Skip to main content
Top
Published in: Virology Journal 1/2019

Open Access 01-12-2019 | Acute Gastroenteritis | Case Report

First detection of a reassortant G3P[8] rotavirus A strain in Italy: a case report in an 8-year-old child

Authors: Susanna Esposito, Barbara Camilloni, Sonia Bianchini, Giovanni Ianiro, Ilaria Polinori, Edoardo Farinelli, Marina Monini, Nicola Principi

Published in: Virology Journal | Issue 1/2019

Login to get access

Abstract

Background

Acute gastroenteritis (AGE) due to group A rotavirus (RVA) agent is one of the major causes of hospitalization in paediatric age. The G3P[8] RVA genotype has been usually considered as one of the major human genotypes, largely circulating in Asia, but showing low detection rates in the European countries. In recent years, the G3P[8] RVAs emerged also in Europe as a predominant genotype and the viral strains detected revealed high similarities with equine-like G3P[8] RVA strains, resulting in a new variant circulating in humans and able to cause AGE in the paediatric population.

Case presentation

An 8-year-old boy was admitted to the Emergency Room because he had suffered from severe diarrhoea, vomiting, and high fever over the previous two days. Severe dehydration was evident based on low serum concentrations of potassium and sodium, low glycaemia, and pre-renal failure (creatinine 2.48 mg/dL, urea 133 mg/dL). Immunological tests were within normal range. Enzyme immunoassay for the detection of RV was positive, and a sample of faeces was collected in order to perform the molecular characterization of the viral strain. The phylogenetic trees revealed relatedness between the VP7 and VP4 genes of the G3P[8] RVA Italian strain (namely PG2) and those belonging to recent G3P[8] RVAs detected worldwide. The G3 VP7 belonged to the G3-I lineage and shared the highest nucleotide sequence identity (99.8%) with the equine-like G3 previously identified in other countries. The P [8] VP4 revealed a similar clustering pattern to that observed for the VP7. In addition, the molecular characterization of the 11 gene segments of strain PG2 revealed a G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 genomic constellation.

Conclusions

This case shows the first detection in Italy of a reassortant G3P[8] RVA associated with a severe AGE, which is unusual in a school-age child without any known severe underlying problems. The findings reported in this paper highlight the importance of continuously monitoring the RVA strains circulating in paediatric age in order to detect novel viral variants able to spread in the general population.
Literature
1.
go back to reference Bányai K, Estes MK, Martella V, Parashar UD. Viral gastroenteritis. Lancet. 2018;392:175–86.CrossRef Bányai K, Estes MK, Martella V, Parashar UD. Viral gastroenteritis. Lancet. 2018;392:175–86.CrossRef
2.
go back to reference Sadiq A, Bostan N, Yinda KC, Naseem S, Sattar S. Rotavirus: genetics, pathogenesis and vaccine advances. Rev Med Virol. 2018;28:e2003.CrossRef Sadiq A, Bostan N, Yinda KC, Naseem S, Sattar S. Rotavirus: genetics, pathogenesis and vaccine advances. Rev Med Virol. 2018;28:e2003.CrossRef
3.
go back to reference Bányai K, László B, Duque J, et al. Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: insights for understanding the impact of rotavirus vaccination programs. Vaccine. 2012;30(suppl 1):A122–30.CrossRef Bányai K, László B, Duque J, et al. Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: insights for understanding the impact of rotavirus vaccination programs. Vaccine. 2012;30(suppl 1):A122–30.CrossRef
4.
go back to reference Dóró R, László B, Martella V, et al. Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: is there evidence of strain selection from vaccine pressure? Infect Genet Evol. 2014;28:446–61.CrossRef Dóró R, László B, Martella V, et al. Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: is there evidence of strain selection from vaccine pressure? Infect Genet Evol. 2014;28:446–61.CrossRef
5.
go back to reference Jain S, Vashistt J, Changotra H. Rotaviruses: is their surveillance needed? Vaccine. 2014;32:3367–78.CrossRef Jain S, Vashistt J, Changotra H. Rotaviruses: is their surveillance needed? Vaccine. 2014;32:3367–78.CrossRef
6.
go back to reference Medici MC, Tummolo F, Martella V, Arcangeletti MC, De Conto F, Chezzi C, et al. Whole genome sequencing reveals genetic heterogeneity of G3P[8] rotaviruses circulating in Italy. Infect Genet Evol. 2016;40:253–61.CrossRef Medici MC, Tummolo F, Martella V, Arcangeletti MC, De Conto F, Chezzi C, et al. Whole genome sequencing reveals genetic heterogeneity of G3P[8] rotaviruses circulating in Italy. Infect Genet Evol. 2016;40:253–61.CrossRef
7.
go back to reference Komoto S, Ide T, Negoro M, Tanaka T, Asada K, Umemoto M, et al. Characterization of unusual DS-1-like G3P[8] rotavirus strains in children with diarrhea in Japan. J Med Virol. 2018;90:890–8.CrossRef Komoto S, Ide T, Negoro M, Tanaka T, Asada K, Umemoto M, et al. Characterization of unusual DS-1-like G3P[8] rotavirus strains in children with diarrhea in Japan. J Med Virol. 2018;90:890–8.CrossRef
8.
go back to reference Dóró R, Marton S, Bartókné AH, et al. Equine-like G3 rotavirus in Hungary, 2015 - is it a novel intergenogroup reassortant pandemic strain? Acta Microbiol Immunol Hung. 2016;63:243–55.CrossRef Dóró R, Marton S, Bartókné AH, et al. Equine-like G3 rotavirus in Hungary, 2015 - is it a novel intergenogroup reassortant pandemic strain? Acta Microbiol Immunol Hung. 2016;63:243–55.CrossRef
9.
go back to reference Pietsch C, Liebert UG. Molecular characterization of different equine-like G3 rotavirus strains from Germany. Infect Genet Evol. 2018;57:46–50.CrossRef Pietsch C, Liebert UG. Molecular characterization of different equine-like G3 rotavirus strains from Germany. Infect Genet Evol. 2018;57:46–50.CrossRef
10.
go back to reference Ruuska T, Vesikari T. Rotavirus disease in Finnish children: use of numerical scores for clinical severity of diarrhoeal episodes. Scand J Infect Dis. 1990;22:259–67.CrossRef Ruuska T, Vesikari T. Rotavirus disease in Finnish children: use of numerical scores for clinical severity of diarrhoeal episodes. Scand J Infect Dis. 1990;22:259–67.CrossRef
11.
go back to reference Iro MA, Sell T, Brown N, Maitland K. Rapid intravenous rehydration of children with acute gastroenteritis and dehydration: a systematic review and meta-analysis. BMC Pediatr. 2018;18:44.CrossRef Iro MA, Sell T, Brown N, Maitland K. Rapid intravenous rehydration of children with acute gastroenteritis and dehydration: a systematic review and meta-analysis. BMC Pediatr. 2018;18:44.CrossRef
12.
go back to reference Gentsch JR, Glass RI, Woods P, Gouvea V, Gorziglia M, Flores J, et al. Identification of group a rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol. 1992;30:1365–73.PubMedPubMedCentral Gentsch JR, Glass RI, Woods P, Gouvea V, Gorziglia M, Flores J, et al. Identification of group a rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol. 1992;30:1365–73.PubMedPubMedCentral
13.
go back to reference Gouvea V, Glass RI, Woods P, Taniguchi K, Clark HF, Forrester B, et al. Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J Clin Microbiol. 1990;28:276–82.PubMedPubMedCentral Gouvea V, Glass RI, Woods P, Taniguchi K, Clark HF, Forrester B, et al. Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J Clin Microbiol. 1990;28:276–82.PubMedPubMedCentral
14.
go back to reference Iturriza-Gómara M, Kang G, Gray J. Rotavirus genotyping: keeping up with an evolving population of human rotaviruses. J Clin Virol. 2004;31:259–65.CrossRef Iturriza-Gómara M, Kang G, Gray J. Rotavirus genotyping: keeping up with an evolving population of human rotaviruses. J Clin Virol. 2004;31:259–65.CrossRef
16.
go back to reference Iturriza-Gómara M, Isherwood B, Desselberger U, Gray J. Reassortment in vivo: driving force for diversity of human rotavirus strains isolated in the United Kingdom between 1995 and 1999. J Virol. 2001;75:3696–705.CrossRef Iturriza-Gómara M, Isherwood B, Desselberger U, Gray J. Reassortment in vivo: driving force for diversity of human rotavirus strains isolated in the United Kingdom between 1995 and 1999. J Virol. 2001;75:3696–705.CrossRef
17.
go back to reference Simmonds MK, Armah G, Asmah R, Banerjee I, Damanka S, Esona M, et al. New oligonucleotide primers for P-typing of rotavirus strains: strategies for typing previously untypeable strains. J Clin Virol. 2008;42:368–73.CrossRef Simmonds MK, Armah G, Asmah R, Banerjee I, Damanka S, Esona M, et al. New oligonucleotide primers for P-typing of rotavirus strains: strategies for typing previously untypeable strains. J Clin Virol. 2008;42:368–73.CrossRef
18.
go back to reference Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.CrossRef Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.CrossRef
19.
go back to reference Ianiro G, Micolano R, Conte M, Labianca M, Vaccari G, Monini M. Detection of an animal-derived G4P[6] group a rotavirus strain in a symptomatic child, in Italy. Virus Res. 2019;260:7–11.CrossRef Ianiro G, Micolano R, Conte M, Labianca M, Vaccari G, Monini M. Detection of an animal-derived G4P[6] group a rotavirus strain in a symptomatic child, in Italy. Virus Res. 2019;260:7–11.CrossRef
20.
go back to reference Correia JB, Patel MM, Nakagomi O, Montenegro FM, Germano EM, Correia NB, et al. Effectiveness of monovalent rotavirus vaccine (Rotarix) against severe diarrhea caused by serotypically unrelated G2P[4] strains in Brazil. J Infect Dis. 2010;201:363–9.CrossRef Correia JB, Patel MM, Nakagomi O, Montenegro FM, Germano EM, Correia NB, et al. Effectiveness of monovalent rotavirus vaccine (Rotarix) against severe diarrhea caused by serotypically unrelated G2P[4] strains in Brazil. J Infect Dis. 2010;201:363–9.CrossRef
21.
go back to reference De Vos B, Han HH, Bouckenooghe A, Debrus S, Gillard P, Ward R, Cheuvart B. Live attenuated human rotavirus vaccine, RIX4414, provides clinical protection in infants against rotavirus strains with and without shared G and P genotypes: integrated analysis of randomized controlled trials. Pediatr Infect Dis J. 2009;28:261–6.CrossRef De Vos B, Han HH, Bouckenooghe A, Debrus S, Gillard P, Ward R, Cheuvart B. Live attenuated human rotavirus vaccine, RIX4414, provides clinical protection in infants against rotavirus strains with and without shared G and P genotypes: integrated analysis of randomized controlled trials. Pediatr Infect Dis J. 2009;28:261–6.CrossRef
22.
go back to reference Justino MC, Linhares AC, Lanzieri TM, Miranda Y, Mascarenhas JD, Abreu E, et al. Effectiveness of the monovalent G1P[8] human rotavirus vaccine against hospitalization for severe G2P[4] rotavirus gastroenteritis in Belém, Brazil. Pediatr Infect Dis J. 2011;30:396–401.CrossRef Justino MC, Linhares AC, Lanzieri TM, Miranda Y, Mascarenhas JD, Abreu E, et al. Effectiveness of the monovalent G1P[8] human rotavirus vaccine against hospitalization for severe G2P[4] rotavirus gastroenteritis in Belém, Brazil. Pediatr Infect Dis J. 2011;30:396–401.CrossRef
23.
go back to reference Leshem E, Lopman B, Glass R, Gentsch J, Bányai K, Parashar U, Patel M. Distribution of rotavirus strains and strain-specific effectiveness of the rotavirus vaccine after its introduction: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14:847–56.CrossRef Leshem E, Lopman B, Glass R, Gentsch J, Bányai K, Parashar U, Patel M. Distribution of rotavirus strains and strain-specific effectiveness of the rotavirus vaccine after its introduction: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14:847–56.CrossRef
24.
go back to reference Pitzer VE, Viboud C, Lopman BA, Patel MM, Parashar UD, Grenfell BT. Influence of birth rates and transmission rates on the global seasonality of rotavirus incidence. J R Soc Interface. 2008;8:1584–93.CrossRef Pitzer VE, Viboud C, Lopman BA, Patel MM, Parashar UD, Grenfell BT. Influence of birth rates and transmission rates on the global seasonality of rotavirus incidence. J R Soc Interface. 2008;8:1584–93.CrossRef
25.
go back to reference Pitzer VE, Viboud C, Simonsen L, Steiner C, Panozzo CA, Alonso WJ, et al. Demographic variability, vaccination, and the spatiotemporal dynamics of rotavirus epidemics. Science. 2009;325:290–4.CrossRef Pitzer VE, Viboud C, Simonsen L, Steiner C, Panozzo CA, Alonso WJ, et al. Demographic variability, vaccination, and the spatiotemporal dynamics of rotavirus epidemics. Science. 2009;325:290–4.CrossRef
26.
go back to reference Sato T, Nakagomi T, Naghipour M, Nakagomi O. Modeling seasonal variation in rotavirus hospitalizations for use in evaluating the effect of rotavirus vaccine. J Med Virol. 2010;82:1468–74.CrossRef Sato T, Nakagomi T, Naghipour M, Nakagomi O. Modeling seasonal variation in rotavirus hospitalizations for use in evaluating the effect of rotavirus vaccine. J Med Virol. 2010;82:1468–74.CrossRef
27.
go back to reference Saluja T, Dhingra MS, Sharma SD, Gupta M, Kundu R, Kar S, et al. Association of rotavirus strains and severity of gastroenteritis in Indian children. Hum Vaccin Immunother. 2017;13:711–6.CrossRef Saluja T, Dhingra MS, Sharma SD, Gupta M, Kundu R, Kar S, et al. Association of rotavirus strains and severity of gastroenteritis in Indian children. Hum Vaccin Immunother. 2017;13:711–6.CrossRef
Metadata
Title
First detection of a reassortant G3P[8] rotavirus A strain in Italy: a case report in an 8-year-old child
Authors
Susanna Esposito
Barbara Camilloni
Sonia Bianchini
Giovanni Ianiro
Ilaria Polinori
Edoardo Farinelli
Marina Monini
Nicola Principi
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2019
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-019-1173-1

Other articles of this Issue 1/2019

Virology Journal 1/2019 Go to the issue