Skip to main content
Top
Published in: Virology Journal 1/2019

Open Access 01-12-2019 | Adenovirus | Research

NAD-linked mechanisms of gene de-repression and a novel role for CtBP in persistent adenovirus infection of lymphocytes

Authors: Megan L. Dickherber, Charlie Garnett-Benson

Published in: Virology Journal | Issue 1/2019

Login to get access

Abstract

Background

Adenovirus (AdV) infection is ubiquitous in the human population and causes acute infection in the respiratory and gastrointestinal tracts. In addition to lytic infections in epithelial cells, AdV can persist in a latent form in mucosal lymphocytes, and nearly 80% of children contain viral DNA in the lymphocytes of their tonsils and adenoids. Reactivation of latent AdV is thought to be the source of deadly viremia in pediatric transplant patients. Adenovirus latency and reactivation in lymphocytes is not well studied, though immune cell activation has been reported to promote productive infection from latency. Lymphocyte activation induces global changes in cellular gene expression along with robust changes in metabolic state. The ratio of free cytosolic NAD+/NADH can impact gene expression via modulation of transcriptional repressor complexes. The NAD-dependent transcriptional co-repressor C-terminal Binding Protein (CtBP) was discovered 25 years ago due to its high affinity binding to AdV E1A proteins, however, the role of this interaction in the viral life cycle remains unclear.

Methods

The dynamics of persistently- and lytically-infected cells are evaluated. RT-qPCR is used to evaluate AdV gene expression following lymphocyte activation, treatment with nicotinamide, or disruption of CtBP-E1A binding.

Results

PMA and ionomycin stimulation shifts the NAD+/NADH ratio in lymphocytic cell lines and upregulates viral gene expression. Direct modulation of NAD+/NADH by nicotinamide treatment also upregulates early and late viral transcripts in persistently-infected cells. We found differential expression of the NAD-dependent CtBP protein homologs between lymphocytes and epithelial cells, and inhibition of CtBP complexes upregulates AdV E1A expression in T lymphocyte cell lines but not in lytically-infected epithelial cells.

Conclusions

Our data provide novel insight into factors that can regulate AdV infections in activated human lymphocytes and reveal that modulation of cellular NAD+/NADH can de-repress adenovirus gene expression in persistently-infected lymphocytes. In contrast, disrupting the NAD-dependent CtBP repressor complex interaction with PxDLS-containing binding partners paradoxically alters AdV gene expression. Our findings also indicate that CtBP activities on viral gene expression may be distinct from those occurring upon metabolic alterations in cellular NAD+/NADH ratios or those occurring after lymphocyte activation.
Literature
2.
go back to reference Garnett CT, Talekar G, Mahr JA, et al. Latent species C adenoviruses in human tonsil tissues. J Virol. 2009;83:2417–28.PubMedCrossRef Garnett CT, Talekar G, Mahr JA, et al. Latent species C adenoviruses in human tonsil tissues. J Virol. 2009;83:2417–28.PubMedCrossRef
4.
go back to reference Thounaojam AD, Balakrishnan A, Mun AB. Detection and molecular typing of human adenoviruses associated with respiratory illnesses in Kerala. Jpn J Infect Dis. 2016;69:500–4.PubMedCrossRef Thounaojam AD, Balakrishnan A, Mun AB. Detection and molecular typing of human adenoviruses associated with respiratory illnesses in Kerala. Jpn J Infect Dis. 2016;69:500–4.PubMedCrossRef
5.
6.
go back to reference EVANS AS. Latent adenovirus infections of the human respiratory tract. Am J Hyg. 1958;67:256–66.PubMed EVANS AS. Latent adenovirus infections of the human respiratory tract. Am J Hyg. 1958;67:256–66.PubMed
7.
go back to reference HOGG JC. Role of latent viral infections in chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med. 2001;164:S71–5.PubMedCrossRef HOGG JC. Role of latent viral infections in chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med. 2001;164:S71–5.PubMedCrossRef
8.
go back to reference Kosulin K, Geiger E, Vécsei A, et al. Persistence and reactivation of human adenoviruses in the gastrointestinal tract. Clinical Microbiology and Infection. 2016;22:381.e1–8.CrossRef Kosulin K, Geiger E, Vécsei A, et al. Persistence and reactivation of human adenoviruses in the gastrointestinal tract. Clinical Microbiology and Infection. 2016;22:381.e1–8.CrossRef
9.
go back to reference Kosulin K, Berkowitsch B, Matthes S, et al. Intestinal adenovirus shedding before allogeneic stem cell transplantation is a risk factor for invasive infection post-transplant. EBioMedicine. 2018;28:114–9.PubMedPubMedCentralCrossRef Kosulin K, Berkowitsch B, Matthes S, et al. Intestinal adenovirus shedding before allogeneic stem cell transplantation is a risk factor for invasive infection post-transplant. EBioMedicine. 2018;28:114–9.PubMedPubMedCentralCrossRef
10.
go back to reference Mynarek M, Ganzenmueller T, Mueller-Heine A, et al. Patient, virus, and treatment-related risk Factorsin pediatric adenovirus infection after stem cell transplantation: results of a routine monitoring program. Biol Blood Marrow Transplant. 2014;20:250–6.PubMedCrossRef Mynarek M, Ganzenmueller T, Mueller-Heine A, et al. Patient, virus, and treatment-related risk Factorsin pediatric adenovirus infection after stem cell transplantation: results of a routine monitoring program. Biol Blood Marrow Transplant. 2014;20:250–6.PubMedCrossRef
11.
go back to reference Wurzel DF, Mackay IM, Marchant JM, et al. Adenovirus species C is associated with chronic Suppurative lung diseases in children. Clin Infect Dis. 2014;59:34–40.PubMedCrossRef Wurzel DF, Mackay IM, Marchant JM, et al. Adenovirus species C is associated with chronic Suppurative lung diseases in children. Clin Infect Dis. 2014;59:34–40.PubMedCrossRef
12.
go back to reference Kampmann B, Cubitt D, Walls T, et al. Improved outcome for children with disseminated adenoviral infection following allogeneic stem cell transplantation. Br J Haematol. 2005;130:595–603.PubMedCrossRef Kampmann B, Cubitt D, Walls T, et al. Improved outcome for children with disseminated adenoviral infection following allogeneic stem cell transplantation. Br J Haematol. 2005;130:595–603.PubMedCrossRef
13.
go back to reference DSouza A, Fretham C. Current Uses and Outcomes of Hematopoietic Cell Transplantation (HCT): CIBMTR Summary Slides, 2018 [Internet]. CIBMTR. Available from: https://www.cibmtr.org, [cited 2019 30 Aug ]. DSouza A, Fretham C. Current Uses and Outcomes of Hematopoietic Cell Transplantation (HCT): CIBMTR Summary Slides, 2018 [Internet]. CIBMTR. Available from: https://​www.​cibmtr.​org, [cited 2019 30 Aug ].
