Skip to main content
Top
Published in: Virology Journal 1/2019

Open Access 01-12-2019 | Human Papillomavirus | Research

E6 and E7 gene polymorphisms in human papillomavirus Type-6 identified in Southwest China

Authors: Zuyi Chen, Qiongyao Li, Jian Huang, Jin Li, Feng Yang, Xun Min, Zehui Chen

Published in: Virology Journal | Issue 1/2019

Login to get access

Abstract

Background

Human papillomavirus type-6 (HPV6) is the major etiological agent of anogenital warts both men and women. The present study aimed to characterize the genetic diversity among HPV6 in Southwest China, and to investigate the origin of, selective pressure experienced by, and impact of the resultantly identified genetic variants on the HPV6 secondary structure.

Methods

Phylogenetic trees were constructed by Maximum-likelihood and the Kimura 2-parameters methods by Molecular Evolutionary Genetics Analysis version 6.0. The diversity of secondary structure was analyzed by PSIPred software. The selection pressures acting on the E6/E7 genes were estimated by Phylogenetic Analyses by Maximum Likelihood version 4.8 software.

Results

HPV6 was the most prevalent low risk HPV type in southwest China. In total, 143 E6 and E7 gene sequences of HPV6 isolated from patients were sequenced and compared to GenBank HPV6 reference sequence X00203. The results of these analyses revealed that both the HPV6 E6 and E7 were highly conserved within the analyzed patient samples, and comprised only 3 types of variant sequence, respectively. Furthermore, the analysis of HPV6 E6 and E7 sequences revealed seven/five single-nucleotide mutations, two/four and five/one of which were non-synonymous and synonymous, respectively. The phylogenetic analyses of the E6 and E7 sequences indicated that they belonged to sub-lineage A1 and sub-lineage B1, whereas the selective pressure analyses showed that only the E7 mutation sites 4R, 34E, and 52F were positive selection.

Conclusions

HPV6 (detection rate = 13.10%) was very prevalent in southwest China, both the HPV6 E6 and E7 sequences were highly conserved within the analyzed patient samples in southwest China, indicating that the low risk HPV6 can adapt to the environment well without much evolution.
Appendix
Available only for authorised users
Literature
1.
go back to reference Doorbar J, Griffin H. Intrabody strategies for the treatment of human papillomavirus-associated disease [J]. Expert Opin Biol Ther. 2007;7(5):677–89.CrossRef Doorbar J, Griffin H. Intrabody strategies for the treatment of human papillomavirus-associated disease [J]. Expert Opin Biol Ther. 2007;7(5):677–89.CrossRef
2.
go back to reference Cheah PL, Looi LM. Biology and pathological associations of the human papillomaviruses: a review [J]. Malays J Pathol. 1998;20(1):1–10.PubMed Cheah PL, Looi LM. Biology and pathological associations of the human papillomaviruses: a review [J]. Malays J Pathol. 1998;20(1):1–10.PubMed
3.
go back to reference Singh M, Thakral D, Kar HK, et al. Distinct clinico-immunological profile of patients infected with human papilloma virus genotypes 6 and 11[J]. Virus Dis. 2017;28(2):200–4.CrossRef Singh M, Thakral D, Kar HK, et al. Distinct clinico-immunological profile of patients infected with human papilloma virus genotypes 6 and 11[J]. Virus Dis. 2017;28(2):200–4.CrossRef
4.
go back to reference De Koning MNC, Quint KD, Bruggink SC, et al. High prevalence of cutaneous warts in elementary school children and the ubiquitous presence of wart-associated human papillomavirus on clinically normal skin [J]. Br J Dermatol. 2015;172(1):196–201.CrossRef De Koning MNC, Quint KD, Bruggink SC, et al. High prevalence of cutaneous warts in elementary school children and the ubiquitous presence of wart-associated human papillomavirus on clinically normal skin [J]. Br J Dermatol. 2015;172(1):196–201.CrossRef
5.
go back to reference Stone A, Potton A. Emotional responses to disfigured faces and disgust sensitivity: an eye-tracking study [J]. J Health Psychol. 2017;1359105317692856. Stone A, Potton A. Emotional responses to disfigured faces and disgust sensitivity: an eye-tracking study [J]. J Health Psychol. 2017;1359105317692856.
6.
go back to reference DiLorenzo TP, Tamsen A, Abramson AL, et al. Human papillomavirus type 6a DNA in the lung carcinoma of a patient with recurrent laryngeal papillomatosis is characterized by a partial duplication [J]. J Gen Virol. 1992;73(2):423–8.CrossRef DiLorenzo TP, Tamsen A, Abramson AL, et al. Human papillomavirus type 6a DNA in the lung carcinoma of a patient with recurrent laryngeal papillomatosis is characterized by a partial duplication [J]. J Gen Virol. 1992;73(2):423–8.CrossRef
7.
go back to reference Bercovich JA, Centeno CR, Aguilar OG, et al. Presence and integration of human papillomavirus type 6 in a tonsillar carcinoma [J]. J Gen Virol. 1991;72(10):2569–72.CrossRef Bercovich JA, Centeno CR, Aguilar OG, et al. Presence and integration of human papillomavirus type 6 in a tonsillar carcinoma [J]. J Gen Virol. 1991;72(10):2569–72.CrossRef
8.
go back to reference Zarod AP, Rutherford JD, Corbitt G. Malignant progression of laryngeal papilloma associated with human papilloma virus type 6 (HPV-6) DNA [J]. J Clin Pathol. 1988;41(3):280–3.CrossRef Zarod AP, Rutherford JD, Corbitt G. Malignant progression of laryngeal papilloma associated with human papilloma virus type 6 (HPV-6) DNA [J]. J Clin Pathol. 1988;41(3):280–3.CrossRef
9.
go back to reference Venuti A, Manni V, Morello R, et al. Physical state and expression of human papillomavirus in laryngeal carcinoma and surrounding normal mucosa [J]. J Med Virol. 2000;60(4):396–402.CrossRef Venuti A, Manni V, Morello R, et al. Physical state and expression of human papillomavirus in laryngeal carcinoma and surrounding normal mucosa [J]. J Med Virol. 2000;60(4):396–402.CrossRef
10.
go back to reference Garcã-A-Vallvã S, Alonso A, Bravo IG. Papillomaviruses: different genes have different histories [J]. Trends Microbiol. 2005;13(11):514–21.CrossRef Garcã-A-Vallvã S, Alonso A, Bravo IG. Papillomaviruses: different genes have different histories [J]. Trends Microbiol. 2005;13(11):514–21.CrossRef
11.
go back to reference Mcmurray HR, Nguyen D, Westbrook TF, et al. Biology of human papillomaviruses.[J]. Int J Exp Pathol. 2010;82(1):15–33.CrossRef Mcmurray HR, Nguyen D, Westbrook TF, et al. Biology of human papillomaviruses.[J]. Int J Exp Pathol. 2010;82(1):15–33.CrossRef
12.
go back to reference Raiol WT, Amorim PSD, et al. Genetic variability and phylogeny of the high-risk HPV-31, −33, −35, −52, and −58 in Central Brazil [J]. J Med Virol. 2010;81(4):685–92.CrossRef Raiol WT, Amorim PSD, et al. Genetic variability and phylogeny of the high-risk HPV-31, −33, −35, −52, and −58 in Central Brazil [J]. J Med Virol. 2010;81(4):685–92.CrossRef
13.
go back to reference Thomas JT, Hubert WG, Ruesch MN, et al. Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes [J]. Proc Natl Acad Sci. 1999;96(15):8449–54.CrossRef Thomas JT, Hubert WG, Ruesch MN, et al. Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes [J]. Proc Natl Acad Sci. 1999;96(15):8449–54.CrossRef
14.
go back to reference Buchan DWA, Minneci F, Nugent TCO, et al. Scalable web services for the PSIPRED protein analysis workbench [J]. Nucleic Acids Res. 2013;41(W1):W349–57.CrossRef Buchan DWA, Minneci F, Nugent TCO, et al. Scalable web services for the PSIPRED protein analysis workbench [J]. Nucleic Acids Res. 2013;41(W1):W349–57.CrossRef
15.
go back to reference Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Mol Biol Evol. 2013;30(12):2725–9.CrossRef Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Mol Biol Evol. 2013;30(12):2725–9.CrossRef
16.
go back to reference Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions [J]. Mol Biol Evol. 1986;3(5):418–26.PubMed Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions [J]. Mol Biol Evol. 1986;3(5):418–26.PubMed
17.
go back to reference Yang Z. PAML 4: phylogenetic analysis by maximum likelihood [J]. Mol Biol Evol. 2007;24(8):1586–91.CrossRef Yang Z. PAML 4: phylogenetic analysis by maximum likelihood [J]. Mol Biol Evol. 2007;24(8):1586–91.CrossRef
18.
go back to reference Hamza AA, Robene-Soustrade I, Jouen E, et al. MultiLocus sequence analysis- and amplified fragment length polymorphism-based characterization of xanthomonads associated with bacterial spot of tomato and pepper and their relatedness to Xanthomonas species [J]. Syst Appl Microbiol. 2012;35(3):183–90.CrossRef Hamza AA, Robene-Soustrade I, Jouen E, et al. MultiLocus sequence analysis- and amplified fragment length polymorphism-based characterization of xanthomonads associated with bacterial spot of tomato and pepper and their relatedness to Xanthomonas species [J]. Syst Appl Microbiol. 2012;35(3):183–90.CrossRef
19.
go back to reference Hwang T. Detection and typing of human papillomavirus DNA by PCR using consensus primers in various cervical lesions of Korean women [J]. J Korean Med Sci. 1999;14(6).CrossRef Hwang T. Detection and typing of human papillomavirus DNA by PCR using consensus primers in various cervical lesions of Korean women [J]. J Korean Med Sci. 1999;14(6).CrossRef
20.
go back to reference Chen Z, Jing Y, Wen Q, et al. E6 and E7 gene polymorphisms in human papillomavirus Types-58 and 33 identified in Southwest China [J]. PLoS One. 2017;12(1):e0171140.CrossRef Chen Z, Jing Y, Wen Q, et al. E6 and E7 gene polymorphisms in human papillomavirus Types-58 and 33 identified in Southwest China [J]. PLoS One. 2017;12(1):e0171140.CrossRef
21.
go back to reference Chen Z, Jing Y, Wen Q, et al. L1andL2gene polymorphisms in HPV-58 and HPV-33: implications for vaccine design and diagnosis [J]. Virol J. 2016;13(1):167.CrossRef Chen Z, Jing Y, Wen Q, et al. L1andL2gene polymorphisms in HPV-58 and HPV-33: implications for vaccine design and diagnosis [J]. Virol J. 2016;13(1):167.CrossRef
22.
go back to reference Barbosa MS, Lowy DR, Schiller JT. Papillomavirus polypeptides E6 and E7 are zinc-binding proteins [J]. J Virol. 1989;63(3):1404–7.PubMedPubMedCentral Barbosa MS, Lowy DR, Schiller JT. Papillomavirus polypeptides E6 and E7 are zinc-binding proteins [J]. J Virol. 1989;63(3):1404–7.PubMedPubMedCentral
23.
go back to reference Donne AJ, Hampson L, Homer JJ, et al. The role of HPV type in recurrent respiratory papillomatosis [J]. Int J Pediatr Otorhinolaryngol. 2010;74(1):0–14.CrossRef Donne AJ, Hampson L, Homer JJ, et al. The role of HPV type in recurrent respiratory papillomatosis [J]. Int J Pediatr Otorhinolaryngol. 2010;74(1):0–14.CrossRef
24.
go back to reference Hummel M, Hudson JB, Laimins LA. Differentiation-induced and constitutive transcription of human papillomavirus type 31b in cell lines containing viral episomes [J]. J Virol. 1992;66(10):6070–80.PubMedPubMedCentral Hummel M, Hudson JB, Laimins LA. Differentiation-induced and constitutive transcription of human papillomavirus type 31b in cell lines containing viral episomes [J]. J Virol. 1992;66(10):6070–80.PubMedPubMedCentral
25.
go back to reference Dartmann K, Schwarz E, Gissmann L, et al. The nucleotide sequence and genome organization of human papilloma virus type 11[J]. Virology. 1986;151(1):124–30.CrossRef Dartmann K, Schwarz E, Gissmann L, et al. The nucleotide sequence and genome organization of human papilloma virus type 11[J]. Virology. 1986;151(1):124–30.CrossRef
26.
go back to reference Cao M, Chenzhang Y, Ding X, et al. Genetic variability and lineage phylogeny of human papillomavirus Type-16 and -53 based on the E6, E7, and L1 genes in Southwest China.[J]. Gene. 2016;592(1):49–59.CrossRef Cao M, Chenzhang Y, Ding X, et al. Genetic variability and lineage phylogeny of human papillomavirus Type-16 and -53 based on the E6, E7, and L1 genes in Southwest China.[J]. Gene. 2016;592(1):49–59.CrossRef
27.
go back to reference Chemes LB, Camporeale G, Sánchez IE, et al. Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles [J]. Biochemistry. 2014;53(10):1680–96.CrossRef Chemes LB, Camporeale G, Sánchez IE, et al. Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles [J]. Biochemistry. 2014;53(10):1680–96.CrossRef
28.
go back to reference Iyengar VK, Reeve HK, Eisner T. Paternal inheritance of a female moth\"s mating preference [J]. Nature, 2002, 419(6909):830–832.CrossRef Iyengar VK, Reeve HK, Eisner T. Paternal inheritance of a female moth\"s mating preference [J]. Nature, 2002, 419(6909):830–832.CrossRef
29.
go back to reference Jelen M M, Chen Z, Kocjan B J, et al. Global genomic diversity of human papillomavirus 6 based on 724 isolates and 190 complete genome sequences[J]. Journal of virology. 2014;88(13):7307–7316.CrossRef Jelen M M, Chen Z, Kocjan B J, et al. Global genomic diversity of human papillomavirus 6 based on 724 isolates and 190 complete genome sequences[J]. Journal of virology. 2014;88(13):7307–7316.CrossRef
30.
go back to reference Danielewski JA, Garland SM, Jenny MC, et al. Human papillomavirus type 6 and 11 genetic variants found in 71 Oral and Anogenital epithelial samples from Australia [J]. PLoS One. 2013;8(5):e63892.CrossRef Danielewski JA, Garland SM, Jenny MC, et al. Human papillomavirus type 6 and 11 genetic variants found in 71 Oral and Anogenital epithelial samples from Australia [J]. PLoS One. 2013;8(5):e63892.CrossRef
31.
go back to reference Kocjan BJ, Poljak M, Cimerman M, et al. Prevaccination genomic diversity of human papillomavirus genotype 6 (HPV 6)[J]. Virology. 2009;391(2):274–83.CrossRef Kocjan BJ, Poljak M, Cimerman M, et al. Prevaccination genomic diversity of human papillomavirus genotype 6 (HPV 6)[J]. Virology. 2009;391(2):274–83.CrossRef
Metadata
Title
E6 and E7 gene polymorphisms in human papillomavirus Type-6 identified in Southwest China
Authors
Zuyi Chen
Qiongyao Li
Jian Huang
Jin Li
Feng Yang
Xun Min
Zehui Chen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2019
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-019-1221-x

Other articles of this Issue 1/2019

Virology Journal 1/2019 Go to the issue