East Asia reveals an ‘emergent” lineage in Japan. Mol Ecol. 2006;15:4437–57.CrossRefPubMed Tomitaka Y, Ohshima K. A phylogeographical study of the Turnip mosaic virus population in East Asia reveals an ‘emergent” lineage in Japan. Mol Ecol. 2006;15:4437–57.CrossRefPubMed
Metadata
Title
Ecogenomic survey of plant viruses infecting Tobacco by Next generation sequencing
Authors
Ibukun A. Akinyemi
Fang Wang
Benguo Zhou
Shuishui Qi
Qingfa Wu
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2016
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-016-0639-7

Other articles of this Issue 1/2016

Virology Journal 1/2016 Go to the issue