15.
go back to reference Lee YJ, Prockop SE, Papanicolaou GA. Approach to adenovirus infections in the setting of hematopoietic cell transplantation. Curr Opin Infect Dis. 2017;30:377–87.PubMedCrossRef Lee YJ, Prockop SE, Papanicolaou GA. Approach to adenovirus infections in the setting of hematopoietic cell transplantation. Curr Opin Infect Dis. 2017;30:377–87.PubMedCrossRef
16.
go back to reference Fox JP, Brandt CD, Wassermann FE, et al. The virus watch program: a continuing surveillance of viral infections in metropolitan New York families. VI. Observations of adenovirus infections: virus excretion patterns, antibody response, efficiency of surveillance, patterns of infections, and relation to illness. Am J Epidemiol. 1969;89:25–50.PubMedCrossRef Fox JP, Brandt CD, Wassermann FE, et al. The virus watch program: a continuing surveillance of viral infections in metropolitan New York families. VI. Observations of adenovirus infections: virus excretion patterns, antibody response, efficiency of surveillance, patterns of infections, and relation to illness. Am J Epidemiol. 1969;89:25–50.PubMedCrossRef
18.
go back to reference Markel D, Lam E, Harste G, et al. Type dependent patterns of human adenovirus persistence in human T-lymphocyte cell lines. J Med Virol. 2014;86:785–94.PubMedCrossRef Markel D, Lam E, Harste G, et al. Type dependent patterns of human adenovirus persistence in human T-lymphocyte cell lines. J Med Virol. 2014;86:785–94.PubMedCrossRef
19.
go back to reference Krzywkowski T, Ciftci S, Assadian F, et al. Simultaneous single-cell In Situ analysis of human adenovirus type 5 DNA and mRNA expression patterns in lytic and persistent infection. J Virol. 2017;91:e00166–17.PubMedPubMedCentralCrossRef Krzywkowski T, Ciftci S, Assadian F, et al. Simultaneous single-cell In Situ analysis of human adenovirus type 5 DNA and mRNA expression patterns in lytic and persistent infection. J Virol. 2017;91:e00166–17.PubMedPubMedCentralCrossRef
20.
go back to reference Furuse Y, Ornelles DA, Cullen BR. Persistently adenovirus-infected lymphoid cells express microRNAs derived from the viral VAI and especially VAII RNA. Virology. 2013;447:140–5.PubMedCrossRef Furuse Y, Ornelles DA, Cullen BR. Persistently adenovirus-infected lymphoid cells express microRNAs derived from the viral VAI and especially VAII RNA. Virology. 2013;447:140–5.PubMedCrossRef
21.
go back to reference Murali VK, Ornelles DA, Gooding LR, et al. Adenovirus death protein (ADP) is required for lytic infection of human lymphocytes. J Virol. 2014;88:903–12.PubMedPubMedCentralCrossRef Murali VK, Ornelles DA, Gooding LR, et al. Adenovirus death protein (ADP) is required for lytic infection of human lymphocytes. J Virol. 2014;88:903–12.PubMedPubMedCentralCrossRef
22.
go back to reference Racioppi L, Means AR. Calcium/calmodulin-dependent kinase IV in immune and inflammatory responses: novel routes for an ancient traveller. Trends Immunol. 2008;29:600–7.PubMedCrossRef Racioppi L, Means AR. Calcium/calmodulin-dependent kinase IV in immune and inflammatory responses: novel routes for an ancient traveller. Trends Immunol. 2008;29:600–7.PubMedCrossRef
23.
go back to reference Giberson AN, Davidson AR, Parks RJ. Chromatin structure of adenovirus DNA throughout infection. Nucleic Acids Res. 2012;40:2369–76.PubMedCrossRef Giberson AN, Davidson AR, Parks RJ. Chromatin structure of adenovirus DNA throughout infection. Nucleic Acids Res. 2012;40:2369–76.PubMedCrossRef
24.
go back to reference Matsumoto K, Okuwaki M, Kawase H, et al. Stimulation of DNA transcription by the replication factor from the adenovirus genome in a chromatin-like structure. J Biol Chem. 1998;270:9645–50.CrossRef Matsumoto K, Okuwaki M, Kawase H, et al. Stimulation of DNA transcription by the replication factor from the adenovirus genome in a chromatin-like structure. J Biol Chem. 1998;270:9645–50.CrossRef
25.
go back to reference Okuwaki M, Nagata K. Template activating factor-I remodels the chromatin structure and stimulates transcription from the chromatin template*. J Biol Chem. 1998;273:34511–8.PubMedCrossRef Okuwaki M, Nagata K. Template activating factor-I remodels the chromatin structure and stimulates transcription from the chromatin template*. J Biol Chem. 1998;273:34511–8.PubMedCrossRef
26.
go back to reference Boyd JM, Subramanian T, Schaeper U, et al. A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J. 1993;12:469–78.PubMedPubMedCentralCrossRef Boyd JM, Subramanian T, Schaeper U, et al. A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J. 1993;12:469–78.PubMedPubMedCentralCrossRef
27.
go back to reference Schaeper U, Boyd JM, Verma S, et al. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci U S A. 1995;92:10467–71.PubMedPubMedCentralCrossRef Schaeper U, Boyd JM, Verma S, et al. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci U S A. 1995;92:10467–71.PubMedPubMedCentralCrossRef
28.
go back to reference Stankiewicz TR, Gray JJ, Winter AN, et al. C-terminal binding proteins: central players in development and disease. Biomolecular Concepts. 2014;5:489–511.PubMedCrossRef Stankiewicz TR, Gray JJ, Winter AN, et al. C-terminal binding proteins: central players in development and disease. Biomolecular Concepts. 2014;5:489–511.PubMedCrossRef
29.
go back to reference Sewalt RGAB, Gunster MJ, van der Vlag J, et al. C-terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins. Mol Cell Biol. 1999;19:777–87.PubMedPubMedCentralCrossRef Sewalt RGAB, Gunster MJ, van der Vlag J, et al. C-terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins. Mol Cell Biol. 1999;19:777–87.PubMedPubMedCentralCrossRef
30.
31.
go back to reference Shi Y, Sawada J-I, Sui G, et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature. 2003;422:735–8.PubMedCrossRef Shi Y, Sawada J-I, Sui G, et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature. 2003;422:735–8.PubMedCrossRef
32.
go back to reference Zhang Q, Piston DW, Goodman RH. Regulation of Corepressor function by nuclear NADH. Science. 2002;295:1895–7.PubMed Zhang Q, Piston DW, Goodman RH. Regulation of Corepressor function by nuclear NADH. Science. 2002;295:1895–7.PubMed
33.
go back to reference Kumar V, Carlson JE, Ohgi KA, et al. Transcription Corepressor CtBP is an NAD+-regulated dehydrogenase. Mol Cell. 2002;10:857–69.PubMedCrossRef Kumar V, Carlson JE, Ohgi KA, et al. Transcription Corepressor CtBP is an NAD+-regulated dehydrogenase. Mol Cell. 2002;10:857–69.PubMedCrossRef
34.
go back to reference Mani-Telang P, Sutrias-Grau M, Williams G, et al. Role of NAD binding and catalytic residues in the C-terminal binding protein corepressor. FEBS Lett. 2007;581:5241–6.PubMedCrossRef Mani-Telang P, Sutrias-Grau M, Williams G, et al. Role of NAD binding and catalytic residues in the C-terminal binding protein corepressor. FEBS Lett. 2007;581:5241–6.PubMedCrossRef
35.
go back to reference Shen Y, Kapfhamer D, Minnella AM, et al. Bioenergetic state regulates innate inflammatory responses through the transcriptional co-repressor CtBP. Nat Commun. 2017:1–13. Shen Y, Kapfhamer D, Minnella AM, et al. Bioenergetic state regulates innate inflammatory responses through the transcriptional co-repressor CtBP. Nat Commun. 2017:1–13.
36.
go back to reference Deng Y, Li H, Yin X, et al. C-terminal binding protein 1 modulates cellular redox via feedback regulation of MPC1 and MPC2 in melanoma cells. Med Sci Monit. 2018;24:7614–24.PubMedPubMedCentralCrossRef Deng Y, Li H, Yin X, et al. C-terminal binding protein 1 modulates cellular redox via feedback regulation of MPC1 and MPC2 in melanoma cells. Med Sci Monit. 2018;24:7614–24.PubMedPubMedCentralCrossRef
37.
go back to reference Pelka P, Ablack JNG, Fonseca GJ, et al. Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes. J Virol. 2008;82:7252–63.PubMedPubMedCentralCrossRef Pelka P, Ablack JNG, Fonseca GJ, et al. Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes. J Virol. 2008;82:7252–63.PubMedPubMedCentralCrossRef
38.
go back to reference Bruton RK, Pelka P, Mapp KL, et al. Identification of a second CtBP binding site in adenovirus type 5 E1A conserved region 3. J Virol. 2008;82:8476–86.PubMedPubMedCentralCrossRef Bruton RK, Pelka P, Mapp KL, et al. Identification of a second CtBP binding site in adenovirus type 5 E1A conserved region 3. J Virol. 2008;82:8476–86.PubMedPubMedCentralCrossRef
39.
go back to reference Subramanian T, Zhao L-J, Chinnadurai G. Interaction of CtBP with adenovirus E1A suppresses immortalization of primary epithelial cells and enhances virus replication during productive infection. Virology. 2013;443:313–20.PubMedCrossRef Subramanian T, Zhao L-J, Chinnadurai G. Interaction of CtBP with adenovirus E1A suppresses immortalization of primary epithelial cells and enhances virus replication during productive infection. Virology. 2013;443:313–20.PubMedCrossRef
40.
go back to reference Zemke NR, Berk AJ. The Adenovirus E1A C Terminus Suppresses a Delayed Antiviral Response and Modulates RAS Signaling. Cell Host Microbe. 2017;22:789–800.e5.PubMedPubMedCentralCrossRef Zemke NR, Berk AJ. The Adenovirus E1A C Terminus Suppresses a Delayed Antiviral Response and Modulates RAS Signaling. Cell Host Microbe. 2017;22:789–800.e5.PubMedPubMedCentralCrossRef
41.
go back to reference Subramanian T, La Regina M, Chinnadurai G. Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of E1a protein. Oncogene. 1989;4:415–20.PubMed Subramanian T, La Regina M, Chinnadurai G. Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of E1a protein. Oncogene. 1989;4:415–20.PubMed
42.
go back to reference Subramanian T, Malstrom SE, Chinnadurai G. Requirement of the C-terminal region of adenovirus E1a for cell transformation in cooperation with E1b. Oncogene. 1991;6:1171–3.PubMed Subramanian T, Malstrom SE, Chinnadurai G. Requirement of the C-terminal region of adenovirus E1a for cell transformation in cooperation with E1b. Oncogene. 1991;6:1171–3.PubMed
43.
go back to reference Cohen MJ, Yousef AF, Massimi P, et al. Dissection of the C-terminal region of E1A redefines the roles of CtBP and other cellular targets in oncogenic transformation. J Virol. 2013;87:10348–55.PubMedPubMedCentralCrossRef Cohen MJ, Yousef AF, Massimi P, et al. Dissection of the C-terminal region of E1A redefines the roles of CtBP and other cellular targets in oncogenic transformation. J Virol. 2013;87:10348–55.PubMedPubMedCentralCrossRef
44.
go back to reference Zhao L-J, Subramanian T, Chinnadurai G. Changes in C-terminal binding protein 2 (CtBP2) Corepressor complex induced by E1A and modulation of E1A transcriptional activity by CtBP2. J Biol Chem. 2006;281:36613–23.PubMedCrossRef Zhao L-J, Subramanian T, Chinnadurai G. Changes in C-terminal binding protein 2 (CtBP2) Corepressor complex induced by E1A and modulation of E1A transcriptional activity by CtBP2. J Biol Chem. 2006;281:36613–23.PubMedCrossRef
45.
go back to reference Zhao L-J, Subramanian T, Zhou Y, et al. Acetylation by p300 regulates nuclear localization and function of the transcriptional Corepressor CtBP2. J Biol Chem. 2006;281:4183–9.PubMedCrossRef Zhao L-J, Subramanian T, Zhou Y, et al. Acetylation by p300 regulates nuclear localization and function of the transcriptional Corepressor CtBP2. J Biol Chem. 2006;281:4183–9.PubMedCrossRef
46.
go back to reference Zhao L-J, Subramanian T, Vijayalingam S, et al. PLDLS-dependent interaction of E1A with CtBP: regulation of CtBP nuclear localization and transcriptional functions. Oncogene. 2007;26:7544–51.PubMedPubMedCentralCrossRef Zhao L-J, Subramanian T, Vijayalingam S, et al. PLDLS-dependent interaction of E1A with CtBP: regulation of CtBP nuclear localization and transcriptional functions. Oncogene. 2007;26:7544–51.PubMedPubMedCentralCrossRef
47.
go back to reference Klein G, Lindahl T, Jondal M, et al. Continuous lymphoid cell lines with characteristics of B cells (bone-marrow-derived), lacking the Epstein-Barr virus genome and derived from three human lymphomas. Proc Natl Acad Sci. 1974;71:3283–6.PubMedCrossRefPubMedCentral Klein G, Lindahl T, Jondal M, et al. Continuous lymphoid cell lines with characteristics of B cells (bone-marrow-derived), lacking the Epstein-Barr virus genome and derived from three human lymphomas. Proc Natl Acad Sci. 1974;71:3283–6.PubMedCrossRefPubMedCentral
48.
go back to reference Bett AJ, Krougliak V, Graham FL. DNA sequence of the deletion/insertion in early region 3 of Ad5 dl309. Virus Res. 1995;39:75–82.PubMedCrossRef Bett AJ, Krougliak V, Graham FL. DNA sequence of the deletion/insertion in early region 3 of Ad5 dl309. Virus Res. 1995;39:75–82.PubMedCrossRef
49.
go back to reference McNees AL, Mahr JA, Ornelles D, et al. Postinternalization inhibition of adenovirus gene expression and infectious virus production in human T-cell lines. J Virol. 2004;78:6955–66.PubMedPubMedCentralCrossRef McNees AL, Mahr JA, Ornelles D, et al. Postinternalization inhibition of adenovirus gene expression and infectious virus production in human T-cell lines. J Virol. 2004;78:6955–66.PubMedPubMedCentralCrossRef
51.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.CrossRefPubMed
53.
go back to reference Berk AJ. Adenoviridae. In: Knipe DM, Howley PM, editor(s). Fields Virology, 6th Edition. Philadelphia, PA: Lippincott Williams & Wilkins; 2013. p. 1704–1731. Berk AJ. Adenoviridae. In: Knipe DM, Howley PM, editor(s). Fields Virology, 6th Edition. Philadelphia, PA: Lippincott Williams & Wilkins; 2013. p. 1704–1731.
54.
55.
go back to reference Nevins JR, Ginsberg HS, Blanchard JM, et al. Regulation of the primary expression of the early adenovirus transcription units. J Virol. 1979;32:727–33.PubMedPubMedCentral Nevins JR, Ginsberg HS, Blanchard JM, et al. Regulation of the primary expression of the early adenovirus transcription units. J Virol. 1979;32:727–33.PubMedPubMedCentral
56.
go back to reference Logan JS, Shenk T. Transcriptional and translational control of adenovirus gene expression. Microbiol Rev. 1982;46:377–83.PubMedPubMedCentral Logan JS, Shenk T. Transcriptional and translational control of adenovirus gene expression. Microbiol Rev. 1982;46:377–83.PubMedPubMedCentral
57.
go back to reference Shipkova M, Wieland E. Surface markers of lymphocyte activation and markers of cell proliferation. Clin Chim Acta. 2012;413:1338–49.PubMedCrossRef Shipkova M, Wieland E. Surface markers of lymphocyte activation and markers of cell proliferation. Clin Chim Acta. 2012;413:1338–49.PubMedCrossRef
58.
go back to reference Gai Q, James CBL. Identification of a region on the adenovirus E1A gene responsible for induction by Phorbol Ester tumor promoter. In Vitro Cellular Developmental Biology. 2001;37:465–70.PubMedCrossRef Gai Q, James CBL. Identification of a region on the adenovirus E1A gene responsible for induction by Phorbol Ester tumor promoter. In Vitro Cellular Developmental Biology. 2001;37:465–70.PubMedCrossRef
59.
go back to reference Buckbinder L, Miralles VJ, Reinberg D. TPA can overcome the requirement for EIa and together act synergistically in stimulating expression of the adenovirus EIII promoter. EMBO J. 1989;8:4239–50.PubMedPubMedCentralCrossRef Buckbinder L, Miralles VJ, Reinberg D. TPA can overcome the requirement for EIa and together act synergistically in stimulating expression of the adenovirus EIII promoter. EMBO J. 1989;8:4239–50.PubMedPubMedCentralCrossRef
60.
go back to reference Scharer CD, Barwick BG, Youngblood BA, et al. Global DNA methylation remodeling accompanies CD8 T cell effector function. J Immunol. 2013;191:3419–29.PubMedCrossRef Scharer CD, Barwick BG, Youngblood BA, et al. Global DNA methylation remodeling accompanies CD8 T cell effector function. J Immunol. 2013;191:3419–29.PubMedCrossRef
61.
go back to reference Scharer CD, Bally APR, Gandham B, et al. Cutting edge: chromatin accessibility programs CD8 T cell memory. J Immunol. 2017;198:2238–43.PubMedCrossRef Scharer CD, Bally APR, Gandham B, et al. Cutting edge: chromatin accessibility programs CD8 T cell memory. J Immunol. 2017;198:2238–43.PubMedCrossRef
63.
go back to reference Berger NA, Berger SJ, Sikorski GW, et al. Amplification of pyridine nucleotide pools in mitogen-stimulated human lymphocytes. Exp Cell Res. 1982;137:79–88.PubMedCrossRef Berger NA, Berger SJ, Sikorski GW, et al. Amplification of pyridine nucleotide pools in mitogen-stimulated human lymphocytes. Exp Cell Res. 1982;137:79–88.PubMedCrossRef
65.
go back to reference Prusinkiewicz MA, Mymryk JS. Metabolic reprogramming of the host cell by human adenovirus infection. Viruses. 2019;11:141–21.PubMedCentralCrossRef Prusinkiewicz MA, Mymryk JS. Metabolic reprogramming of the host cell by human adenovirus infection. Viruses. 2019;11:141–21.PubMedCentralCrossRef
66.
go back to reference Santidrian AF, Matsuno-Yagi A, Ritland M, et al. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J Clin Invest. 2013;123:1068–81.PubMedPubMedCentralCrossRef Santidrian AF, Matsuno-Yagi A, Ritland M, et al. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J Clin Invest. 2013;123:1068–81.PubMedPubMedCentralCrossRef
68.
go back to reference Gooding LR, Aquino L, Duerksen-Hughes PJ, et al. The E1B 19,000-molecular-weight protein of group C adenoviruses prevents tumor necrosis factor cytolysis of human cells but not of mouse cells. J Virol. 1991;65:3083–94.PubMedPubMedCentral Gooding LR, Aquino L, Duerksen-Hughes PJ, et al. The E1B 19,000-molecular-weight protein of group C adenoviruses prevents tumor necrosis factor cytolysis of human cells but not of mouse cells. J Virol. 1991;65:3083–94.PubMedPubMedCentral
69.
go back to reference Gomez-Gutierrez JG, Nitz J, Sharma R, et al. Combined therapy of oncolytic adenovirus and temozolomide enhances lung cancer virotherapy in vitro and in vivo. Virology. 2016;487:249–59.PubMedCrossRef Gomez-Gutierrez JG, Nitz J, Sharma R, et al. Combined therapy of oncolytic adenovirus and temozolomide enhances lung cancer virotherapy in vitro and in vivo. Virology. 2016;487:249–59.PubMedCrossRef
70.
go back to reference Blevins MA, Kouznetsova J, Krueger AB, et al. Small molecule, NSC95397, inhibits the CtBP1-protein partner interaction and CtBP1-mediated transcriptional repression. J Biomol Screen. 2015;20:663–72.PubMedCrossRef Blevins MA, Kouznetsova J, Krueger AB, et al. Small molecule, NSC95397, inhibits the CtBP1-protein partner interaction and CtBP1-mediated transcriptional repression. J Biomol Screen. 2015;20:663–72.PubMedCrossRef
71.
go back to reference Rodríguez E, Ip WH, Kolbe V, et al. Humanized mice reproduce acute and persistent human adenovirus infection. J Infect Dis. 2017;215:70–9.PubMedCrossRef Rodríguez E, Ip WH, Kolbe V, et al. Humanized mice reproduce acute and persistent human adenovirus infection. J Infect Dis. 2017;215:70–9.PubMedCrossRef
72.
go back to reference Greiner EF, Guppy M, Brand K. Essential for proliferation and the glycolytic enzyme induction that ProvokeasTransition to glycolytic energy production. J Biol Chem. 1994;269:31484–90.PubMed Greiner EF, Guppy M, Brand K. Essential for proliferation and the glycolytic enzyme induction that ProvokeasTransition to glycolytic energy production. J Biol Chem. 1994;269:31484–90.PubMed
74.
go back to reference Hwang ES, Song SB. Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Cell Mol Life Sci. 2017;74:3347–62.PubMedCrossRef Hwang ES, Song SB. Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Cell Mol Life Sci. 2017;74:3347–62.PubMedCrossRef
75.
go back to reference Zhang X, Liu J, Cao X. Metabolic control of T-cell immunity via epigenetic mechanisms. Cell Mol Immunol. 2018;15:203–5.PubMedCrossRef Zhang X, Liu J, Cao X. Metabolic control of T-cell immunity via epigenetic mechanisms. Cell Mol Immunol. 2018;15:203–5.PubMedCrossRef
76.
go back to reference Almeida L, Lochner M, Berod L, et al. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. 2016;28:514–24.PubMedCrossRef Almeida L, Lochner M, Berod L, et al. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. 2016;28:514–24.PubMedCrossRef
77.
go back to reference Chinnadurai G. CtBP, an Unconventional Transcriptional Corepressor in Development and Oncogenesis. Molecular Cell. 9:213–24.PubMedCrossRef Chinnadurai G. CtBP, an Unconventional Transcriptional Corepressor in Development and Oncogenesis. Molecular Cell. 9:213–24.PubMedCrossRef
78.
go back to reference Madison DL, Wirz JA, Siess D, et al. Nicotinamide adenine dinucleotide-induced Multimerization of the co-repressor CtBP1 relies on a switching tryptophan. J Biol Chem. 2013;288:27836–48.PubMedPubMedCentralCrossRef Madison DL, Wirz JA, Siess D, et al. Nicotinamide adenine dinucleotide-induced Multimerization of the co-repressor CtBP1 relies on a switching tryptophan. J Biol Chem. 2013;288:27836–48.PubMedPubMedCentralCrossRef
79.
go back to reference Subramanian T, Chinnadurai G. Association of class I histone deacetylases with transcriptional corepressor CtBP. FEBS Lett. 2003;540:255–8.PubMedCrossRef Subramanian T, Chinnadurai G. Association of class I histone deacetylases with transcriptional corepressor CtBP. FEBS Lett. 2003;540:255–8.PubMedCrossRef
80.
go back to reference Sollerbrandt K, Chinnadurai G, Svensson C. The CtBP binding domain in the adenovirus E1Aprotein controls CR1-dependent transactivation. Nucleic Acids Res. 1996;24:2578–84.CrossRef Sollerbrandt K, Chinnadurai G, Svensson C. The CtBP binding domain in the adenovirus E1Aprotein controls CR1-dependent transactivation. Nucleic Acids Res. 1996;24:2578–84.CrossRef
81.
go back to reference Ebert O, Finke S, Salahi A, et al. Lymphocyte apoptosis: induction by gene transfer techniques. Gene Ther. 1997;4:296–302.PubMedCrossRef Ebert O, Finke S, Salahi A, et al. Lymphocyte apoptosis: induction by gene transfer techniques. Gene Ther. 1997;4:296–302.PubMedCrossRef
82.
go back to reference Zhao Y, Zheng Z, Cohen CJ, et al. High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther. 2005;13:151–9.PubMedCrossRef Zhao Y, Zheng Z, Cohen CJ, et al. High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther. 2005;13:151–9.PubMedCrossRef
83.
go back to reference Lin X, Sun B, Liang M, et al. Opposed regulation of Corepressor CtBP by SUMOylation and PDZ binding. Mol Cell. 2003;11:1389–96.PubMedCrossRef Lin X, Sun B, Liang M, et al. Opposed regulation of Corepressor CtBP by SUMOylation and PDZ binding. Mol Cell. 2003;11:1389–96.PubMedCrossRef
84.
go back to reference Bergman LM, Morris L, Darley M, et al. Role of the unique N-terminal domain of CtBP2 in determining the subcellular localisation of CtBP family proteins. BMC Cell Biol. 2006;7.PubMedPubMedCentralCrossRef Bergman LM, Morris L, Darley M, et al. Role of the unique N-terminal domain of CtBP2 in determining the subcellular localisation of CtBP family proteins. BMC Cell Biol. 2006;7.PubMedPubMedCentralCrossRef
85.
go back to reference Criqui-Filipe P, Ducret C, Maira S-M, et al. Net, a negative Ras-switchable TCF, contains a second inhibition domain, the CID, that mediates repression through interactions with CtBP and de-acetylation. EMBO J. 1999;18:3392–403.PubMedPubMedCentralCrossRef Criqui-Filipe P, Ducret C, Maira S-M, et al. Net, a negative Ras-switchable TCF, contains a second inhibition domain, the CID, that mediates repression through interactions with CtBP and de-acetylation. EMBO J. 1999;18:3392–403.PubMedPubMedCentralCrossRef
86.
go back to reference Alpatov R, Munguba GC, Caton P, et al. Nuclear speckle-associated protein Pnn/DRS binds to the transcriptional corepressor CtBP and relieves CtBP-mediated repression of the E-cadherin gene. Mol Cell Biol. 2004;24:10223–35.PubMedPubMedCentralCrossRef Alpatov R, Munguba GC, Caton P, et al. Nuclear speckle-associated protein Pnn/DRS binds to the transcriptional corepressor CtBP and relieves CtBP-mediated repression of the E-cadherin gene. Mol Cell Biol. 2004;24:10223–35.PubMedPubMedCentralCrossRef
87.
go back to reference Zheng Y, Stamminger T, Hearing P. E2F/Rb family proteins mediate interferon induced repression of adenovirus immediate early transcription to promote persistent viral infection. PLoS Pathog. 2016;12:e1005415–24.PubMedPubMedCentralCrossRef Zheng Y, Stamminger T, Hearing P. E2F/Rb family proteins mediate interferon induced repression of adenovirus immediate early transcription to promote persistent viral infection. PLoS Pathog. 2016;12:e1005415–24.PubMedPubMedCentralCrossRef
88.
go back to reference Koyuncu E, Budayeva HG, Miteva YV, et al. Sirtuins Are Evolutionarily Conserved Viral Restriction Factors mBio. 2014;5:e02249–14. Koyuncu E, Budayeva HG, Miteva YV, et al. Sirtuins Are Evolutionarily Conserved Viral Restriction Factors mBio. 2014;5:e02249–14.
89.
go back to reference Matias AA, Serra AT, Silva AC, et al. Portuguese winemaking residues as a potential source of natural anti-adenoviral agents. Int J Food Sci Nutr. 2010;61:357–68.PubMedCrossRef Matias AA, Serra AT, Silva AC, et al. Portuguese winemaking residues as a potential source of natural anti-adenoviral agents. Int J Food Sci Nutr. 2010;61:357–68.PubMedCrossRef
90.
go back to reference Picchione KE, Bhattacharjee A. Viral genome silencing by neuronal sirtuin 1. J Neuro-Oncol. 2010;17:184–8. Picchione KE, Bhattacharjee A. Viral genome silencing by neuronal sirtuin 1. J Neuro-Oncol. 2010;17:184–8.
91.
go back to reference Nebenzahl-Sharon K, Sharf R, Amer J, et al. An interaction with PARP-1 and inhibition of Parylation contribute to attenuation of DNA damage signaling by the adenovirus E4orf4 protein. J Virol. 2019;93:738–20. Nebenzahl-Sharon K, Sharf R, Amer J, et al. An interaction with PARP-1 and inhibition of Parylation contribute to attenuation of DNA damage signaling by the adenovirus E4orf4 protein. J Virol. 2019;93:738–20.
92.
go back to reference Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly (ADP-ribose) and PARPs. 2012:1–14. Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly (ADP-ribose) and PARPs. 2012:1–14.
93.
go back to reference Kraus WL. Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol. 2008;20:294–302.PubMedPubMedCentralCrossRef Kraus WL. Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol. 2008;20:294–302.PubMedPubMedCentralCrossRef
Metadata
Title
NAD-linked mechanisms of gene de-repression and a novel role for CtBP in persistent adenovirus infection of lymphocytes
Authors
Megan L. Dickherber
Charlie Garnett-Benson
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Adenovirus
Published in
Virology Journal / Issue 1/2019
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-019-1265-y

Other articles of this Issue 1/2019

Virology Journal 1/2019 Go to the issue