Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

Nucleotide heterogeneity at the terminal ends of the genomes of two California Citrus tristeza virus strains and their complete genome sequence analysis

Authors: Angel Y. S. Chen, Shizu Watanabe, Raymond Yokomi, James C. K. Ng

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

The non-translated regions at the genome ends of RNA viruses serve diverse functions and can exhibit various levels of nucleotide (nt) heterogeneity. However, the extent of nt heterogeneity at the extreme termini of Citrus tristeza virus (CTV) genomes has not been comprehensively documented. This study aimed to characterize two widely prevalent CTV genotypes, T36-CA and T30-CA, from California that have not been sequenced or analyzed substantially. The information obtained will be used in our ongoing effort to construct the infectious complementary (c) DNA clones of these viruses.

Methods

The terminal nts of the viral genomes were identified by sequencing cDNA clones of the plus- and/or minus-strand of the viral double-stranded (ds) RNAs generated using 5′ and 3′ rapid amplification of cDNA ends. Cloned cDNAs corresponding to the complete genome sequences of both viruses were generated using reverse transcription-polymerase chain reactions, sequenced, and subjected to phylogenetic analysis.

Results

Among the predominant terminal nts identified, some were identical to the consensus sequences in GenBank, while others were different or unique. Remarkably, one of the predominant 5′ nt variants of T36-CA contained the consensus nts “AATTTCAAA” in which a highly conserved cytidylate, seen in all other full-length T36 sequences, was absent. As expected, but never systematically verified before, unique variants with additional nt (s) incorporated upstream of the 5′ terminal consensus nts of T36-CA and T30-CA were also identified. In contrast to the extreme 5′ terminal nts, those at the extreme 3′ termini of T36-CA and T30-CA were more conserved compared to the reference sequences, although nt variants were also found. Notably, an additional thymidylate at the extreme 3′ end was identified in many T36-CA sequences. Finally, based on pairwise comparisons and phylogenetic analysis with multiple reference sequences, the complete sequences of both viruses were found to be highly conserved with those of the respective genotypes.

Conclusions

The extreme terminal nts in the T36-CA and T30-CA genomes were identified, revealing new insights on the heterogeneity of these CTV genomic regions. T36-CA and T30-CA were the first and the second genotypes, respectively, of CTV originating from California to be completely sequenced and analyzed.
Appendix
Available only for authorised users
Literature
1.
go back to reference Karasev AV, Boyko VP, Gowda S, Nikolaeva OV, Hilf ME, Koonin EV, et al. Complete sequence of the Citrus tristeza virus RNA genome. Virology. 1995;208:511–20.CrossRef Karasev AV, Boyko VP, Gowda S, Nikolaeva OV, Hilf ME, Koonin EV, et al. Complete sequence of the Citrus tristeza virus RNA genome. Virology. 1995;208:511–20.CrossRef
2.
go back to reference Karasev AV. Genetic diversity and evolution of closteroviruses. Annu Rev Phytopathol. 2000;38:293–324.CrossRef Karasev AV. Genetic diversity and evolution of closteroviruses. Annu Rev Phytopathol. 2000;38:293–324.CrossRef
3.
go back to reference Harper SJ. Citrus tristeza virus: evolution of complex and varied genotypic groups. Front Microbiol. 2013;4:93.CrossRef Harper SJ. Citrus tristeza virus: evolution of complex and varied genotypic groups. Front Microbiol. 2013;4:93.CrossRef
5.
go back to reference Albiach-Martí MR, Mawassi M, Gowda S, Satyanarayana T, Hilf ME, Shanker S, et al. Sequences of Citrus tristeza virus separated in time and space are essentially identical. J Virol. 2000;74:6856–65.CrossRef Albiach-Martí MR, Mawassi M, Gowda S, Satyanarayana T, Hilf ME, Shanker S, et al. Sequences of Citrus tristeza virus separated in time and space are essentially identical. J Virol. 2000;74:6856–65.CrossRef
6.
go back to reference Vives MC, Rubio L, López C, Navas-Castillo J, Albiach-Martí MR, Dawson WO, et al. The complete genome sequence of the major component of a mild Citrus tristeza virus isolate. J Gen Virol. 1999;80:811–6.CrossRef Vives MC, Rubio L, López C, Navas-Castillo J, Albiach-Martí MR, Dawson WO, et al. The complete genome sequence of the major component of a mild Citrus tristeza virus isolate. J Gen Virol. 1999;80:811–6.CrossRef
7.
go back to reference Drake JW, Holland JJ. Mutation rates among RNA viruses. Proc Natl Acad Sci U S A. 1999;96:13910–3.CrossRef Drake JW, Holland JJ. Mutation rates among RNA viruses. Proc Natl Acad Sci U S A. 1999;96:13910–3.CrossRef
8.
go back to reference García-Arenal F, Fraile A, Malpica JM. Variability and genetic structure of plant virus populations. Annu Rev Phytopathol. 2001;39:157–86.CrossRef García-Arenal F, Fraile A, Malpica JM. Variability and genetic structure of plant virus populations. Annu Rev Phytopathol. 2001;39:157–86.CrossRef
9.
go back to reference Kong P, Rubio L, Polek M, Falk BW. Population structure and genetic diversity within California Citrus tristeza virus (CTV) isolates. Virus Genes. 2000;21:139–45.CrossRef Kong P, Rubio L, Polek M, Falk BW. Population structure and genetic diversity within California Citrus tristeza virus (CTV) isolates. Virus Genes. 2000;21:139–45.CrossRef
10.
go back to reference Rubio L, Ayllón MA, Kong P, Fernández A, Polek M, Guerri J, et al. Genetic variation of Citrus tristeza virus isolates from California and Spain: evidence for mixed infections and recombination. J Virol. 2001;75:8054–62.CrossRef Rubio L, Ayllón MA, Kong P, Fernández A, Polek M, Guerri J, et al. Genetic variation of Citrus tristeza virus isolates from California and Spain: evidence for mixed infections and recombination. J Virol. 2001;75:8054–62.CrossRef
11.
go back to reference Albiach-Martí MR, Robertson C, Gowda S, Tatineni S, Belliure B, Garnsey SM, et al. The pathogenicity determinant of Citrus tristeza virus causing the seedling yellows syndrome maps at the 3′-terminal region of the viral genome. Mol Plant Pathol. 2010;11:55–67.CrossRef Albiach-Martí MR, Robertson C, Gowda S, Tatineni S, Belliure B, Garnsey SM, et al. The pathogenicity determinant of Citrus tristeza virus causing the seedling yellows syndrome maps at the 3′-terminal region of the viral genome. Mol Plant Pathol. 2010;11:55–67.CrossRef
12.
go back to reference Gowda S, Satyanarayana T, Ayllón MA, Moreno P, Flores R, Dawson WO. The conserved structures of the 5′ nontranslated region of Citrus tristeza virus are involved in replication and virion assembly. Virology. 2003;317:50–64.CrossRef Gowda S, Satyanarayana T, Ayllón MA, Moreno P, Flores R, Dawson WO. The conserved structures of the 5′ nontranslated region of Citrus tristeza virus are involved in replication and virion assembly. Virology. 2003;317:50–64.CrossRef
13.
go back to reference Satyanarayana T, Gowda S, Boyko VP, Albiach-Martí MR, Mawassi M, Navas-Castillo J, et al. An engineered closterovirus RNA replicon and analysis of heterologous terminal sequences for replication. Proc Natl Acad Sci U S A. 1999;96:7433–8.CrossRef Satyanarayana T, Gowda S, Boyko VP, Albiach-Martí MR, Mawassi M, Navas-Castillo J, et al. An engineered closterovirus RNA replicon and analysis of heterologous terminal sequences for replication. Proc Natl Acad Sci U S A. 1999;96:7433–8.CrossRef
14.
go back to reference Satyanarayana T, Gowda S, Ayllón MA, Albiach-Martí MR, Dawson WO. Mutational analysis of the replication signals in the 3′-nontranslated region of Citrus tristeza virus. Virology. 2002;300:140–52.CrossRef Satyanarayana T, Gowda S, Ayllón MA, Albiach-Martí MR, Dawson WO. Mutational analysis of the replication signals in the 3′-nontranslated region of Citrus tristeza virus. Virology. 2002;300:140–52.CrossRef
15.
go back to reference Satyanarayana T, Gowda S, Ayllón MA, Dawson WO. Closterovirus bipolar virion: evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. Proc Natl Acad Sci U S A. 2004;101:799–804.CrossRef Satyanarayana T, Gowda S, Ayllón MA, Dawson WO. Closterovirus bipolar virion: evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. Proc Natl Acad Sci U S A. 2004;101:799–804.CrossRef
16.
go back to reference Simon AE, Miller WA. 3′ cap-independent translation enhancers of plant viruses. Annu Rev Microbiol. 2013;67:21–42.CrossRef Simon AE, Miller WA. 3′ cap-independent translation enhancers of plant viruses. Annu Rev Microbiol. 2013;67:21–42.CrossRef
17.
go back to reference López C, Ayllón MA, Navas-Castillo J, Guerri J, Moreno P, Flores R. Molecular variability of the 5′- and 3′-terminal regions of citrus tristeza virus RNA. Phytopathology. 1998;88:685–91.CrossRef López C, Ayllón MA, Navas-Castillo J, Guerri J, Moreno P, Flores R. Molecular variability of the 5′- and 3′-terminal regions of citrus tristeza virus RNA. Phytopathology. 1998;88:685–91.CrossRef
18.
go back to reference Ayllón MA, López C, Navas-Castillo J, Garnsey SM, Guerri J, Flores R, Moreno P. Polymorphism of the 5′ terminal region of Citrus tristeza virus (CTV) RNA: incidence of three sequence types in isolates of different origin and pathogenicity. Arch Virol. 2001;146:27–40.CrossRef Ayllón MA, López C, Navas-Castillo J, Garnsey SM, Guerri J, Flores R, Moreno P. Polymorphism of the 5′ terminal region of Citrus tristeza virus (CTV) RNA: incidence of three sequence types in isolates of different origin and pathogenicity. Arch Virol. 2001;146:27–40.CrossRef
19.
go back to reference Yokomi RK, Saponari M, Sieburth PJ. Rapid differentiation and identification of potential severe strains of Citrus tristeza virus by real-time reverse transcription-polymerase chain reaction assays. Phytopathology. 2010;100:319–27.CrossRef Yokomi RK, Saponari M, Sieburth PJ. Rapid differentiation and identification of potential severe strains of Citrus tristeza virus by real-time reverse transcription-polymerase chain reaction assays. Phytopathology. 2010;100:319–27.CrossRef
20.
go back to reference Salem NM, Chen AYS, Tzanetakis IE, Mongkolsiriwattana C, Ng JCK. Further complexity of the genus Crinivirus revealed by the complete genome sequence of Lettuce chlorosis virus (LCV) and the similar temporal expression of LCV genomic RNAs 1 and 2. Virology. 2009;390:45–55.CrossRef Salem NM, Chen AYS, Tzanetakis IE, Mongkolsiriwattana C, Ng JCK. Further complexity of the genus Crinivirus revealed by the complete genome sequence of Lettuce chlorosis virus (LCV) and the similar temporal expression of LCV genomic RNAs 1 and 2. Virology. 2009;390:45–55.CrossRef
21.
go back to reference Valverde RA, Nameth ST, Jordan RL. Analysis of double stranded RNA for plant virus diagnosis. Plant Dis. 1990;74:255–8.CrossRef Valverde RA, Nameth ST, Jordan RL. Analysis of double stranded RNA for plant virus diagnosis. Plant Dis. 1990;74:255–8.CrossRef
22.
go back to reference Martin RR, Jelkmann W, Tzanetakis IE. Double-stranded RNAs and their use for characterization of recalcitrant viruses. In: Hadidi A, Barba M, Candresse T, Jelkmann W, editors. Virus and virus-like diseases of pome and stone fruits. St. Paul: APS Press; 2011. p. 323–6. Martin RR, Jelkmann W, Tzanetakis IE. Double-stranded RNAs and their use for characterization of recalcitrant viruses. In: Hadidi A, Barba M, Candresse T, Jelkmann W, editors. Virus and virus-like diseases of pome and stone fruits. St. Paul: APS Press; 2011. p. 323–6.
23.
go back to reference Chen AYS, Pavitrin A, Ng JCK. Agroinoculation of the cloned infectious cDNAs of Lettuce chlorosis virus results in systemic plant infection and production of whitefly transmissible virions. Virus Res. 2012;169:310–5.CrossRef Chen AYS, Pavitrin A, Ng JCK. Agroinoculation of the cloned infectious cDNAs of Lettuce chlorosis virus results in systemic plant infection and production of whitefly transmissible virions. Virus Res. 2012;169:310–5.CrossRef
25.
go back to reference Yang ZN, Mathews DM, Dodds JA, Mirkov TE. Molecular characterization of an isolate of Citrus tristeza virus that causes severe symptoms in sweet orange. Virus Genes. 1999;19:131–42.CrossRef Yang ZN, Mathews DM, Dodds JA, Mirkov TE. Molecular characterization of an isolate of Citrus tristeza virus that causes severe symptoms in sweet orange. Virus Genes. 1999;19:131–42.CrossRef
26.
go back to reference Yokomi RK, Selvaraj V, Maheshwari Y, Saponari M, Giampetruzzi A, Chiumenti M, et al. Identification and characterization of Citrus tristeza virus isolates breaking resistance in trifoliate orange in California. Phytopathology. 2017;107:901–8.CrossRef Yokomi RK, Selvaraj V, Maheshwari Y, Saponari M, Giampetruzzi A, Chiumenti M, et al. Identification and characterization of Citrus tristeza virus isolates breaking resistance in trifoliate orange in California. Phytopathology. 2017;107:901–8.CrossRef
27.
go back to reference Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CrossRef Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CrossRef
28.
go back to reference Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000. Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000.
29.
go back to reference Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.CrossRef Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.CrossRef
30.
go back to reference Ambrós S, El-Mohtar C, Ruiz-Ruiz S, Peña L, Guerri J, Dawson WO, et al. Agroinoculation of Citrus tristeza virus causes systemic infection and symptoms in the presumed nonhost Nicotiana benthamiana. Mol Plant-Microbe Interact. 2011;24:1119–31.CrossRef Ambrós S, El-Mohtar C, Ruiz-Ruiz S, Peña L, Guerri J, Dawson WO, et al. Agroinoculation of Citrus tristeza virus causes systemic infection and symptoms in the presumed nonhost Nicotiana benthamiana. Mol Plant-Microbe Interact. 2011;24:1119–31.CrossRef
31.
go back to reference El-Mohtar C, Dawson WO. Exploring the limits of vector construction based on Citrus tristeza virus. Virology. 2014;448:274–83.CrossRef El-Mohtar C, Dawson WO. Exploring the limits of vector construction based on Citrus tristeza virus. Virology. 2014;448:274–83.CrossRef
32.
go back to reference Karasev AV, Nikolaeva OV, Mushegian AR, Lee RF, Dawson WO. Organization of the 3′-terminal half of beet yellow stunt virus genome and implications for the evolution of closteroviruses. Virology. 1996;221:199–207.CrossRef Karasev AV, Nikolaeva OV, Mushegian AR, Lee RF, Dawson WO. Organization of the 3′-terminal half of beet yellow stunt virus genome and implications for the evolution of closteroviruses. Virology. 1996;221:199–207.CrossRef
33.
go back to reference Ayllón MA, Rubio L, Sentandreu V, Moya A, Guerri J, Moreno P. Variations in two gene sequences of Citrus tristeza virus after host passage. Virus Genes. 2006;32:119–28.CrossRef Ayllón MA, Rubio L, Sentandreu V, Moya A, Guerri J, Moreno P. Variations in two gene sequences of Citrus tristeza virus after host passage. Virus Genes. 2006;32:119–28.CrossRef
Metadata
Title
Nucleotide heterogeneity at the terminal ends of the genomes of two California Citrus tristeza virus strains and their complete genome sequence analysis
Authors
Angel Y. S. Chen
Shizu Watanabe
Raymond Yokomi
James C. K. Ng
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-1041-4

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue