Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

Ebolavirus diagnosis made simple, comparable and faster than molecular detection methods: preparing for the future

Authors: Ameh S. James, Shawn Todd, Nina M. Pollak, Glenn A. Marsh, Joanne Macdonald

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

The 2014/2015 Ebolavirus outbreak resulted in more than 28,000 cases and 11,323 reported deaths, as of March 2016. Domestic transmission of the Guinea strain associated with the outbreak occurred mainly in six African countries, and international transmission was reported in four countries. Outbreak management was limited by the inability to rapidly diagnose infected cases. A further fifteen countries in Africa are predicted to be at risk of Ebolavirus outbreaks in the future as a consequence of climate change and urbanization. Early detection of cases and reduction of transmission rates is critical to prevent and manage future severe outbreaks. We designed a rapid assay for detection of Ebolavirus using recombinase polymerase amplification, a rapid isothermal amplification technology that can be combined with portable lateral flow detection technology. The developed rapid assay operates in 30 min and was comparable with real-time TaqMan™ PCR.

Methods

Designed, screened, selected and optimized oligonucleotides using the NP coding region from Ebola Zaire virus (Guinea strain). We determined the analytical sensitivity of our Ebola rapid molecular test by testing selected primers and probe with tenfold serial dilutions (1.34 × 1010− 1.34 × 101 copies/μL) of cloned NP gene from Mayinga strain of Zaire ebolavirus in pCAGGS vector, and serially diluted cultured Ebolavirus as established by real-time TaqMan™ PCR that was performed using ABI7500 in Fast Mode. We tested extracted and reverse transcribed RNA from cultured Zaire ebolavirus strains – Mayinga, Gueckedou C05, Gueckedou C07, Makona, Kissidougou and Kiwit. We determined the analytical specificity of our assay with related viruses: Marburg, Ebola Reston and Ebola Sudan. We further tested for Dengue virus 1–4, Plasmodium falciparum and West Nile Virus (Kunjin strain).

Results

The assay had a detection limit of 134 copies per μL of plasmid containing the NP gene of Ebolavirus Mayinga, and cultured Ebolavirus and was highly specific for the Zaire ebolavirus species, including the Guinea strain responsible for the 2014/2015 outbreak. The assay did not detect related viruses like Marburg, Reston, or Sudan viruses, and other pathogens likely to be isolated from clinical samples.

Conclusions

Our assay could be suitable for implementation in district and primary health laboratories, as only a heating block and centrifuge is required for operation. The technique could provide a pathway for rapid screening of patients and animals for improved management of outbreaks.
Literature
2.
go back to reference Baize S, Pannetier D, Oestereich L, et al. Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med. 2014;371:1418–25.CrossRefPubMed Baize S, Pannetier D, Oestereich L, et al. Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med. 2014;371:1418–25.CrossRefPubMed
3.
go back to reference Lyon GM, Mehta AK, Varkey JB, et al. Clinical care of two patients with Ebola virus disease in the United States. N Engl J Med. 2014;371:2402–9.CrossRefPubMed Lyon GM, Mehta AK, Varkey JB, et al. Clinical care of two patients with Ebola virus disease in the United States. N Engl J Med. 2014;371:2402–9.CrossRefPubMed
4.
go back to reference Parra JM, Salmeron OJ, Velasco M. The first case of Ebola virus disease acquired outside Africa. N Engl J Med. 2014;371:2439–40.CrossRefPubMed Parra JM, Salmeron OJ, Velasco M. The first case of Ebola virus disease acquired outside Africa. N Engl J Med. 2014;371:2439–40.CrossRefPubMed
9.
go back to reference Drosten C, Gottig S, Schilling S, et al. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol. 2002;40:2323–30.CrossRefPubMedPubMedCentral Drosten C, Gottig S, Schilling S, et al. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol. 2002;40:2323–30.CrossRefPubMedPubMedCentral
10.
go back to reference Ksiazek TG, Rollin PE, Williams AJ, et al. Clinical virology of Ebola hemorrhagic fever (EHF): virus, virus antigen, and IgG and IgM antibody findings among EHF patients in Kikwit, Democratic Republic of the Congo, 1995. J Infect Dis. 1999;179(suppl 1):S177–87.CrossRefPubMed Ksiazek TG, Rollin PE, Williams AJ, et al. Clinical virology of Ebola hemorrhagic fever (EHF): virus, virus antigen, and IgG and IgM antibody findings among EHF patients in Kikwit, Democratic Republic of the Congo, 1995. J Infect Dis. 1999;179(suppl 1):S177–87.CrossRefPubMed
11.
go back to reference Leroy EM, Baize S, Lu CY, et al. Diagnosis of Ebola haemorrhagic fever by RT-PCR in an epidemic setting. J Med Virol. 2000;60:463–7.CrossRefPubMed Leroy EM, Baize S, Lu CY, et al. Diagnosis of Ebola haemorrhagic fever by RT-PCR in an epidemic setting. J Med Virol. 2000;60:463–7.CrossRefPubMed
12.
go back to reference Panning M, Laue T, Olschlager S, et al. Diagnostic reverse-transcription polymerase chain reaction kit for filoviruses based on the strain collections of all European biosafety level 4 laboratories. J Infect Dis. 2007;196(suppl 2):S199–204.CrossRefPubMed Panning M, Laue T, Olschlager S, et al. Diagnostic reverse-transcription polymerase chain reaction kit for filoviruses based on the strain collections of all European biosafety level 4 laboratories. J Infect Dis. 2007;196(suppl 2):S199–204.CrossRefPubMed
13.
go back to reference Towner JS, Rollin PE, Bausch DG, et al. Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of patient viral load as a predictor of outcome. J Virol. 2004;78:4330–41.CrossRefPubMedPubMedCentral Towner JS, Rollin PE, Bausch DG, et al. Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of patient viral load as a predictor of outcome. J Virol. 2004;78:4330–41.CrossRefPubMedPubMedCentral
14.
go back to reference Niikura M, Ikegami T, Saijo M, Kurane I, Miranda ME, Morikawa S. Detection of Ebola viral antigen by enzyme-linked immunosorbent assay using a novel monoclonal antibody to nucleoprotein. J Clin Microbiol. 2001;39:3267–71.CrossRefPubMedPubMedCentral Niikura M, Ikegami T, Saijo M, Kurane I, Miranda ME, Morikawa S. Detection of Ebola viral antigen by enzyme-linked immunosorbent assay using a novel monoclonal antibody to nucleoprotein. J Clin Microbiol. 2001;39:3267–71.CrossRefPubMedPubMedCentral
15.
go back to reference Ksiazek TG, West CP, Rollin PE, Jahrling PB, Peters CJ. ELISA for the detection of antibodies to Ebola viruses. J Infect Dis. 1999;179(suppl 1):S192–8.CrossRefPubMed Ksiazek TG, West CP, Rollin PE, Jahrling PB, Peters CJ. ELISA for the detection of antibodies to Ebola viruses. J Infect Dis. 1999;179(suppl 1):S192–8.CrossRefPubMed
16.
go back to reference Saijo M, Niikura M, Ikegami T, Kurane I, Kurata T, Morikawa S. Laboratory diagnostic systems for Ebola and Marburg hemorrhagic fevers developed with recombinant proteins. Clin Vaccine Immunol. 2006;13:444–51.CrossRefPubMedPubMedCentral Saijo M, Niikura M, Ikegami T, Kurane I, Kurata T, Morikawa S. Laboratory diagnostic systems for Ebola and Marburg hemorrhagic fevers developed with recombinant proteins. Clin Vaccine Immunol. 2006;13:444–51.CrossRefPubMedPubMedCentral
20.
go back to reference Poje JE, Kastratovic T, Andrew R, Ana M, Guillermo C, Troetti SE, Jabado OJ, Leigh Fanning M, Stefanovic D, Macdonald J. Visual displays that directly Interface and provide read-outs of molecular states via molecular graphics processing units. Angew Chem Int Ed. 2014;53:9222–5.CrossRef Poje JE, Kastratovic T, Andrew R, Ana M, Guillermo C, Troetti SE, Jabado OJ, Leigh Fanning M, Stefanovic D, Macdonald J. Visual displays that directly Interface and provide read-outs of molecular states via molecular graphics processing units. Angew Chem Int Ed. 2014;53:9222–5.CrossRef
22.
go back to reference Walker GT, Little MC, Nadeau JG, Shank DD. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Nat Acad Sci. 1992;89:392–6.CrossRefPubMedPubMedCentral Walker GT, Little MC, Nadeau JG, Shank DD. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Nat Acad Sci. 1992;89:392–6.CrossRefPubMedPubMedCentral
23.
go back to reference Dean FB, Nelson JR, Giesler TL, Lasken RS. Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 2011;11:1095–9.CrossRef Dean FB, Nelson JR, Giesler TL, Lasken RS. Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 2011;11:1095–9.CrossRef
24.
go back to reference Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):e63.CrossRefPubMedPubMedCentral Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):e63.CrossRefPubMedPubMedCentral
27.
go back to reference Wharam SD, Marsh P, Lloyd JS, Ray TD, Mock GA, Assenberg R, McPhee JE, Brown P, Weston A, Cardy DL. Specific detection of DNA and RNA targets using a novel isothermal nucleic acid amplification assay based on the formation of a three-way junction structure. Nucleic Acids Res. 2001;29(11):e54.CrossRefPubMedPubMedCentral Wharam SD, Marsh P, Lloyd JS, Ray TD, Mock GA, Assenberg R, McPhee JE, Brown P, Weston A, Cardy DL. Specific detection of DNA and RNA targets using a novel isothermal nucleic acid amplification assay based on the formation of a three-way junction structure. Nucleic Acids Res. 2001;29(11):e54.CrossRefPubMedPubMedCentral
29.
go back to reference Guatelli JC, Whitfield KM, Kwoh DY, Barringer KJ, Richman DD, Gingeras TR. Isothermal, in vitro amplification of nucleic acids by a multi enzyme reaction modeled after retroviral replication. Proc Natl Acad Sci. 1990;87:1874–8.CrossRefPubMedPubMedCentral Guatelli JC, Whitfield KM, Kwoh DY, Barringer KJ, Richman DD, Gingeras TR. Isothermal, in vitro amplification of nucleic acids by a multi enzyme reaction modeled after retroviral replication. Proc Natl Acad Sci. 1990;87:1874–8.CrossRefPubMedPubMedCentral
30.
go back to reference Zhang DY, Brandwein M, Hsuih TC, Li H. Amplification of target-specific, ligation-dependent circular probe. Gene. 1998;211(2):277–85.CrossRefPubMed Zhang DY, Brandwein M, Hsuih TC, Li H. Amplification of target-specific, ligation-dependent circular probe. Gene. 1998;211(2):277–85.CrossRefPubMed
31.
go back to reference James A, Macdonald J. Recombinase polymerase amplification: emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Rev Mol Diagn. 2015;15(11):1475–89.CrossRefPubMed James A, Macdonald J. Recombinase polymerase amplification: emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Rev Mol Diagn. 2015;15(11):1475–89.CrossRefPubMed
32.
go back to reference Crannell ZA, Rohrman B, Richards-Kortum R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS One. 2014;9(11):e112146.CrossRefPubMedPubMedCentral Crannell ZA, Rohrman B, Richards-Kortum R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS One. 2014;9(11):e112146.CrossRefPubMedPubMedCentral
33.
go back to reference Euler M, Wang Y, Otto P, Tomaso H, Escudero R, Anda P, Hufert FT, Weidmanna M. Recombinase polymerase amplification assay for rapid detection of Franscisella tularensis. J Clin Microbiol. 2012;50(7):2234–8.CrossRefPubMedPubMedCentral Euler M, Wang Y, Otto P, Tomaso H, Escudero R, Anda P, Hufert FT, Weidmanna M. Recombinase polymerase amplification assay for rapid detection of Franscisella tularensis. J Clin Microbiol. 2012;50(7):2234–8.CrossRefPubMedPubMedCentral
34.
go back to reference Abd El Wahed A, Patel P, Heidenreich D, Hufert FT, Weidmann M. Reverse transcription recombinase polymerase amplification assay for the detection of middle east respiratory syndrome coronavirus. PLoS Curr. 2013;5:e8364. Abd El Wahed A, Patel P, Heidenreich D, Hufert FT, Weidmann M. Reverse transcription recombinase polymerase amplification assay for the detection of middle east respiratory syndrome coronavirus. PLoS Curr. 2013;5:e8364.
35.
go back to reference Eulera M, Wang Y, Nentwich O, Piepenburg O, Huferta FT, Weidmanna M. Recombinase polymerase amplification assay for rapid detection of Rift Valley fever virus. J Clin Virol. 2012;54:308–12.CrossRef Eulera M, Wang Y, Nentwich O, Piepenburg O, Huferta FT, Weidmanna M. Recombinase polymerase amplification assay for rapid detection of Rift Valley fever virus. J Clin Virol. 2012;54:308–12.CrossRef
36.
go back to reference Abd El Wahed A, El-Deeb A, El-Tholoth M, Abd El Kader H, Ahmed A, et al. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus. PLoS One. 2013;8(8):e71642.CrossRefPubMedPubMedCentral Abd El Wahed A, El-Deeb A, El-Tholoth M, Abd El Kader H, Ahmed A, et al. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus. PLoS One. 2013;8(8):e71642.CrossRefPubMedPubMedCentral
37.
go back to reference Amera HM, Abd El Wahed A, Shalaby MA, Almajhdia FN, Hufert FT, Weidmann M. A new approach for diagnosis of bovine coronavirus using a reverse transcription recombinase polymerase amplification assay. J Virol Methods. 2013;193:337–40.CrossRef Amera HM, Abd El Wahed A, Shalaby MA, Almajhdia FN, Hufert FT, Weidmann M. A new approach for diagnosis of bovine coronavirus using a reverse transcription recombinase polymerase amplification assay. J Virol Methods. 2013;193:337–40.CrossRef
38.
go back to reference Mekuria TA, Zhang S, Eastwella KC. Rapid and sensitive detection of little cherry virus 2 using isothermal reverse transcription-recombinase polymerase amplification. J Virol Methods. 2014;205:24–30.CrossRefPubMed Mekuria TA, Zhang S, Eastwella KC. Rapid and sensitive detection of little cherry virus 2 using isothermal reverse transcription-recombinase polymerase amplification. J Virol Methods. 2014;205:24–30.CrossRefPubMed
39.
go back to reference Euler M, Wang Y, Heidenreich D, Patel P, Strohmeier O, Hakenberg S, Niedrig M, Hufert FT, Weidmanna M. Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents. J Clin Microbiol. 2013;51(4):1110–7.CrossRefPubMedPubMedCentral Euler M, Wang Y, Heidenreich D, Patel P, Strohmeier O, Hakenberg S, Niedrig M, Hufert FT, Weidmanna M. Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents. J Clin Microbiol. 2013;51(4):1110–7.CrossRefPubMedPubMedCentral
40.
go back to reference Aebischer A, Wernike K, Hoffmann B, Beer M. Rapid genome detection of Schmallenberg virus and bovine viral diarrhea virus by use of isothermal amplification methods and high speed real-time reverse transcriptase PCR. J Clin Microbiol. 2014;52(6):1883–92.CrossRefPubMedPubMedCentral Aebischer A, Wernike K, Hoffmann B, Beer M. Rapid genome detection of Schmallenberg virus and bovine viral diarrhea virus by use of isothermal amplification methods and high speed real-time reverse transcriptase PCR. J Clin Microbiol. 2014;52(6):1883–92.CrossRefPubMedPubMedCentral
41.
go back to reference Escadafal C, Faye O, Sall AA, Faye O, Weidmann M, et al. Rapid molecular assays for the detection of yellow fever virus in low-resource settings. PLoS Negl Trop Dis. 2014;8(3):e2730.CrossRefPubMedPubMedCentral Escadafal C, Faye O, Sall AA, Faye O, Weidmann M, et al. Rapid molecular assays for the detection of yellow fever virus in low-resource settings. PLoS Negl Trop Dis. 2014;8(3):e2730.CrossRefPubMedPubMedCentral
42.
go back to reference Katrin K, Jekaterina F, Oana T, et al. Sensitive and rapid detection of chlamydia trachomatis by recombinase polymerase amplification directly from urine samples. J432 Mol Diagn. 2014;16(1):127–35.CrossRef Katrin K, Jekaterina F, Oana T, et al. Sensitive and rapid detection of chlamydia trachomatis by recombinase polymerase amplification directly from urine samples. J432 Mol Diagn. 2014;16(1):127–35.CrossRef
43.
go back to reference Trombley AR, Wachter L, Garrison J, et al. Short report: comprehensive panel of real-time TaqMan™ polymerase chain reaction assays for detection and absolute quantification of filoviruses, arenaviruses, and new world hantaviruses. Am J Trop Med Hyg. 2010;82(5):954–60.CrossRefPubMedPubMedCentral Trombley AR, Wachter L, Garrison J, et al. Short report: comprehensive panel of real-time TaqMan™ polymerase chain reaction assays for detection and absolute quantification of filoviruses, arenaviruses, and new world hantaviruses. Am J Trop Med Hyg. 2010;82(5):954–60.CrossRefPubMedPubMedCentral
44.
go back to reference Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13(134):1471–2105. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13(134):1471–2105.
45.
go back to reference Report of an International Commission. Ebola haemorrhagic fever in Zaire. Bull World Health Organ. 1976;56(2):271–93. 1978 Report of an International Commission. Ebola haemorrhagic fever in Zaire. Bull World Health Organ. 1976;56(2):271–93. 1978
46.
go back to reference Report of a WHO/International Study Team. Ebola haemorrhagic fever in Sudan. Bull World Health Organ. 1976;56(2):247–70. 1978 Report of a WHO/International Study Team. Ebola haemorrhagic fever in Sudan. Bull World Health Organ. 1976;56(2):247–70. 1978
47.
go back to reference Carroll SA, Towner SJ, Sealy KT, et al. Molecular evolution of viruses of the family Filoviridae based on 97 whole-genome sequences. J Virol. 2013;87(5):2608–16.CrossRefPubMedPubMedCentral Carroll SA, Towner SJ, Sealy KT, et al. Molecular evolution of viruses of the family Filoviridae based on 97 whole-genome sequences. J Virol. 2013;87(5):2608–16.CrossRefPubMedPubMedCentral
48.
go back to reference Saldarriaga OA, Castellanos-Gonzalez A, Porrozzi R, Baldeviano GC, Lescano AG, de Los Santos MB, et al. An innovative field-applicable molecular test to diagnose cutaneous Leishmania Viannia spp. infections. PLoS Negl Trop Dis. 2016;10(4):e0004638.CrossRefPubMedPubMedCentral Saldarriaga OA, Castellanos-Gonzalez A, Porrozzi R, Baldeviano GC, Lescano AG, de Los Santos MB, et al. An innovative field-applicable molecular test to diagnose cutaneous Leishmania Viannia spp. infections. PLoS Negl Trop Dis. 2016;10(4):e0004638.CrossRefPubMedPubMedCentral
49.
go back to reference Lucht A, Formenty P, Feldmann H, Gotz M, Leroy E, et al. Development of an immunofiltration-based antigen-detection assay for rapid diagnosis of Ebola virus infection. J Infect Dis. 2007;196(Suppl 2):S184–92.CrossRefPubMed Lucht A, Formenty P, Feldmann H, Gotz M, Leroy E, et al. Development of an immunofiltration-based antigen-detection assay for rapid diagnosis of Ebola virus infection. J Infect Dis. 2007;196(Suppl 2):S184–92.CrossRefPubMed
52.
go back to reference Faye O, Faye O, Soropogui B, Patel P, El Wahed AA, Loucoubar C, Fall G, Kiory D, Magassouba N’F, Keita S, Kondé MK, Diallo AA, Koivogui L, Karlberg H, Mirazimi A, Nentwich O, Piepenburg O, Niedrig M, Weidmann M, Sall AA. Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in 2015. Euro Surveill. 2015;20(44). https://doi.org/10.2807/1560-7917.ES.2015.20.44.30053. Faye O, Faye O, Soropogui B, Patel P, El Wahed AA, Loucoubar C, Fall G, Kiory D, Magassouba N’F, Keita S, Kondé MK, Diallo AA, Koivogui L, Karlberg H, Mirazimi A, Nentwich O, Piepenburg O, Niedrig M, Weidmann M, Sall AA. Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in 2015. Euro Surveill. 2015;20(44). https://​doi.​org/​10.​2807/​1560-7917.​ES.​2015.​20.​44.​30053.
54.
go back to reference Blow JA, Dohm DJ, Negley DL, Mores CN. Virus inactivation by nucleic acid extraction reagents. J Virol Methods. 2004;119(2):195–8.CrossRefPubMed Blow JA, Dohm DJ, Negley DL, Mores CN. Virus inactivation by nucleic acid extraction reagents. J Virol Methods. 2004;119(2):195–8.CrossRefPubMed
55.
go back to reference Clancy E, Higgins O, Forrest MS, Boo TW, et al. Development of a rapid recombinase polymerase amplification assay for the detection of streptococcus pneumoniae in whole blood. BMC Infect Dis. 2015;15:481.CrossRefPubMedPubMedCentral Clancy E, Higgins O, Forrest MS, Boo TW, et al. Development of a rapid recombinase polymerase amplification assay for the detection of streptococcus pneumoniae in whole blood. BMC Infect Dis. 2015;15:481.CrossRefPubMedPubMedCentral
56.
go back to reference Carroll SA, Towner JS, Sealy TK, McMullan LK, Khristova ML, Burt FJ, Swanepoel R, Rollin PE, Nichola ST. Molecular evolution of viruses of the family Filoviridae based on 97 whole-genome sequences. J Virol. 2013;87(5):2608–16.CrossRefPubMedPubMedCentral Carroll SA, Towner JS, Sealy TK, McMullan LK, Khristova ML, Burt FJ, Swanepoel R, Rollin PE, Nichola ST. Molecular evolution of viruses of the family Filoviridae based on 97 whole-genome sequences. J Virol. 2013;87(5):2608–16.CrossRefPubMedPubMedCentral
Metadata
Title
Ebolavirus diagnosis made simple, comparable and faster than molecular detection methods: preparing for the future
Authors
Ameh S. James
Shawn Todd
Nina M. Pollak
Glenn A. Marsh
Joanne Macdonald
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-0985-8

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue