Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

RIG-I is responsible for activation of type I interferon pathway in Seneca Valley virus-infected porcine cells to suppress viral replication

Authors: Pengfei Li, Xiangle Zhang, Weijun Cao, Fan Yang, Xiaoli Du, Zhengwang Shi, Miaotao Zhang, Xiangtao Liu, Zixiang Zhu, Haixue Zheng

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

Retinoic acid-inducible gene I (RIG-I) is a key cytosolic receptor of the innate immune system. Seneca valley virus (SVV) is a newly emerging RNA virus that infects pigs causing significant economic losses in pig industry. RIG-I plays different roles during different viruses infections. The role of RIG-I in SVV-infected cells remains unknown. Understanding of the role of RIG-I during SVV infection will help to clarify the infection process of SVV in the infected cells.

Methods

In this study, we generated a RIG-I knockout (KO) porcine kidney PK-15 cell line using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome editing tool. The RIG-I gene sequence of RIG-I KO cells were determined by Sanger sequencing method, and the expression of RIG-I protein in the RIG-I KO cells were detected by Western bloting. The activation status of type I interferon pathway in Sendai virus (SeV)- or SVV-infected RIG-I KO cells was investigated by measuring the mRNA expression levels of interferon (IFN)-β and IFN-stimulated genes (ISGs). The replicative state of SVV in the RIG-I KO cells was evaluated by qPCR, Western bloting, TCID50 assay and indirect immunofluorescence assay.

Results

Gene editing of RIG-I in PK-15 cells successfully resulted in the destruction of RIG-I expression. RIG-I KO PK-15 cells had a lower expression of IFN-β and ISGs compared with wildtype (WT) PK-15 cells when stimulated by the model RNA virus SeV. The amounts of viral RNA and viral protein as well as viral yields in SVV-infected RIG-I WT and KO cells were determined and compared, which showed that knockout of RIG-I significantly increased SVV replication and propagation. Meanwhile, the expression of IFN-β and ISGs were considerably decreased in RIG-I KO cells compared with that in RIG-I WT cells during SVV infection.

Conclusion

Altogether, this study indicated that RIG-I showed an antiviral role against SVV and was essential for activation of type I IFN signaling during SVV infection. In addition, this study suggested that the CRISPR/Cas9 system can be used as an effective tool to modify cell lines to increase viral yields during SVV vaccine development.
Literature
1.
go back to reference Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005;151:2551–61.CrossRefPubMed Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005;151:2551–61.CrossRefPubMed
2.
go back to reference Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12.CrossRefPubMed Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12.CrossRefPubMed
3.
go back to reference Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33.CrossRefPubMedPubMedCentral Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33.CrossRefPubMedPubMedCentral
4.
go back to reference Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol. 2010;64:475–93.CrossRefPubMed Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol. 2010;64:475–93.CrossRefPubMed
5.
go back to reference Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol. 2005;1:e60.CrossRefPubMedPubMedCentral Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol. 2005;1:e60.CrossRefPubMedPubMedCentral
6.
go back to reference Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9:467–77.CrossRefPubMed Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9:467–77.CrossRefPubMed
7.
go back to reference Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.CrossRefPubMedPubMedCentral Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.CrossRefPubMedPubMedCentral
8.
go back to reference Sato M, Miyoshi K, Nagao Y, Nishi Y, Ohtsuka M, Nakamura S, Sakurai T, Watanabe S. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the alpha-1,3-galactosyltransferase gene in porcine embryonic fibroblasts. Xenotransplantation. 2014;21:291–300.CrossRefPubMed Sato M, Miyoshi K, Nagao Y, Nishi Y, Ohtsuka M, Nakamura S, Sakurai T, Watanabe S. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the alpha-1,3-galactosyltransferase gene in porcine embryonic fibroblasts. Xenotransplantation. 2014;21:291–300.CrossRefPubMed
9.
go back to reference Cong L, Zhang F. Genome engineering using CRISPR-Cas9 system. Methods Mol Biol. 2015;1239:197–217.CrossRefPubMed Cong L, Zhang F. Genome engineering using CRISPR-Cas9 system. Methods Mol Biol. 2015;1239:197–217.CrossRefPubMed
11.
go back to reference Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. Pattern recognition receptors and the innate immune response to viral infection. Viruses. 2011;3:920–40.CrossRefPubMedPubMedCentral Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. Pattern recognition receptors and the innate immune response to viral infection. Viruses. 2011;3:920–40.CrossRefPubMedPubMedCentral
12.
go back to reference Chow KT, Gale M, Loo YM. RIG-I and other RNA sensors in antiviral immunity. Annu Rev Immunol. 2018;36:667–94.CrossRefPubMed Chow KT, Gale M, Loo YM. RIG-I and other RNA sensors in antiviral immunity. Annu Rev Immunol. 2018;36:667–94.CrossRefPubMed
14.
go back to reference Godde JS, Bickerton A. The Repetitive DNA Elements Called CRISPRs and Their Associated Genes:Evidence of Horizontal Transfer Among Prokaryotes. J Mol Evol. 2006;62:718–29.CrossRefPubMed Godde JS, Bickerton A. The Repetitive DNA Elements Called CRISPRs and Their Associated Genes:Evidence of Horizontal Transfer Among Prokaryotes. J Mol Evol. 2006;62:718–29.CrossRefPubMed
16.
go back to reference Jorgensen SE, Christiansen M, Ryo LB, Gad HH, Gjedsted J, Staeheli P, Mikkelsen JG, Storgaard M, Hartmann R, Mogensen TH. Defective RNA sensing by RIG-I in severe influenza virus infection. Clin Exp Immunol. 2018;192:366–76.CrossRefPubMedPubMedCentral Jorgensen SE, Christiansen M, Ryo LB, Gad HH, Gjedsted J, Staeheli P, Mikkelsen JG, Storgaard M, Hartmann R, Mogensen TH. Defective RNA sensing by RIG-I in severe influenza virus infection. Clin Exp Immunol. 2018;192:366–76.CrossRefPubMedPubMedCentral
17.
go back to reference Sun Y, Ding N, Ding SS, Yu S, Meng C, Chen H, Qiu X, Zhang S, Yu Y, Zhan Y, Ding C. Goose RIG-I functions in innate immunity against Newcastle disease virus infections. Mol Immunol. 2013;53:321–7.CrossRefPubMed Sun Y, Ding N, Ding SS, Yu S, Meng C, Chen H, Qiu X, Zhang S, Yu Y, Zhan Y, Ding C. Goose RIG-I functions in innate immunity against Newcastle disease virus infections. Mol Immunol. 2013;53:321–7.CrossRefPubMed
18.
go back to reference Spiropoulou CF, Ranjan P, Pearce MB, Sealy TK, Albarino CG, Gangappa S, Fujita T, Rollin PE, Nichol ST, Ksiazek TG, Sambhara S. RIG-I activation inhibits ebolavirus replication. Virology. 2009;392:11–5.CrossRefPubMed Spiropoulou CF, Ranjan P, Pearce MB, Sealy TK, Albarino CG, Gangappa S, Fujita T, Rollin PE, Nichol ST, Ksiazek TG, Sambhara S. RIG-I activation inhibits ebolavirus replication. Virology. 2009;392:11–5.CrossRefPubMed
19.
go back to reference Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, Gill MA, Garcia-Sastre A, Katze MG, Gale M Jr. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol. 2008;82:335–45.CrossRefPubMed Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, Gill MA, Garcia-Sastre A, Katze MG, Gale M Jr. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol. 2008;82:335–45.CrossRefPubMed
21.
go back to reference Feng Q, Hato SV, Langereis MA, Zoll J, Virgen-Slane R, Peisley A, Hur S, Semler BL, van Rij RP, van Kuppeveld FJM. MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep. 2012;2:1187–96.CrossRefPubMedPubMedCentral Feng Q, Hato SV, Langereis MA, Zoll J, Virgen-Slane R, Peisley A, Hur S, Semler BL, van Rij RP, van Kuppeveld FJM. MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep. 2012;2:1187–96.CrossRefPubMedPubMedCentral
22.
go back to reference Zhu Z, Yang F, Chen P, Liu H, Cao W, Zhang K, Liu X, Zheng H. Emergence of novel Seneca Valley virus strains in China, 2017. Transbound Emerg Dis. 2017;64:1024–9.CrossRefPubMed Zhu Z, Yang F, Chen P, Liu H, Cao W, Zhang K, Liu X, Zheng H. Emergence of novel Seneca Valley virus strains in China, 2017. Transbound Emerg Dis. 2017;64:1024–9.CrossRefPubMed
23.
go back to reference Zhu Z, Li C, Du X, Wang G, Cao W, Yang F, Feng H, Zhang X, Shi Z, Liu H, et al. Foot-and-mouth disease virus infection inhibits LGP2 protein expression to exaggerate inflammatory response and promote viral replication. Cell Death Dis. 2017;8:e2747.CrossRefPubMedPubMedCentral Zhu Z, Li C, Du X, Wang G, Cao W, Yang F, Feng H, Zhang X, Shi Z, Liu H, et al. Foot-and-mouth disease virus infection inhibits LGP2 protein expression to exaggerate inflammatory response and promote viral replication. Cell Death Dis. 2017;8:e2747.CrossRefPubMedPubMedCentral
24.
go back to reference Reed LJ, Muench H. A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS. Amjhyg. 1938;27.CrossRef Reed LJ, Muench H. A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS. Amjhyg. 1938;27.CrossRef
25.
go back to reference REED LJ. MUENCH H: a simple method of estimating fifty percent endpoint. Am J Epidemiol. 1938;27:493–7.CrossRef REED LJ. MUENCH H: a simple method of estimating fifty percent endpoint. Am J Epidemiol. 1938;27:493–7.CrossRef
26.
go back to reference Li W, Zhu Z, Cao W, Yang F, Zhang X, Li D, Zhang K, Li P, Mao R, Liu X, Zheng H. Esterase D enhances type I interferon signal transduction to suppress foot-and-mouth disease virus replication. Mol Immunol. 2016;75:112–21.CrossRefPubMed Li W, Zhu Z, Cao W, Yang F, Zhang X, Li D, Zhang K, Li P, Mao R, Liu X, Zheng H. Esterase D enhances type I interferon signal transduction to suppress foot-and-mouth disease virus replication. Mol Immunol. 2016;75:112–21.CrossRefPubMed
27.
go back to reference Garcin D, Latorre P, Kolakofsky D. Sendai virus C proteins counteract the interferon-mediated induction of an antiviral state. J Virol. 1999;73:6559–65.PubMedCentralPubMed Garcin D, Latorre P, Kolakofsky D. Sendai virus C proteins counteract the interferon-mediated induction of an antiviral state. J Virol. 1999;73:6559–65.PubMedCentralPubMed
29.
go back to reference Nagai Y, Takakura A, Irie T, Yonemitsu Y, Gotoh B: Sendai virus: evolution from mouse pathogen to a state-of-the-art tool in virus research and Biotechnology 2011. Nagai Y, Takakura A, Irie T, Yonemitsu Y, Gotoh B: Sendai virus: evolution from mouse pathogen to a state-of-the-art tool in virus research and Biotechnology 2011.
30.
go back to reference Zou Y, Li Z, Zou Y, Hao H, Li N, Li Q. An FBXO40 knockout generated by CRISPR/Cas9 causes muscle hypertrophy in pigs without detectable pathological effects. Biochem Biophys Res Commun. 2018;498:940–5.CrossRefPubMed Zou Y, Li Z, Zou Y, Hao H, Li N, Li Q. An FBXO40 knockout generated by CRISPR/Cas9 causes muscle hypertrophy in pigs without detectable pathological effects. Biochem Biophys Res Commun. 2018;498:940–5.CrossRefPubMed
31.
go back to reference Su X, Cui K, Du S, Li H, Lu F, Shi D, Liu Q. Efficient genome editing in cultured cells and embryos of Debao pig and swamp buffalo using the CRISPR/Cas9 system. In Vitro Cell Dev Biol Anim. 2018;54:375–83.CrossRefPubMed Su X, Cui K, Du S, Li H, Lu F, Shi D, Liu Q. Efficient genome editing in cultured cells and embryos of Debao pig and swamp buffalo using the CRISPR/Cas9 system. In Vitro Cell Dev Biol Anim. 2018;54:375–83.CrossRefPubMed
32.
go back to reference Sheets TP, Park KE, Park CH, Swift SM, Powell A, Donovan DM, Telugu BP. Targeted mutation of NGN3 gene disrupts pancreatic endocrine cell development in pigs. Sci Rep. 2018;8:3582.CrossRefPubMedPubMedCentral Sheets TP, Park KE, Park CH, Swift SM, Powell A, Donovan DM, Telugu BP. Targeted mutation of NGN3 gene disrupts pancreatic endocrine cell development in pigs. Sci Rep. 2018;8:3582.CrossRefPubMedPubMedCentral
33.
go back to reference Li M, Ouyang H, Yuan H, Li J, Xie Z, Wang K, Yu T, Liu M, Chen X, Tang X, et al. Site-specific Fat-1 Knock-in enables significant decrease of n-6PUFAs/n-3PUFAs ratio in pigs. G3 (Bethesda). 2018;8:1747–54.CrossRefPubMedCentral Li M, Ouyang H, Yuan H, Li J, Xie Z, Wang K, Yu T, Liu M, Chen X, Tang X, et al. Site-specific Fat-1 Knock-in enables significant decrease of n-6PUFAs/n-3PUFAs ratio in pigs. G3 (Bethesda). 2018;8:1747–54.CrossRefPubMedCentral
34.
go back to reference Burkard C, Lillico SG: Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. 2017, 13:e1006206. Burkard C, Lillico SG: Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. 2017, 13:e1006206.
35.
go back to reference Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 2003;3:900–11.CrossRefPubMed Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 2003;3:900–11.CrossRefPubMed
37.
go back to reference Liu Y, Goulet ML, Sze A, Hadj SB, Belgnaoui SM, Lababidi RR, Zheng C, Fritz JH, Olagnier D, Lin R. RIG-I-mediated STING upregulation restricts herpes simplex virus 1 infection. J Virol. 2016;90:9406–19.CrossRefPubMedPubMedCentral Liu Y, Goulet ML, Sze A, Hadj SB, Belgnaoui SM, Lababidi RR, Zheng C, Fritz JH, Olagnier D, Lin R. RIG-I-mediated STING upregulation restricts herpes simplex virus 1 infection. J Virol. 2016;90:9406–19.CrossRefPubMedPubMedCentral
38.
go back to reference Wang Y, Zhang HX, Sun YP, Liu ZX, Liu XS, Wang L, Lu SY, Kong H, Liu QL, Li XH, et al. Rig-I−/− mice develop colitis associated with downregulation of G alpha i2. Cell Res. 2007;17:858–68.CrossRefPubMed Wang Y, Zhang HX, Sun YP, Liu ZX, Liu XS, Wang L, Lu SY, Kong H, Liu QL, Li XH, et al. Rig-I−/− mice develop colitis associated with downregulation of G alpha i2. Cell Res. 2007;17:858–68.CrossRefPubMed
40.
go back to reference Hales LM, Jones BH, Vasko AJ, Knowles NJ, Police SR, Hallenbeck PL. EPIDEMIOLOGY of Seneca Valley virus (SVV-001), a novel oncolytic picornavirus for the systemic treatment of patients with solid cancers with neuroendocrine features. Mol Ther. 2006;13:S187.CrossRef Hales LM, Jones BH, Vasko AJ, Knowles NJ, Police SR, Hallenbeck PL. EPIDEMIOLOGY of Seneca Valley virus (SVV-001), a novel oncolytic picornavirus for the systemic treatment of patients with solid cancers with neuroendocrine features. Mol Ther. 2006;13:S187.CrossRef
41.
go back to reference Sun D, Vannucci F, Knutson TP, Corzo C, Marthaler DG. Emergence and whole-genome sequence of Senecavirus a in Colombia. Transbound Emerg Dis. 2017;64:1346–9.CrossRefPubMed Sun D, Vannucci F, Knutson TP, Corzo C, Marthaler DG. Emergence and whole-genome sequence of Senecavirus a in Colombia. Transbound Emerg Dis. 2017;64:1346–9.CrossRefPubMed
42.
go back to reference Saeng-Chuto K, Rodtian P, Temeeyasen G, Wegner M, Nilubol D. The first detection of Senecavirus a in pigs in Thailand, 2016. Transbound Emerg Dis. 2018;65:285–8.CrossRefPubMed Saeng-Chuto K, Rodtian P, Temeeyasen G, Wegner M, Nilubol D. The first detection of Senecavirus a in pigs in Thailand, 2016. Transbound Emerg Dis. 2018;65:285–8.CrossRefPubMed
43.
go back to reference Yang F, Zhu Z, Cao W, Liu H, Zhang K, Tian H, Liu X, Zheng H. Immunogenicity and protective efficacy of an inactivated cell culture-derived Seneca Valley virus vaccine in pigs. Vaccine. 2018;36:841–6.CrossRefPubMed Yang F, Zhu Z, Cao W, Liu H, Zhang K, Tian H, Liu X, Zheng H. Immunogenicity and protective efficacy of an inactivated cell culture-derived Seneca Valley virus vaccine in pigs. Vaccine. 2018;36:841–6.CrossRefPubMed
Metadata
Title
RIG-I is responsible for activation of type I interferon pathway in Seneca Valley virus-infected porcine cells to suppress viral replication
Authors
Pengfei Li
Xiangle Zhang
Weijun Cao
Fan Yang
Xiaoli Du
Zhengwang Shi
Miaotao Zhang
Xiangtao Liu
Zixiang Zhu
Haixue Zheng
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-1080-x

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue