Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

NS3 Protein from Rice stripe virus affects the expression of endogenous genes in Nicotiana benthamiana

Authors: Gentu Wu, Guixian Zheng, Qiao Hu, Mingge Ma, Mingjun Li, Xianchao Sun, Fei Yan, Ling Qing

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

Rice stripe virus (RSV) belongs to the genus Tenuivirus. It is transmitted by small brown planthoppers in a persistent and circulative-propagative manner and causes rice stripe disease (RSD). The NS3 protein of RSV, encoded by the viral strand of RNA3, is a viral suppressor of RNA silencing (VSR). NS3 plays a significant role in viral infection, and NS3-transgenic plants manifest resistance to the virus.

Methods

The stability and availability of NS3 produced by transgenic Nicotiana benthamiana was investigated by northern blot analysis. The accumulation of virus was detected by western blot analysis. Transcriptome sequencing was used to identify differentially expressed genes (DEGs) in NS3-transgenic N. benthamiana.

Results

When the host plants were inoculated with RSV, symptoms and viral accumulation in NS3-transgenic N. benthamiana were reduced compared with the wild type. Transcriptome analysis identified 2533 differentially expressed genes (DEGs) in the NS3-transgenic N. benthamiana, including 597 upregulated genes and 1936 downregulated genes. These DEGs were classified into three Gene Ontology (GO) categories and were associated with 43 GO terms. KEGG pathway analysis revealed that these DEGs were involved in pathways associated with ribosomes (ko03010), photosynthesis (ko00195), photosynthesis-antenna proteins (ko00196), and carbon metabolism (ko01200). More than 70 DEGs were in these four pathways. Twelve DEGs were selected for RT-qPCR verification and subsequent analysis. The results showed that NS3 induced host resistance by affecting host gene expression.

Conclusion

NS3, which plays dual roles in the process of infection, may act as a VSR during RSV infection, and enable viral resistance in transgenic host plants. NS3 from RSV affects the expression of genes associated with ribosomes, photosynthesis, and carbon metabolism in N. benthamiana. This study enhances our understanding of the interactions between VSRs and host plants.
Literature
1.
go back to reference Falk BW, Tsai JH. Biology and molecular biology of viruses in the genus Tenuivirus. Annu Rev Phytopathol. 1998;36:139–63.CrossRefPubMed Falk BW, Tsai JH. Biology and molecular biology of viruses in the genus Tenuivirus. Annu Rev Phytopathol. 1998;36:139–63.CrossRefPubMed
2.
go back to reference Wang HD, Chen JP, Zhang HM, Sun XL, Zhu JL, Wang AG, Sheng WX, Adams MJ. Rencent Rice stripe virus epidemics in Zhejiang province, China, and experiments on sowing date, disease-yield loss relationships, and seedling susceptibility. Plant Dis. 2008;92:78–81.CrossRef Wang HD, Chen JP, Zhang HM, Sun XL, Zhu JL, Wang AG, Sheng WX, Adams MJ. Rencent Rice stripe virus epidemics in Zhejiang province, China, and experiments on sowing date, disease-yield loss relationships, and seedling susceptibility. Plant Dis. 2008;92:78–81.CrossRef
3.
go back to reference Wei TY, Yang JG, Liao FR, Gao FL, Lu LM, Zhang XT, Li F, Wu ZJ, Lin QY, Xie LH. Genetic diversity and population structure of Rice stripe virus in China. J Gen Virol. 2009;90(Pt4):1025–34.CrossRefPubMed Wei TY, Yang JG, Liao FR, Gao FL, Lu LM, Zhang XT, Li F, Wu ZJ, Lin QY, Xie LH. Genetic diversity and population structure of Rice stripe virus in China. J Gen Virol. 2009;90(Pt4):1025–34.CrossRefPubMed
5.
go back to reference Barbier P, Takahashi M, Nakamura I, Toriyama S, Ishihama A. Solubilization and promoter analysis of RNA polymerase from Rice stripe virus. J Virol. 1992;66:6171–4.PubMedPubMedCentral Barbier P, Takahashi M, Nakamura I, Toriyama S, Ishihama A. Solubilization and promoter analysis of RNA polymerase from Rice stripe virus. J Virol. 1992;66:6171–4.PubMedPubMedCentral
6.
go back to reference Takahashi M, Toriyama S, Hamamastsu C, Ishihama A. Nucleotide sequence and possible ambisense coding strategy of Rice stripe virus RNA segment 2. J Gen Virol. 1993;74(Pt4):769–73.CrossRefPubMed Takahashi M, Toriyama S, Hamamastsu C, Ishihama A. Nucleotide sequence and possible ambisense coding strategy of Rice stripe virus RNA segment 2. J Gen Virol. 1993;74(Pt4):769–73.CrossRefPubMed
7.
go back to reference Lian S, Cho WK, Jo Y, Kim SM, Kim KH. Interaction study of Rice stripe virus proteins reveals a region of the nucleocapsid protein (NP) required for NP self-interaction and nuclear localization. Virus Res. 2014;183:6–14.CrossRefPubMed Lian S, Cho WK, Jo Y, Kim SM, Kim KH. Interaction study of Rice stripe virus proteins reveals a region of the nucleocapsid protein (NP) required for NP self-interaction and nuclear localization. Virus Res. 2014;183:6–14.CrossRefPubMed
8.
go back to reference Xiong RY, Wu JX, Zhou YJ, Zhou XP. Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Virol. 2009;387:29–40.CrossRef Xiong RY, Wu JX, Zhou YJ, Zhou XP. Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Virol. 2009;387:29–40.CrossRef
9.
go back to reference Kakutani T, Hayano Y, Hayashi T, Minobe Y. Ambisense segment 4 of Rice stripe virus: possible evolutionary relationship with phleboviruses and uukuviruses (Bunyaviridae). J Gen Virol. 1990;71:1427–32.CrossRefPubMed Kakutani T, Hayano Y, Hayashi T, Minobe Y. Ambisense segment 4 of Rice stripe virus: possible evolutionary relationship with phleboviruses and uukuviruses (Bunyaviridae). J Gen Virol. 1990;71:1427–32.CrossRefPubMed
11.
go back to reference Dian-Pendon JA, Ding SW. Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annu Rev Phytopathol. 2008;46:303–26.CrossRef Dian-Pendon JA, Ding SW. Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annu Rev Phytopathol. 2008;46:303–26.CrossRef
12.
go back to reference Pruss GJ, Lawrence CB, Bass T, Li QQ, Bowman LH, Vance V. The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens. Virol. 2004;320:107–20.CrossRef Pruss GJ, Lawrence CB, Bass T, Li QQ, Bowman LH, Vance V. The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens. Virol. 2004;320:107–20.CrossRef
13.
go back to reference Shamadi N, Zytnicki M, Charbonnel C, Elvira-Matelot E, Bochnakian A, Comella P, Mallory AC, Lepere G, Saez-Vasquez J, Vaucheret H. Plants encode a general siRNA suppressor that is induced and suppressed by viruses. PLoS Biol. 2015;13:e1002326.CrossRef Shamadi N, Zytnicki M, Charbonnel C, Elvira-Matelot E, Bochnakian A, Comella P, Mallory AC, Lepere G, Saez-Vasquez J, Vaucheret H. Plants encode a general siRNA suppressor that is induced and suppressed by viruses. PLoS Biol. 2015;13:e1002326.CrossRef
14.
go back to reference Hemmes H, Lakatos L, Goldbach R, Burgyan J, Prins M. The NS3 protein of Rice hoja blanca Tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs. RNA. 2007;13:1079–89.CrossRefPubMedPubMedCentral Hemmes H, Lakatos L, Goldbach R, Burgyan J, Prins M. The NS3 protein of Rice hoja blanca Tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs. RNA. 2007;13:1079–89.CrossRefPubMedPubMedCentral
15.
go back to reference Lakatos L, Szittya G, Silhavy D, Burgyan J. Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J. 2004;23:876–84.CrossRefPubMedPubMedCentral Lakatos L, Szittya G, Silhavy D, Burgyan J. Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J. 2004;23:876–84.CrossRefPubMedPubMedCentral
16.
go back to reference Dey KK, Borth WB, Melzer MJ, Wang ML, Hu JS. Analysis of Pineapple mealybug wilt associated virus −1 and −2 for potential RNA silencing suppressors and pathogenicity factors. Viruses. 2015;7:969–95.CrossRefPubMedPubMedCentral Dey KK, Borth WB, Melzer MJ, Wang ML, Hu JS. Analysis of Pineapple mealybug wilt associated virus −1 and −2 for potential RNA silencing suppressors and pathogenicity factors. Viruses. 2015;7:969–95.CrossRefPubMedPubMedCentral
17.
go back to reference Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW. Plant disease resistance genes: current status and future directions. Physiol MolPlant Pathol. 2012;78:51–65.CrossRef Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW. Plant disease resistance genes: current status and future directions. Physiol MolPlant Pathol. 2012;78:51–65.CrossRef
18.
go back to reference Wu GT, Wang JY, Yang Y, Dong B, Wang YL, Sun GC, Yan CQ, Yan F, Chen JP. Transgenic rice expressing Rice stripe virus NS3 protein, a suppressor of RNA silencing, shows resistance to rice blast disease. Virus Gene. 2014;48:566–9.CrossRef Wu GT, Wang JY, Yang Y, Dong B, Wang YL, Sun GC, Yan CQ, Yan F, Chen JP. Transgenic rice expressing Rice stripe virus NS3 protein, a suppressor of RNA silencing, shows resistance to rice blast disease. Virus Gene. 2014;48:566–9.CrossRef
19.
go back to reference Zheng LJ, Zhang C, Shi CN, Yang ZR, Wang Y, Zhou T, Sun F, Wang H, Zhao SS, Qin QQ, et al. Rice stripe virus NS3 protein regulates primary miRNA processing through association with the miRNA biogenesis factor OsDRB1 and facilitates virus infection in rice. PLoS Pathog. 2017;13:e1006662.CrossRefPubMedPubMedCentral Zheng LJ, Zhang C, Shi CN, Yang ZR, Wang Y, Zhou T, Sun F, Wang H, Zhao SS, Qin QQ, et al. Rice stripe virus NS3 protein regulates primary miRNA processing through association with the miRNA biogenesis factor OsDRB1 and facilitates virus infection in rice. PLoS Pathog. 2017;13:e1006662.CrossRefPubMedPubMedCentral
20.
go back to reference Huang CJ, Cun YP, Yu HQ, Tong ZJ, Xiao BG, Song ZB, Wang BW, Li YP, Liu Y. Transcriptomic profile of tobacco in response to Tomato zonate spot orthotospovirus infection. Virol J. 2017;14:153–63.CrossRefPubMedPubMedCentral Huang CJ, Cun YP, Yu HQ, Tong ZJ, Xiao BG, Song ZB, Wang BW, Li YP, Liu Y. Transcriptomic profile of tobacco in response to Tomato zonate spot orthotospovirus infection. Virol J. 2017;14:153–63.CrossRefPubMedPubMedCentral
21.
go back to reference Zhai L, Xu L, Wang Y, Zhu XW, Feng HY, Li C, Luo XB, Everlyne MM, Liu LW. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.). Sci Rep. 2016;6:21652.CrossRefPubMedPubMedCentral Zhai L, Xu L, Wang Y, Zhu XW, Feng HY, Li C, Luo XB, Everlyne MM, Liu LW. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.). Sci Rep. 2016;6:21652.CrossRefPubMedPubMedCentral
22.
go back to reference Yin XJ, Hiraga S, Hajika M, Nishimura M, Komatsu S. Transcriptomic analysis reveals the flooding tolerant mechanism in flooding tolerant line and abscisic acid treated soybean. Plant Mol Biol. 2017;93:479–96.CrossRefPubMed Yin XJ, Hiraga S, Hajika M, Nishimura M, Komatsu S. Transcriptomic analysis reveals the flooding tolerant mechanism in flooding tolerant line and abscisic acid treated soybean. Plant Mol Biol. 2017;93:479–96.CrossRefPubMed
23.
go back to reference Tong AZ, Yuan Q, Wang S, Peng JJ, Lu YW, Zheng HY, Lin L, Chen HR, Gong YF, Chen JP. Altered accumulation of Osa-miR171b contributes to Rice stripe virus infection by regulating disease symptoms. J Exp Bot. 2017;68:4357–67.CrossRefPubMedPubMedCentral Tong AZ, Yuan Q, Wang S, Peng JJ, Lu YW, Zheng HY, Lin L, Chen HR, Gong YF, Chen JP. Altered accumulation of Osa-miR171b contributes to Rice stripe virus infection by regulating disease symptoms. J Exp Bot. 2017;68:4357–67.CrossRefPubMedPubMedCentral
24.
go back to reference Shen WJ, Ruan XL, Li XS, Zhao Q, Li HP. RNA silencing suppressor Pns11 of Rice gall dwarf virus induces virus-like symptoms in transgenic rice. Arch Virol. 2012;157:1531–9.CrossRefPubMed Shen WJ, Ruan XL, Li XS, Zhao Q, Li HP. RNA silencing suppressor Pns11 of Rice gall dwarf virus induces virus-like symptoms in transgenic rice. Arch Virol. 2012;157:1531–9.CrossRefPubMed
25.
go back to reference Siddiqui SA, Sarmiento C, Truve E, Lehto H, Lehto K. Phenotypes and functional effects caused by various viral RNA silencing suppressors in transgenic Nicotiana benthamiana and N. tabacum. Mol Plant Microbe Interaction. 2008;21:178–87.CrossRef Siddiqui SA, Sarmiento C, Truve E, Lehto H, Lehto K. Phenotypes and functional effects caused by various viral RNA silencing suppressors in transgenic Nicotiana benthamiana and N. tabacum. Mol Plant Microbe Interaction. 2008;21:178–87.CrossRef
26.
go back to reference Sire C, Bangratz-Reyser M, Fargette D, Brugidou C. Genetic diversity and silencing suppression effects of Rice yellow mottle virus and the P1 protein. Virol J. 2008;5:55.CrossRefPubMedPubMedCentral Sire C, Bangratz-Reyser M, Fargette D, Brugidou C. Genetic diversity and silencing suppression effects of Rice yellow mottle virus and the P1 protein. Virol J. 2008;5:55.CrossRefPubMedPubMedCentral
27.
go back to reference Jada B, Soitamo AJ, Lehto K. Organ-specific alteration in tobacco transcriptome caused by the PVX-derived P25 silencing suppressor transgene. BMC Plant Biol. 2013;13:8.CrossRefPubMedPubMedCentral Jada B, Soitamo AJ, Lehto K. Organ-specific alteration in tobacco transcriptome caused by the PVX-derived P25 silencing suppressor transgene. BMC Plant Biol. 2013;13:8.CrossRefPubMedPubMedCentral
28.
go back to reference Westwood JH, McCann L, Naish M, Dixon H, Murphy AM, Stancombe MA, Bennett MH, Powell G, Webb AA, Carr JP. A viral RNA silencing suppressor interferes with abscisic acid-mediated signalling and induces drought tolerance in Arabiodopsis thaliana. Mol Plant Pathol. 2013;14:158–70.CrossRefPubMed Westwood JH, McCann L, Naish M, Dixon H, Murphy AM, Stancombe MA, Bennett MH, Powell G, Webb AA, Carr JP. A viral RNA silencing suppressor interferes with abscisic acid-mediated signalling and induces drought tolerance in Arabiodopsis thaliana. Mol Plant Pathol. 2013;14:158–70.CrossRefPubMed
29.
go back to reference Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007;447:407–12.CrossRefPubMed Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007;447:407–12.CrossRefPubMed
30.
go back to reference Cheung P, Allis CD, Sassone-Corsi P. Signaling to chromatin through histone modifications. Cell. 2000;103:263–71.CrossRefPubMed Cheung P, Allis CD, Sassone-Corsi P. Signaling to chromatin through histone modifications. Cell. 2000;103:263–71.CrossRefPubMed
31.
go back to reference Cao LL, Shen C, Zhu WG. Histone modifications in DNA damage response. Sci China Life Sci. 2016;59:257–70.CrossRefPubMed Cao LL, Shen C, Zhu WG. Histone modifications in DNA damage response. Sci China Life Sci. 2016;59:257–70.CrossRefPubMed
32.
go back to reference Yuan LY, Liu XC, Luo M, Yang SG, Wu KQ. Involvement of histone modifications in plant abiotic stress responses. J Integr Plant Biol. 2013;55:892–901.PubMed Yuan LY, Liu XC, Luo M, Yang SG, Wu KQ. Involvement of histone modifications in plant abiotic stress responses. J Integr Plant Biol. 2013;55:892–901.PubMed
33.
go back to reference Ichikawa Y, Connelly CF, Appleboim A, Miller TC, Jacobi H, Abshiru NA, Chou HJ, Chen YY, Sharma U. Zheng YP. A synthetic biology approach to probing nucleosome symmetry. elife. 2017;6:e28836.CrossRefPubMedPubMedCentral Ichikawa Y, Connelly CF, Appleboim A, Miller TC, Jacobi H, Abshiru NA, Chou HJ, Chen YY, Sharma U. Zheng YP. A synthetic biology approach to probing nucleosome symmetry. elife. 2017;6:e28836.CrossRefPubMedPubMedCentral
34.
go back to reference Dufayard JF, Bettembourg M, Fischer I, Droc G, Guiderdoni E, Perin C, Chantret N, Dievart A. New insights on leucine-rich repeats receptor-like kinase orthologous relationships in angiosperms. Front Plant Sci. 2017;8:381.PubMedPubMedCentral Dufayard JF, Bettembourg M, Fischer I, Droc G, Guiderdoni E, Perin C, Chantret N, Dievart A. New insights on leucine-rich repeats receptor-like kinase orthologous relationships in angiosperms. Front Plant Sci. 2017;8:381.PubMedPubMedCentral
35.
go back to reference Yoshii M, Shimizu T, Yamazaki M, Higashi T, Miyao A, Hirochika H, Omura T. Disruption of novel gene for a NAC-domain protein in rice confers resistance to Rice dwarf virus. Plant J. 2009;57:615–25.CrossRefPubMed Yoshii M, Shimizu T, Yamazaki M, Higashi T, Miyao A, Hirochika H, Omura T. Disruption of novel gene for a NAC-domain protein in rice confers resistance to Rice dwarf virus. Plant J. 2009;57:615–25.CrossRefPubMed
36.
go back to reference Park SY, Yin XY, Duan KX, Gelvin SB, Zhang ZYJ. Heat shock protein 90.1 plays a role in agrobacterium-mediated plant transformation. Mol Plant. 2014;7:1793–6.CrossRefPubMed Park SY, Yin XY, Duan KX, Gelvin SB, Zhang ZYJ. Heat shock protein 90.1 plays a role in agrobacterium-mediated plant transformation. Mol Plant. 2014;7:1793–6.CrossRefPubMed
Metadata
Title
NS3 Protein from Rice stripe virus affects the expression of endogenous genes in Nicotiana benthamiana
Authors
Gentu Wu
Guixian Zheng
Qiao Hu
Mingge Ma
Mingjun Li
Xianchao Sun
Fei Yan
Ling Qing
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-1014-7

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue