Skip to main content
Top
Published in: Virology Journal 1/2019

Open Access 01-12-2019 | Glucocorticoid | Research

A sensitive luminescence syncytium induction assay (LuSIA) based on a reporter plasmid containing a mutation in the glucocorticoid response element in the long terminal repeat U3 region of bovine leukemia virus

Authors: Hirotaka Sato, Sonoko Watanuki, Lanlan Bai, Liushiqi Borjigin, Hiroshi Ishizaki, Yasunobu Matsumoto, Yuma Hachiya, Hiroshi Sentsui, Yoko Aida

Published in: Virology Journal | Issue 1/2019

Login to get access

Abstract

Background

Bovine leukemia virus (BLV) causes enzootic bovine leukosis, the most common neoplastic disease of cattle. Previously, we reported the luminescence syncytium induction assay (LuSIA), an assay for BLV infectivity based on CC81-BLU3G cells, which form syncytia expressing enhanced green fluorescent protein (EGFP) when co-cultured with BLV-infected cells. To develop a more sensitive LuSIA, we here focused on the glucocorticoid response element (GRE) within the U3 region of the BLV long terminal repeat (LTR).

Methods

We changed five nucleotide sites of the GRE in a pBLU3-EGFP reporter plasmid containing the BLV-LTR U3 region promoter by site-directed mutagenesis and we then constructed a new reporter plasmid (pBLU3GREM-EGFP) in which the EGFP reporter gene was expressed under control of the GRE-mutated LTR-U3 promoter. We also established a new CC81-derived reporter cell line harboring the GRE-mutated LTR-U3 promoter (CC81-GREMG). To evaluate the sensibility, the utility and the specificity of the LuSIA using CC81-GREMG, we co-cultured CC81-GREMG cells with BLV-persistently infected cells, free-viruses, white blood cells (WBCs) from BLV-infected cows, and bovine immunodeficiency-like virus (BIV)- and bovine foamy virus (BFV)-infected cells.

Results

We successfully constructed a new reporter plasmid harboring a mutation in the GRE and established a new reporter cell line, CC81-GREMG; this line was stably transfected with pBLU3GREM-EGFP in which the EGFP gene is expressed under control of the GRE-mutated LTR-U3 promoter and enabled direct visualization of BLV infectivity. The new LuSIA protocol using CC81-GREMG cells measures cell-to-cell infectivity and cell-free infectivity of BLV more sensitively than previous protocol using CC81-BLU3G. Furthermore, it did not respond to BIV and BFV infections, indicating that the LuSIA based on CC81-GREMG is specific for BLV infectivity. Moreover, we confirmed the utility of a new LuSIA based on CC81-GREMG cells using white blood cells (WBCs) from BLV-infected cows. Finally, the assay was useful for assessing the activity of neutralizing antibodies in plasma collected from BLV-infected cows.

Conclusion

The new LuSIA protocol is quantitative and more sensitive than the previous assay based on CC81-BLU3G cells and should facilitate development of several new BLV assays.
Literature
1.
go back to reference Aida Y, Murakami H, Takahashi M, Takeshima SN. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front Microbiol. 2013;4:328.CrossRef Aida Y, Murakami H, Takahashi M, Takeshima SN. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front Microbiol. 2013;4:328.CrossRef
2.
go back to reference Erskine RJ, Bartlett PC, Byrem TM, Render CL, Febvay C, Houseman JT. Association between bovine leukemia virus, production, and population age in Michigan dairy herds. J Dairy Sci. 2012;95:727–34.CrossRef Erskine RJ, Bartlett PC, Byrem TM, Render CL, Febvay C, Houseman JT. Association between bovine leukemia virus, production, and population age in Michigan dairy herds. J Dairy Sci. 2012;95:727–34.CrossRef
3.
go back to reference Ferrer JF, Cabradilla C, Gupta P. Use of a feline cell line in the syncytia infectivity assay for the detection of bovine leukemia virus infection in cattle. Am J Vet Res. 1981;42:9–14.PubMed Ferrer JF, Cabradilla C, Gupta P. Use of a feline cell line in the syncytia infectivity assay for the detection of bovine leukemia virus infection in cattle. Am J Vet Res. 1981;42:9–14.PubMed
4.
go back to reference Graves DC, Ferrer JF. In vitro transmission and propagation of the bovine leukemia virus in monolayer cell cultures. Cancer Res. 1976;36:4152–9.PubMed Graves DC, Ferrer JF. In vitro transmission and propagation of the bovine leukemia virus in monolayer cell cultures. Cancer Res. 1976;36:4152–9.PubMed
5.
go back to reference Sato H, Watanuki S, Murakami H, Sato R, Ishizaki H, Aida Y. Development of a luminescence syncytium induction assay (LuSIA) for easily detecting and quantitatively measuring bovine leukemia virus infection. Arch Virol. 2018;163(6):1519–30.CrossRef Sato H, Watanuki S, Murakami H, Sato R, Ishizaki H, Aida Y. Development of a luminescence syncytium induction assay (LuSIA) for easily detecting and quantitatively measuring bovine leukemia virus infection. Arch Virol. 2018;163(6):1519–30.CrossRef
6.
go back to reference Tajima S, Aida Y. The region between amino acids 245 and 265 of the bovine leukemia virus (BLV) tax protein restricts transactivation not only via the BLV enhancer but also via other retrovirus enhancers. J Virol. 2000;74:10939–49.CrossRef Tajima S, Aida Y. The region between amino acids 245 and 265 of the bovine leukemia virus (BLV) tax protein restricts transactivation not only via the BLV enhancer but also via other retrovirus enhancers. J Virol. 2000;74:10939–49.CrossRef
7.
go back to reference Tajima S, Aida Y. Mutant tax protein from bovine leukemia virus with enhanced ability to activate the expression of c-fos. J Virol. 2002;76:2557–62.CrossRef Tajima S, Aida Y. Mutant tax protein from bovine leukemia virus with enhanced ability to activate the expression of c-fos. J Virol. 2002;76:2557–62.CrossRef
8.
go back to reference Frech K, Brack-Werner R, Werner T. Common modular structure of lentivirus LTRs. Virology. 1996;224:256–67.CrossRef Frech K, Brack-Werner R, Werner T. Common modular structure of lentivirus LTRs. Virology. 1996;224:256–67.CrossRef
9.
go back to reference Arainga M, Takeda E, Aida Y. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis. BMC Genomics. 2012;13:121.CrossRef Arainga M, Takeda E, Aida Y. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis. BMC Genomics. 2012;13:121.CrossRef
10.
go back to reference Kiermer V, Van Lint C, Briclet D, Vanhulle C, Kettmann R, Verdin E, et al. An interferon regulatory factor binding site in the U5 region of the bovine leukemia virus long terminal repeat stimulates tax-independent gene expression. J Virol. 1998;72:5526–34.PubMedPubMedCentral Kiermer V, Van Lint C, Briclet D, Vanhulle C, Kettmann R, Verdin E, et al. An interferon regulatory factor binding site in the U5 region of the bovine leukemia virus long terminal repeat stimulates tax-independent gene expression. J Virol. 1998;72:5526–34.PubMedPubMedCentral
11.
go back to reference Merezak C, Pierreux C, Adam E, Lemaigre F, Calomme C, Lint CV, et al. Suboptimal enhancer sequences are required for efficient bovine leukemia virus propagation in vivo : implications for viral latency. J Virol. 2001;75:6977–88.CrossRef Merezak C, Pierreux C, Adam E, Lemaigre F, Calomme C, Lint CV, et al. Suboptimal enhancer sequences are required for efficient bovine leukemia virus propagation in vivo : implications for viral latency. J Virol. 2001;75:6977–88.CrossRef
12.
go back to reference Xiao J, Buehring GC. In vivo protein binding and functional analysis of cis-acting elements in the U3 region of the bovine leukemia virus long terminal repeat. J Virol. 1998;72:5994–6003.PubMedPubMedCentral Xiao J, Buehring GC. In vivo protein binding and functional analysis of cis-acting elements in the U3 region of the bovine leukemia virus long terminal repeat. J Virol. 1998;72:5994–6003.PubMedPubMedCentral
13.
go back to reference Dekoninck A, Calomme C, Nizet S, de Launoit Y, Burny A, Ghysdael J, et al. Identification and characterization of a PU.1/Spi-B binding site in the bovine leukemia virus long terminal repeat. Oncogene. 2003;22:2882–96.CrossRef Dekoninck A, Calomme C, Nizet S, de Launoit Y, Burny A, Ghysdael J, et al. Identification and characterization of a PU.1/Spi-B binding site in the bovine leukemia virus long terminal repeat. Oncogene. 2003;22:2882–96.CrossRef
14.
go back to reference Calomme C, Dekoninck A, Nizet S, Adam E, Nguyên TL-A, Van Den Broeke A, et al. Overlapping CRE and E box motifs in the enhancer sequences of the bovine leukemia virus 5′ long terminal repeat are critical for basal and acetylation-dependent transcriptional activity of the viral promoter: implications for viral latency. J Virol. 2004;78:13848–64.CrossRef Calomme C, Dekoninck A, Nizet S, Adam E, Nguyên TL-A, Van Den Broeke A, et al. Overlapping CRE and E box motifs in the enhancer sequences of the bovine leukemia virus 5′ long terminal repeat are critical for basal and acetylation-dependent transcriptional activity of the viral promoter: implications for viral latency. J Virol. 2004;78:13848–64.CrossRef
15.
go back to reference Sagata N, Yasunaga T, Ogawa Y, Tsuzuku-Kawamura J, Ikawa Y. Bovine leukemia virus: unique structural features of its long terminal repeats and its evolutionary relationship to human T-cell leukemia virus. Proc Natl Acad Sci U S A. 1984;81:4741–5.CrossRef Sagata N, Yasunaga T, Ogawa Y, Tsuzuku-Kawamura J, Ikawa Y. Bovine leukemia virus: unique structural features of its long terminal repeats and its evolutionary relationship to human T-cell leukemia virus. Proc Natl Acad Sci U S A. 1984;81:4741–5.CrossRef
16.
go back to reference Tajima S, Tsukamoto M, Aida Y. Latency of viral expression in vivo is not related to CpG methylation in the U3 region and part of the R region of the long terminal repeat of bovine leukemia virus. J Virol. 2003;77:4423–30.CrossRef Tajima S, Tsukamoto M, Aida Y. Latency of viral expression in vivo is not related to CpG methylation in the U3 region and part of the R region of the long terminal repeat of bovine leukemia virus. J Virol. 2003;77:4423–30.CrossRef
17.
go back to reference Wu D, Murakami K, Morooka A, Jin H, Inoshima Y, Sentsui H. In vivo transcription of bovine leukemia virus and bovine immunodeficiency-like virus. Virus Res. 2003;97(2):81–7.CrossRef Wu D, Murakami K, Morooka A, Jin H, Inoshima Y, Sentsui H. In vivo transcription of bovine leukemia virus and bovine immunodeficiency-like virus. Virus Res. 2003;97(2):81–7.CrossRef
18.
go back to reference Hachiya Y, Kimura K, Oguma K, Ono M, Horikita T, Sentsui H. Isolation of bovine foamy virus in Japan. J Vet Med Sci. 2018;80(10):1604–9.CrossRef Hachiya Y, Kimura K, Oguma K, Ono M, Horikita T, Sentsui H. Isolation of bovine foamy virus in Japan. J Vet Med Sci. 2018;80(10):1604–9.CrossRef
19.
go back to reference Tajima S, Aida Y. Induction of expression of bovine leukemia virus (BLV) in blood taken from BLV-infected cows without removal of plasma. Microbes Infect. 2005;7(11–12):1211–6.CrossRef Tajima S, Aida Y. Induction of expression of bovine leukemia virus (BLV) in blood taken from BLV-infected cows without removal of plasma. Microbes Infect. 2005;7(11–12):1211–6.CrossRef
20.
go back to reference Jimba M, S-n T, Matoba K, Endoh D, Aida Y. BLV-CoCoMo-qPCR: quantitation of bovine leukemia virus proviral load using the CoCoMo algorithm. Retrovirology. 2010;7:91.CrossRef Jimba M, S-n T, Matoba K, Endoh D, Aida Y. BLV-CoCoMo-qPCR: quantitation of bovine leukemia virus proviral load using the CoCoMo algorithm. Retrovirology. 2010;7:91.CrossRef
21.
go back to reference Takeshima SN, Kitamura-Muramatsu Y, Yuan Y, Polat M, Saito S, Aida Y. BLV-CoCoMo-qPCR-2: improvements to the BLV-CoCoMo-qPCR assay for bovine leukemia virus by reducing primer degeneracy and constructing an optimal standard curve. Arch Virol. 2015;160:1325–32.CrossRef Takeshima SN, Kitamura-Muramatsu Y, Yuan Y, Polat M, Saito S, Aida Y. BLV-CoCoMo-qPCR-2: improvements to the BLV-CoCoMo-qPCR assay for bovine leukemia virus by reducing primer degeneracy and constructing an optimal standard curve. Arch Virol. 2015;160:1325–32.CrossRef
22.
go back to reference Panei CJ, S-n T, Omori T, Nunoya T, Davis WC, Ishizaki H, et al. Estimation of bovine leukemia virus (BLV) proviral load harbored by lymphocyte subpopulations in BLV-infected cattle at the subclinical stage of enzootic bovine leucosis using BLV-CoCoMo-qPCR. BMC Vet Res. 2013;9:95.CrossRef Panei CJ, S-n T, Omori T, Nunoya T, Davis WC, Ishizaki H, et al. Estimation of bovine leukemia virus (BLV) proviral load harbored by lymphocyte subpopulations in BLV-infected cattle at the subclinical stage of enzootic bovine leucosis using BLV-CoCoMo-qPCR. BMC Vet Res. 2013;9:95.CrossRef
23.
go back to reference Takatori I, Itohara S, Yonaiyama K. Difficulty in detecting in vivo extracellular infective virus in cattle naturally infected with bovine leukemia virus. Leuk Res. 1982;6(4):511–7.CrossRef Takatori I, Itohara S, Yonaiyama K. Difficulty in detecting in vivo extracellular infective virus in cattle naturally infected with bovine leukemia virus. Leuk Res. 1982;6(4):511–7.CrossRef
24.
go back to reference Inabe K, Ikuta K, Aida Y. Transmission and propagation in cell culture of virus produced by cells transfected with an infectious molecular clone of bovine leukemia virus. Virology. 1998;245(1):53–64.CrossRef Inabe K, Ikuta K, Aida Y. Transmission and propagation in cell culture of virus produced by cells transfected with an infectious molecular clone of bovine leukemia virus. Virology. 1998;245(1):53–64.CrossRef
25.
go back to reference Lew AE, Bock RE, Miles J, Cuttell LB, Steer P, Nadin-Davis SA. Sensitive and specific detection of bovine immunodeficiency virus and bovine syncytial virus by 5′ Taq nuclease assays with fluorescent 3′ minor groove binder-DNA probes. J Virol Methods. 2004;116(1):1–9.CrossRef Lew AE, Bock RE, Miles J, Cuttell LB, Steer P, Nadin-Davis SA. Sensitive and specific detection of bovine immunodeficiency virus and bovine syncytial virus by 5′ Taq nuclease assays with fluorescent 3′ minor groove binder-DNA probes. J Virol Methods. 2004;116(1):1–9.CrossRef
Metadata
Title
A sensitive luminescence syncytium induction assay (LuSIA) based on a reporter plasmid containing a mutation in the glucocorticoid response element in the long terminal repeat U3 region of bovine leukemia virus
Authors
Hirotaka Sato
Sonoko Watanuki
Lanlan Bai
Liushiqi Borjigin
Hiroshi Ishizaki
Yasunobu Matsumoto
Yuma Hachiya
Hiroshi Sentsui
Yoko Aida
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2019
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-019-1172-2

Other articles of this Issue 1/2019

Virology Journal 1/2019 Go to the issue