Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

Human papillomavirus type 16 E6 and E7 oncoproteins interact with the nuclear p53-binding protein 1 in an in vitro reconstructed 3D epithelium: new insights for the virus-induced DNA damage response

Authors: Diletta Francesca Squarzanti, Rita Sorrentino, Manuela Miriam Landini, Andrea Chiesa, Sabrina Pinato, Francesca Rocchio, Martina Mattii, Lorenza Penengo, Barbara Azzimonti

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

Despite vaccination and screening measures, anogenital cancer, mainly promoted by HPV16 oncoproteins, still represents the fourth tumor and the second cause of death among women.
Cell replication fidelity is the result of the host DNA damage response (DDR). Unlike many DNA viruses that promote their life cycle through the DDR inactivation, HR-HPVs encourage cells proliferation despite the DDR turned on. Why and how it occurs has been only partially elucidated.
During HPV16 infection, E6 links and degrades p53 via the binding to the E6AP LXXLL sequence; unfortunately, E6 direct role in the DDR response has not clearly identified yet.
Similarly, E7 increases DDR by competing with E2F1-pRb interaction, thus leading to the inactivation of pRb, and promotion, E2F1 mediated, of DDR genes translation, by binding to the pRb-like proteins CBP/p300 and p107, that also harbour LXXLL sequence, and via the interaction and activation of several DDR proteins.

Methods

To gain information regarding E6 and E7 contribution in DDR activation, we produced an in vitro 3D HPV16-E6E7 infected epithelium, already consolidated study model for HPVs, and validated it by assessing H&E staining and BrdU, HPV16 DNA, E6E7 proteins and γH2A.X/53BP1 double-strand break (DSBs) sensors expression; then we made an immuno-colocalization of E6 and E7 with cyclin E2 and B1.
Since 53BP1, like E6 and E7, also binds p53 and pRb, we supposed their possible direct binding. To explore this hypothesis, we performed a double immunofluorescence of E6 and E7 with 53BP1, a sequence analysis of 53BP1 within its BRCT2 domain and then an in situ PLA within CaSki, E6E7HPV16 NHEKs and the 3D model.

Results

The in vitro epithelium resembled the histology and the events typical of in vivo infected tissues. E6E7HPV16 were both expressed in basal and differentiated strata and induced H2A.X phosphorylation and 53BP1 increment into nuclear foci.
After highlighting E6 and E7 co-expression with 53BP1 and a LKVLL sequence within the 53BP1 BRCT2 domain, we demonstrated the bindings via the PLA technique.

Conclusions

Our results reinforce E6 and E7 role in cellular function control providing potentially new insights into the activity of this tumor virus.
Literature
1.
go back to reference Wood NH, Khammissa RA, Chikte UM, Meyerov R, Lemmer J, Feller L. The pathobiology and mechanisms of infection of HPV. SADJ. 2010;65:124–6.PubMed Wood NH, Khammissa RA, Chikte UM, Meyerov R, Lemmer J, Feller L. The pathobiology and mechanisms of infection of HPV. SADJ. 2010;65:124–6.PubMed
2.
go back to reference Pouyanfard S, Müller M. Human papillomavirus first and second generation vaccines-current status and future directions. Biol Chem. 2017;398:871–89.CrossRef Pouyanfard S, Müller M. Human papillomavirus first and second generation vaccines-current status and future directions. Biol Chem. 2017;398:871–89.CrossRef
3.
go back to reference Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, Stanley MA. The biology and life-cycle of human papillomaviruses. Vaccine. 2012;(Suppl 5):F55–70.CrossRef Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, Stanley MA. The biology and life-cycle of human papillomaviruses. Vaccine. 2012;(Suppl 5):F55–70.CrossRef
4.
go back to reference Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci. 2006;110:525–41.CrossRef Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci. 2006;110:525–41.CrossRef
5.
go back to reference Narisawa-Saito M, Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci. 2007;98:1505–11.CrossRef Narisawa-Saito M, Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci. 2007;98:1505–11.CrossRef
6.
go back to reference Wallace NA, Khanal S, Robinson KL, Wendel SO, Messer JJ, Galloway DA. High-risk alpha papillomavirus oncogenes impair the homologous recombination pathway. J Virol. 2017;27, 91(20). Wallace NA, Khanal S, Robinson KL, Wendel SO, Messer JJ, Galloway DA. High-risk alpha papillomavirus oncogenes impair the homologous recombination pathway. J Virol. 2017;27, 91(20).
7.
go back to reference Galloway DA, Laimins LA. Human papillomaviruses: shared and distinct pathways for pathogenesis. Curr Opin Virol. 2015;14:87–92.CrossRef Galloway DA, Laimins LA. Human papillomaviruses: shared and distinct pathways for pathogenesis. Curr Opin Virol. 2015;14:87–92.CrossRef
8.
go back to reference Langsfeld E, Laimins LA. Human papillomaviruses: research priorities for the next decade. Trends Cancer. 2016;2:234–40.CrossRef Langsfeld E, Laimins LA. Human papillomaviruses: research priorities for the next decade. Trends Cancer. 2016;2:234–40.CrossRef
9.
go back to reference Vande Pol SB, Klingelhutz AJ. Papillomavirus E6 oncoproteins. Virology. 2013;445:115–37.CrossRef Vande Pol SB, Klingelhutz AJ. Papillomavirus E6 oncoproteins. Virology. 2013;445:115–37.CrossRef
10.
go back to reference Nikitin PA, Luftig MA. The DNA damage response in viral-induced cellular transformation. Br J Cancer. 2012;106:429–35.CrossRef Nikitin PA, Luftig MA. The DNA damage response in viral-induced cellular transformation. Br J Cancer. 2012;106:429–35.CrossRef
11.
go back to reference Hong S, Laimins LA. Regulation of the life cycle of HPVs by differentiation and the DNA damage response. Future Microbiol. 2013;8:1547–57.CrossRef Hong S, Laimins LA. Regulation of the life cycle of HPVs by differentiation and the DNA damage response. Future Microbiol. 2013;8:1547–57.CrossRef
12.
go back to reference Gillespie KA, Mehta KP, Laimins LA, Moody CA. Human papillomaviruses recruit cellular DNA repair and homologous recombination factors to viral replication centers. J Virol. 2012;86:9520–6.CrossRef Gillespie KA, Mehta KP, Laimins LA, Moody CA. Human papillomaviruses recruit cellular DNA repair and homologous recombination factors to viral replication centers. J Virol. 2012;86:9520–6.CrossRef
13.
go back to reference McKinney CC, Hussmann KL, McBride AA. The role of the DNA damage response throughout the papillomavirus life cycle. Viruses. 2015;7:2450–69.CrossRef McKinney CC, Hussmann KL, McBride AA. The role of the DNA damage response throughout the papillomavirus life cycle. Viruses. 2015;7:2450–69.CrossRef
14.
go back to reference Park JW, Nickel KP, Torres AD, Lee D, Lambert PF, Kimple RJ. Human papillomavirus type 16 E7 oncoprotein causes a delay in repair of DNA damage. Radiother Oncol. 2014;113:337–44.CrossRef Park JW, Nickel KP, Torres AD, Lee D, Lambert PF, Kimple RJ. Human papillomavirus type 16 E7 oncoprotein causes a delay in repair of DNA damage. Radiother Oncol. 2014;113:337–44.CrossRef
15.
go back to reference Kadaja M, Isok-Paas H, Laos T, Ustav E, Ustav M. Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLoS Pathog. 2009;5:e1000397.CrossRef Kadaja M, Isok-Paas H, Laos T, Ustav E, Ustav M. Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLoS Pathog. 2009;5:e1000397.CrossRef
16.
go back to reference Wallace NA, Galloway DA. Manipulation of cellular DNA damage repair machinery facilitates propagation of human papillomaviruses. Semin Cancer Biol. 2014;26:30–42.CrossRef Wallace NA, Galloway DA. Manipulation of cellular DNA damage repair machinery facilitates propagation of human papillomaviruses. Semin Cancer Biol. 2014;26:30–42.CrossRef
17.
go back to reference Moody CA, Laimins LA. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog. 2009;5:e1000605.CrossRef Moody CA, Laimins LA. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog. 2009;5:e1000605.CrossRef
18.
go back to reference Kadaja M, Silla T, Ustav E, Ustav M. Papillomavirus DNA replication – from initiation to genomic instability. Virology. 2009;384:360–8.CrossRef Kadaja M, Silla T, Ustav E, Ustav M. Papillomavirus DNA replication – from initiation to genomic instability. Virology. 2009;384:360–8.CrossRef
19.
go back to reference Huibregtse JM, Scheffner M, Howley PM. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol Cell Biol. 1993;13:775–84.CrossRef Huibregtse JM, Scheffner M, Howley PM. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol Cell Biol. 1993;13:775–84.CrossRef
20.
go back to reference Ansari T, Brimer N, Vande Pol SB. Peptide interactions stabilize and restructure human papillomavirus type 16 E6 to interact with p53. J Virol. 2012;86:11386–91.CrossRef Ansari T, Brimer N, Vande Pol SB. Peptide interactions stabilize and restructure human papillomavirus type 16 E6 to interact with p53. J Virol. 2012;86:11386–91.CrossRef
21.
go back to reference Huibregtse JM, Scheffner M, Howley PM. Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol. 1993;13:4918–27.CrossRef Huibregtse JM, Scheffner M, Howley PM. Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol. 1993;13:4918–27.CrossRef
22.
go back to reference Iwabuchi K, Bartel PL, Li B, Marraccino R, Fields S. Two cellular proteins that bind to wild-type but not mutant p53. Proc Natl Acad Sci U S A. 1994;91:6098–102.CrossRef Iwabuchi K, Bartel PL, Li B, Marraccino R, Fields S. Two cellular proteins that bind to wild-type but not mutant p53. Proc Natl Acad Sci U S A. 1994;91:6098–102.CrossRef
23.
go back to reference Zapien DM, Ruiz FX, Poirson J, Mitschler A, Ramirez-Ramos J, Forster A, Cousido-Siah A, Masson M, Vande Pol S, Podjarny A, Travé G, Zanier K. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature. 2016;529:541–5.CrossRef Zapien DM, Ruiz FX, Poirson J, Mitschler A, Ramirez-Ramos J, Forster A, Cousido-Siah A, Masson M, Vande Pol S, Podjarny A, Travé G, Zanier K. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature. 2016;529:541–5.CrossRef
24.
go back to reference Zanier K, Charbonnier S, Sidi AOMO, McEwen AG, Ferrario MG, Poussin P, Cura V, Brimer N, Babah KO, Ansari T, Muller I, Stote RH, Cavarelli J, VandePol S, Travé G. Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins. Science. 2013;339:694–8.CrossRef Zanier K, Charbonnier S, Sidi AOMO, McEwen AG, Ferrario MG, Poussin P, Cura V, Brimer N, Babah KO, Ansari T, Muller I, Stote RH, Cavarelli J, VandePol S, Travé G. Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins. Science. 2013;339:694–8.CrossRef
25.
go back to reference Cooper B, Schneider S, Bohl J, Jiang Y, Beaudet A, Vande Pol S. Requirement of E6AP and the features of human papillomavirus E6 necessary to support degradation of p53. Virology. 2003;306:87–99.CrossRef Cooper B, Schneider S, Bohl J, Jiang Y, Beaudet A, Vande Pol S. Requirement of E6AP and the features of human papillomavirus E6 necessary to support degradation of p53. Virology. 2003;306:87–99.CrossRef
26.
go back to reference Chen JJ, Hong Y, Rustamzadeh E, Baleja JD, Androphy EJ. Identification of an alphahelical motif sufficient for association with papillomavirus E6. J BiolChem. 1998;273:13537–44. Chen JJ, Hong Y, Rustamzadeh E, Baleja JD, Androphy EJ. Identification of an alphahelical motif sufficient for association with papillomavirus E6. J BiolChem. 1998;273:13537–44.
27.
go back to reference Chen JJ. RiedCE, BandV, Androphy EJ. Interaction of papillomavirus E6 oncogenes with a putative calcium binding protein. Science. 1995;269:529–31.CrossRef Chen JJ. RiedCE, BandV, Androphy EJ. Interaction of papillomavirus E6 oncogenes with a putative calcium binding protein. Science. 1995;269:529–31.CrossRef
28.
go back to reference Lu Z, Hu X, Li Y, Zheng L, Zhou Y, Jiang H, Ning T, Basang Z, Zhang C, Ke Y. Human papillomavirus 16 E6 oncoprotein interferences within insulin signaling pathway by binding to tuberin. J Biol Chem. 2004;279:35664–70.CrossRef Lu Z, Hu X, Li Y, Zheng L, Zhou Y, Jiang H, Ning T, Basang Z, Zhang C, Ke Y. Human papillomavirus 16 E6 oncoprotein interferences within insulin signaling pathway by binding to tuberin. J Biol Chem. 2004;279:35664–70.CrossRef
29.
go back to reference Ronco LV, Karpova AY, Vidal M, Howley PM. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3and inhibits it transcriptional activity. Genes Dev. 1998;12:2061–72.CrossRef Ronco LV, Karpova AY, Vidal M, Howley PM. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3and inhibits it transcriptional activity. Genes Dev. 1998;12:2061–72.CrossRef
30.
go back to reference Jansma AL, Martinez-Yamout MA, Liao R, Sun P, Dyson HJ, Wright PE. The high-risk HPV16 E7 oncoprotein mediates interaction between the transcriptional coactivator CBP and the retinoblastoma protein pRb. J Mol Biol. 2014;426:4030–48.CrossRef Jansma AL, Martinez-Yamout MA, Liao R, Sun P, Dyson HJ, Wright PE. The high-risk HPV16 E7 oncoprotein mediates interaction between the transcriptional coactivator CBP and the retinoblastoma protein pRb. J Mol Biol. 2014;426:4030–48.CrossRef
31.
go back to reference Ozbun MA, Patterson NA. Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses. Curr Protoc Microbiol. 2014;34:1–18. Ozbun MA, Patterson NA. Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses. Curr Protoc Microbiol. 2014;34:1–18.
32.
go back to reference Pyeon D, Lambert PF, Ahlquist P. Production of infectious human papillomavirus independently of viral replication and epithelial cell differentiation. Proc Natl Acad Sci U S A. 2005;102:9311–6.CrossRef Pyeon D, Lambert PF, Ahlquist P. Production of infectious human papillomavirus independently of viral replication and epithelial cell differentiation. Proc Natl Acad Sci U S A. 2005;102:9311–6.CrossRef
33.
go back to reference Catalano E, Cochis A, Varoni E, Rimondini L, Azzimonti B. Tissue-engineered skin substitutes: an overview. J Artif Organs. 2013;16:397–403.CrossRef Catalano E, Cochis A, Varoni E, Rimondini L, Azzimonti B. Tissue-engineered skin substitutes: an overview. J Artif Organs. 2013;16:397–403.CrossRef
34.
go back to reference Frankart A, Malaisse J, De Vuyst E, Minner F, de Rouvroit CL, Poumay Y. Epidermal morphogenesis during progressive in vitro 3D reconstruction at the air-liquid interface. Exp Dermatol. 2012;21:871–5.CrossRef Frankart A, Malaisse J, De Vuyst E, Minner F, de Rouvroit CL, Poumay Y. Epidermal morphogenesis during progressive in vitro 3D reconstruction at the air-liquid interface. Exp Dermatol. 2012;21:871–5.CrossRef
35.
go back to reference Derbyshire DJ, Basu BP, Serpell LC, Joo WS, Date T, Iwabuchi K, Doherty AJ. Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO J 2002; 15;21:3863–3872.CrossRef Derbyshire DJ, Basu BP, Serpell LC, Joo WS, Date T, Iwabuchi K, Doherty AJ. Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO J 2002; 15;21:3863–3872.CrossRef
36.
go back to reference FitzGerald JE, Grenon M, Lowndes NF. 53BP1: function and mechanisms of focal recruitment. Biochem Soc Trans. 2009;37:897–904.CrossRef FitzGerald JE, Grenon M, Lowndes NF. 53BP1: function and mechanisms of focal recruitment. Biochem Soc Trans. 2009;37:897–904.CrossRef
37.
go back to reference Gupta A, Hunt CR, Chakraborty S, Pandita RK, Yordy J, Ramnarain DB, Horikoshi N, Pandita TK. Role of 53BP1 in the regulation of DNA double-Strand break repair pathway choice. Radiat Res. 2014;181:1–8.CrossRef Gupta A, Hunt CR, Chakraborty S, Pandita RK, Yordy J, Ramnarain DB, Horikoshi N, Pandita TK. Role of 53BP1 in the regulation of DNA double-Strand break repair pathway choice. Radiat Res. 2014;181:1–8.CrossRef
38.
go back to reference Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol. 2014;15:7–18.CrossRef Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol. 2014;15:7–18.CrossRef
39.
go back to reference Joo WS, Jeffrey PD, Cantor SB, Finnin MS, Livingston DM, Pavletich NP. Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure. Genes Dev. 2002;16:583–93.CrossRef Joo WS, Jeffrey PD, Cantor SB, Finnin MS, Livingston DM, Pavletich NP. Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure. Genes Dev. 2002;16:583–93.CrossRef
40.
go back to reference Matsuda K, Miura S, Kurashige T, Suzuki K, Kondo H, Ihara M, Nakajima H, Masuzaki H, Nakashima M. Significance of p53-binding protein 1 nuclear foci in uterine cervical lesions: endogenous DNA double strand breaks and genomic instability during carcinogenesis. Histopathology. 2011;59:441–51.CrossRef Matsuda K, Miura S, Kurashige T, Suzuki K, Kondo H, Ihara M, Nakajima H, Masuzaki H, Nakashima M. Significance of p53-binding protein 1 nuclear foci in uterine cervical lesions: endogenous DNA double strand breaks and genomic instability during carcinogenesis. Histopathology. 2011;59:441–51.CrossRef
41.
go back to reference Mullan PB, Quinn JE, Harkin DP. The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene. 2006;25:5854–63.CrossRef Mullan PB, Quinn JE, Harkin DP. The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene. 2006;25:5854–63.CrossRef
42.
go back to reference Söderberg O, Gullberg M, Jarvius M, Ridderstråle K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods. 2006;3:995–1000.CrossRef Söderberg O, Gullberg M, Jarvius M, Ridderstråle K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods. 2006;3:995–1000.CrossRef
43.
go back to reference Jarvius M, Paulsson J, Weibrecht I, Leuchowius KJ, Andersson AC, Wählby C, Gullberg M, Botling J, Sjöblom T, Markova B, Östman A, Landegren U, Söderberg O. In situ detection of phosphorylated platelet-derived growth factor receptor β using a generalized proximity ligation method. Mol Cell Proteomics. 2007;6:1500–9.CrossRef Jarvius M, Paulsson J, Weibrecht I, Leuchowius KJ, Andersson AC, Wählby C, Gullberg M, Botling J, Sjöblom T, Markova B, Östman A, Landegren U, Söderberg O. In situ detection of phosphorylated platelet-derived growth factor receptor β using a generalized proximity ligation method. Mol Cell Proteomics. 2007;6:1500–9.CrossRef
44.
go back to reference Bagchi S, Fredriksson R, Wallén-Mackenzie Å. In situ proximity ligation assay (PLA). Methods Mol Biol. 2015;1318:149–59.CrossRef Bagchi S, Fredriksson R, Wallén-Mackenzie Å. In situ proximity ligation assay (PLA). Methods Mol Biol. 2015;1318:149–59.CrossRef
45.
go back to reference Bellucci A, Fiorentini C, Zaltieri M, Missale C, Spano P. The "in situ" proximity ligation assay to probe protein-protein interactions in intact tissues. Methods Mol Biol. 2014;1174:397–405.CrossRef Bellucci A, Fiorentini C, Zaltieri M, Missale C, Spano P. The "in situ" proximity ligation assay to probe protein-protein interactions in intact tissues. Methods Mol Biol. 2014;1174:397–405.CrossRef
46.
go back to reference Alam MS. Proximity ligation assay (PLA). Curr Protoc Immunol. 2018 Sep;20:e58.CrossRef Alam MS. Proximity ligation assay (PLA). Curr Protoc Immunol. 2018 Sep;20:e58.CrossRef
47.
go back to reference Azzimonti B, Dell'oste V, Borgogna C, Mondini M, Gugliesi F, De Andrea M, Chiorino G, Scatolini M, Ghimenti C, Landolfo S, Gariglio M. The epithelial-mesenchymal transition induced by keratinocyte growth conditions is overcome by E6 and E7 from HPV16, but not HPV8 and HPV38: characterization of global transcription profiles. Virology. 2009;388:260–9.CrossRef Azzimonti B, Dell'oste V, Borgogna C, Mondini M, Gugliesi F, De Andrea M, Chiorino G, Scatolini M, Ghimenti C, Landolfo S, Gariglio M. The epithelial-mesenchymal transition induced by keratinocyte growth conditions is overcome by E6 and E7 from HPV16, but not HPV8 and HPV38: characterization of global transcription profiles. Virology. 2009;388:260–9.CrossRef
48.
go back to reference Yee C, Krishnan-Hewlett I, Baker CC, Schlegel R, Howley PM. Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. Am J Pathol. 1985;119(3):361–6.PubMedPubMedCentral Yee C, Krishnan-Hewlett I, Baker CC, Schlegel R, Howley PM. Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. Am J Pathol. 1985;119(3):361–6.PubMedPubMedCentral
49.
go back to reference Flores ER, Allen-Hoffmann BL, Lee D, Lambert PF. The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle. J Virol. 2000;74:6622–31.CrossRef Flores ER, Allen-Hoffmann BL, Lee D, Lambert PF. The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle. J Virol. 2000;74:6622–31.CrossRef
50.
go back to reference Borgogna C, Zavattaro E, De Andrea M, Griffin HM, Dell'Oste V, Azzimonti B, Landini MM, Peh WL, Pfister H, Doorbar J, Landolfo S, Gariglio M. Characterization of beta papillomavirus E4 expression in tumours from epidermodysplasia Verruciformis patients and in experimental models. Virology. 2012;423:195–204.CrossRef Borgogna C, Zavattaro E, De Andrea M, Griffin HM, Dell'Oste V, Azzimonti B, Landini MM, Peh WL, Pfister H, Doorbar J, Landolfo S, Gariglio M. Characterization of beta papillomavirus E4 expression in tumours from epidermodysplasia Verruciformis patients and in experimental models. Virology. 2012;423:195–204.CrossRef
51.
go back to reference Peh WL, Middleton K, Christensen N, Nicholls P, Egawa K, Sotlar K, Brandsma J, Percival A, Lewis J, Liu WJ, Doorbar J. Life cycle heterogeneity in animal modelsof human papillomavirus-associated disease. J Virol. 2002;76:10401–16.CrossRef Peh WL, Middleton K, Christensen N, Nicholls P, Egawa K, Sotlar K, Brandsma J, Percival A, Lewis J, Liu WJ, Doorbar J. Life cycle heterogeneity in animal modelsof human papillomavirus-associated disease. J Virol. 2002;76:10401–16.CrossRef
52.
go back to reference Grauzam S, Brock AM, Holmes CO, Tiedeken JA, Boniface SG, Pierson BN, Patterson DG, Coaxum SD, Neskey DM, Rosenzweig SA. NEDD9 stimulated MMP9 secretion is required for invadopodia formation in oral squamous cell carcinoma. Oncotarget 2018;22;9(39):25503–25516. Grauzam S, Brock AM, Holmes CO, Tiedeken JA, Boniface SG, Pierson BN, Patterson DG, Coaxum SD, Neskey DM, Rosenzweig SA. NEDD9 stimulated MMP9 secretion is required for invadopodia formation in oral squamous cell carcinoma. Oncotarget 2018;22;9(39):25503–25516.
53.
go back to reference Xu Y, Gan ES, Ito T. In situ proximity ligation assay to detect the interaction between plant transcription factors and other regulatory proteins. Methods Mol Biol. 2018;1830:325–35.CrossRef Xu Y, Gan ES, Ito T. In situ proximity ligation assay to detect the interaction between plant transcription factors and other regulatory proteins. Methods Mol Biol. 2018;1830:325–35.CrossRef
54.
go back to reference Yamazaki T, Yoshimatsu Y, Morishita Y, Miyazono K, Watabe T. COUP-TFII regulates the functions of Prox1 in lymphatic endothelial cells through direct interaction. Genes Cells. 2009;14(3):425–34.CrossRef Yamazaki T, Yoshimatsu Y, Morishita Y, Miyazono K, Watabe T. COUP-TFII regulates the functions of Prox1 in lymphatic endothelial cells through direct interaction. Genes Cells. 2009;14(3):425–34.CrossRef
55.
go back to reference Nilsson I, Bahram F, Li X, Gualandi L, Koch S, Jarvius M, Söderberg O, Anisimov A, Kholová I, Pytowski B, Baldwin M, Ylä-Herttuala S, Alitalo K, Kreuger J, Claesson-Welsh L. VEGF receptor 2/−3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J 2010;21;29(8):1377–1388.CrossRef Nilsson I, Bahram F, Li X, Gualandi L, Koch S, Jarvius M, Söderberg O, Anisimov A, Kholová I, Pytowski B, Baldwin M, Ylä-Herttuala S, Alitalo K, Kreuger J, Claesson-Welsh L. VEGF receptor 2/−3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J 2010;21;29(8):1377–1388.CrossRef
56.
go back to reference Sehat B, Tofigh A, Lin Y, Trocmé E, Liljedahl U, Lagergren J, Larsson O. SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci Signal. 2010;3(108):ra10.CrossRef Sehat B, Tofigh A, Lin Y, Trocmé E, Liljedahl U, Lagergren J, Larsson O. SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci Signal. 2010;3(108):ra10.CrossRef
57.
go back to reference Weibrecht I, Leuchowius KJ, Clausson CM, Conze T, Jarvius M, Howell WM, Kamali-Moghaddam M, Söderberg O. Proximity ligation assays: a recent addition to the proteomics toolbox. Expert Rev Proteomics. 2010;7:401–9.CrossRef Weibrecht I, Leuchowius KJ, Clausson CM, Conze T, Jarvius M, Howell WM, Kamali-Moghaddam M, Söderberg O. Proximity ligation assays: a recent addition to the proteomics toolbox. Expert Rev Proteomics. 2010;7:401–9.CrossRef
58.
go back to reference Sable R, Jambunathan N, Singh S, Pallerla S, Kousoulas KG, Jois S. Proximity ligation assay to study protein-protein interactions of proteins on two different cells. BioTechniques. 2018;65(3):149–57.CrossRef Sable R, Jambunathan N, Singh S, Pallerla S, Kousoulas KG, Jois S. Proximity ligation assay to study protein-protein interactions of proteins on two different cells. BioTechniques. 2018;65(3):149–57.CrossRef
59.
go back to reference Hsu EM, McNicol PJ. Characterization of HPV-16 E6/E7 transcription in CaSki cells by quantitative PCR. Mol Cell Probes. 1992;6(6):459–66.CrossRef Hsu EM, McNicol PJ. Characterization of HPV-16 E6/E7 transcription in CaSki cells by quantitative PCR. Mol Cell Probes. 1992;6(6):459–66.CrossRef
60.
go back to reference Yim EK, Park JS. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat. 2005;37:319–24.CrossRef Yim EK, Park JS. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat. 2005;37:319–24.CrossRef
61.
go back to reference Bristol ML, Das D, Morgan IM. Why human papillomaviruses activate the DNA damage response (DDR) and how cellular and viral replication persists in the presence of DDR signaling. Viruses. 2017;21:9(10). Bristol ML, Das D, Morgan IM. Why human papillomaviruses activate the DNA damage response (DDR) and how cellular and viral replication persists in the presence of DDR signaling. Viruses. 2017;21:9(10).
62.
go back to reference Park JW, Pitot HC, Strati K, Spardy N, Duensing S, Grompe M, Lambert PF. Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res. 2010;70:9959–68.CrossRef Park JW, Pitot HC, Strati K, Spardy N, Duensing S, Grompe M, Lambert PF. Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res. 2010;70:9959–68.CrossRef
63.
go back to reference Park JW, Shin MK, Lambert PF. High incidence of female reproductive tract cancers in FA-deficient HPV16-transgenic mice correlates with E7's induction of DNA damage response, an activity mediated by E7's inactivation of pocket proteins. Oncogene. 2014;33:3383–91.CrossRef Park JW, Shin MK, Lambert PF. High incidence of female reproductive tract cancers in FA-deficient HPV16-transgenic mice correlates with E7's induction of DNA damage response, an activity mediated by E7's inactivation of pocket proteins. Oncogene. 2014;33:3383–91.CrossRef
64.
go back to reference Park JW, Shin MK, Pitot HC, Lambert PF. High incidence of HPV-associated head and neck cancers in FA deficient mice is associated with E7's induction of DNA damage through its inactivation of pocket proteins. PLoS One. 2013;8:e75056.CrossRef Park JW, Shin MK, Pitot HC, Lambert PF. High incidence of HPV-associated head and neck cancers in FA deficient mice is associated with E7's induction of DNA damage through its inactivation of pocket proteins. PLoS One. 2013;8:e75056.CrossRef
65.
go back to reference Sharma A, Singh K, Almasan A. Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol. 2012;920:613–26.CrossRef Sharma A, Singh K, Almasan A. Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol. 2012;920:613–26.CrossRef
66.
go back to reference Podhorecka M, Skladanowski A, Bozko P. H2AX phosphorylation: its role in DNA damage response and Cancer therapy. J Nucleic Acids. 2010. Podhorecka M, Skladanowski A, Bozko P. H2AX phosphorylation: its role in DNA damage response and Cancer therapy. J Nucleic Acids. 2010.
67.
go back to reference Lassmann M, Hänscheid H, Gassen D, Biko J, Meineke V, Reiners C, Scherthan H. In vivo formation of gamma-H2AX and 53BP1 DNA repair foci in blood cells after radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 2010;51:1318–25.CrossRef Lassmann M, Hänscheid H, Gassen D, Biko J, Meineke V, Reiners C, Scherthan H. In vivo formation of gamma-H2AX and 53BP1 DNA repair foci in blood cells after radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 2010;51:1318–25.CrossRef
68.
go back to reference Zubillaga-Guerrero MI, Illades-Aguiar B, Leyva-Vazquez MA, Flores-Alfaro E, Castañeda-Saucedo E, Muñoz-Valle JF, Alarcón-Romero LC. The integration of HR-HPV increases the expression of cyclins a and E in cytologies with and without low-grade lesions. J Cytol. 2013;30(1):1–7.CrossRef Zubillaga-Guerrero MI, Illades-Aguiar B, Leyva-Vazquez MA, Flores-Alfaro E, Castañeda-Saucedo E, Muñoz-Valle JF, Alarcón-Romero LC. The integration of HR-HPV increases the expression of cyclins a and E in cytologies with and without low-grade lesions. J Cytol. 2013;30(1):1–7.CrossRef
69.
go back to reference Charrier-Savournin FB, Château MT, Gire V, Sedivy J, Piette J, Dulic V. p21-mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol Biol Cell. 2004;15(9):3965–76.CrossRef Charrier-Savournin FB, Château MT, Gire V, Sedivy J, Piette J, Dulic V. p21-mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol Biol Cell. 2004;15(9):3965–76.CrossRef
70.
go back to reference Toyoshima F, Moriguchi T, Wada A, Fukuda M, Nishida E. Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBO J. 1998;17:2728–35.CrossRef Toyoshima F, Moriguchi T, Wada A, Fukuda M, Nishida E. Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBO J. 1998;17:2728–35.CrossRef
71.
go back to reference Ward IM, Minn K, van Deursen J, Chen J. p53 binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol Cell Biol. 2003;23:2556–63.CrossRef Ward IM, Minn K, van Deursen J, Chen J. p53 binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol Cell Biol. 2003;23:2556–63.CrossRef
72.
go back to reference Fernandez-Vidal A, Vignard J, Mirey G. Around and beyond 53BP1 nuclear bodies. Int J Mol Sci. 2017;18.CrossRef Fernandez-Vidal A, Vignard J, Mirey G. Around and beyond 53BP1 nuclear bodies. Int J Mol Sci. 2017;18.CrossRef
73.
go back to reference Kakarougkas A, Ismail A, Klement K, Goodarzi AA, Conrad S, Freire R, Shibata A, Lobrich M, Jeggo PA. Opposing roles for 53BP1 during homologous recombination. Nucleic Acids Res. 2013;41:9719–31.CrossRef Kakarougkas A, Ismail A, Klement K, Goodarzi AA, Conrad S, Freire R, Shibata A, Lobrich M, Jeggo PA. Opposing roles for 53BP1 during homologous recombination. Nucleic Acids Res. 2013;41:9719–31.CrossRef
74.
go back to reference Spriggs CC, Laimins LA. Human papillomavirus and the DNA damage response: exploiting host repair pathways for viral replication. Viruses. 2017;9(8).CrossRef Spriggs CC, Laimins LA. Human papillomavirus and the DNA damage response: exploiting host repair pathways for viral replication. Viruses. 2017;9(8).CrossRef
75.
go back to reference Dreier K, Scheiden R, Lener B, Ehehalt D, Pircher H, Müller-Holzner E, Rostek U, Kaiser A, Fiedler M, Ressler S, Lechner S, Widschwendter A, Even J, Capesius C, Jansen-Dürr P, Zwerschke W. Subcellular localization of the human papillomavirus 16 E7 oncoprotein in CaSki cells and its detection in cervical adenocarcinoma and adenocarcinoma in situ. Virology. 2011;409(1):54–68.CrossRef Dreier K, Scheiden R, Lener B, Ehehalt D, Pircher H, Müller-Holzner E, Rostek U, Kaiser A, Fiedler M, Ressler S, Lechner S, Widschwendter A, Even J, Capesius C, Jansen-Dürr P, Zwerschke W. Subcellular localization of the human papillomavirus 16 E7 oncoprotein in CaSki cells and its detection in cervical adenocarcinoma and adenocarcinoma in situ. Virology. 2011;409(1):54–68.CrossRef
76.
go back to reference Daniels PR, Sanders CM, Maitland NJ. Characterization of the interactions of human papillomavirus type 16 E6 with p53 and E6-associated protein in insect and human cells. J Gen Virol. 1998;79:489–99.CrossRef Daniels PR, Sanders CM, Maitland NJ. Characterization of the interactions of human papillomavirus type 16 E6 with p53 and E6-associated protein in insect and human cells. J Gen Virol. 1998;79:489–99.CrossRef
77.
go back to reference Le Buanec H, D'Anna R, Lachgar A, Zagury JF, Bernard J, Ittelé D, d'Alessio P, Hallez S, Giannouli C, Burny A, Bizzini B, Gallo RC, Zagury D. HPV-16 E7 but not E6 oncogenic protein triggers both cellular immunosuppression and angiogenicprocesses. Biomed Pharmacother. 1999;53:424–31.CrossRef Le Buanec H, D'Anna R, Lachgar A, Zagury JF, Bernard J, Ittelé D, d'Alessio P, Hallez S, Giannouli C, Burny A, Bizzini B, Gallo RC, Zagury D. HPV-16 E7 but not E6 oncogenic protein triggers both cellular immunosuppression and angiogenicprocesses. Biomed Pharmacother. 1999;53:424–31.CrossRef
78.
go back to reference Zatloukal B, Kufferath I, Thueringer A, Landegren U, Zatloukal K, Haybaeck J. Sensitivity and specificity of in situ proximity ligation for protein interaction analysis in a model of steatohepatitis with Mallory-Denk bodies. PLoS One. 2014;9:e96690.CrossRef Zatloukal B, Kufferath I, Thueringer A, Landegren U, Zatloukal K, Haybaeck J. Sensitivity and specificity of in situ proximity ligation for protein interaction analysis in a model of steatohepatitis with Mallory-Denk bodies. PLoS One. 2014;9:e96690.CrossRef
Metadata
Title
Human papillomavirus type 16 E6 and E7 oncoproteins interact with the nuclear p53-binding protein 1 in an in vitro reconstructed 3D epithelium: new insights for the virus-induced DNA damage response
Authors
Diletta Francesca Squarzanti
Rita Sorrentino
Manuela Miriam Landini
Andrea Chiesa
Sabrina Pinato
Francesca Rocchio
Martina Mattii
Lorenza Penengo
Barbara Azzimonti
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-1086-4

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue