Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

A gel-based PCR method to differentiate sheeppox virus field isolates from vaccine strains

Authors: Tesfaye Rufael Chibssa, Reingard Grabherr, Angelika Loitsch, Tirumala Bharani K. Settypalli, Eeva Tuppurainen, Nick Nwankpa, Karim Tounkara, Hafsa Madani, Amel Omani, Mariane Diop, Giovanni Cattoli, Adama Diallo, Charles Euloge Lamien

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

Sheeppox (SPP) and goatpox (GTP) caused by sheeppox virus (SPPV) and goatpox virus (GTPV), respectively of the genus Capripoxvirus in the family Poxviridae, are severely afflicting small ruminants’ production systems in Africa and Asia. In endemic areas, SPP and GTP are controlled using vaccination with live attenuated vaccines derived from SPPV, GTPV or Lumpy skin disease virus (LSDV).
Sometimes outbreaks occur following vaccination. In order to successfully control the spread of the virus, it is essential to identify whether the animals were infected by the field strain and the vaccine did not provide sufficient protection. Alternatively, in some cases the vaccine strain may cause adverse reactions in vaccinated animals or in rare occasions, re-gain virulence. Thus, diagnostic tools for differentiation of virulent strains from attenuated vaccine strains of the virus are needed.
The aim of this study was to identify an appropriate diagnostic target region in the capripoxvirus genome by comparing the genomic sequences of SPPV field isolates with those of the most widely used SPP vaccine strains.

Results

A unique 84 base pair nucleotide deletion located between the DNA ligase gene and the VARV B22R homologue gene was found only in SPPV vaccines derived from the Romanian and Yugoslavian RM/65 strains and absent in SPPV field isolates originated from various geographical locations of Asia and Africa.
In addition, we developed and evaluated a conventional PCR assay, exploiting the targeted intergenic region to differentiate SPPV vaccine virus from field isolates. The assay produced an amplicon size of 218 bp for the vaccine strains, while the SPPV field isolates resulted in a 302 bp PCR fragment. The assay showed good sensitivity and specificity, and the results were in full agreement with the sequencing data of the PCR amplicons.

Conclusion

The developed assay is an improvement of currently existing diagnostic tools and, when combined with a capripox virus species-specific assay, will enhance SPP and GTP diagnosis and surveillance and facilitate epidemiological investigations in countries using live attenuated SPP vaccines. In addition, for laboratories with limited resources, the assay provides a simple and cost-effective alternative for sequencing.
Appendix
Available only for authorised users
Literature
1.
go back to reference Buller RM, Arif BM, Black DN, Dumbell KR, Esposito JJ, Lefkowitz EJ, Moss B, Mercer AA, Moyer RW, Skinner MA, Tripathy DN. Family Poxviridae. In: Mayo MA, Maniloff J, Desselberger U, Ball LA, editors. Fauquet CM. Virus taxonomy: VIIIth report of the International Committee on Taxonomy of Viruses. Academic Press; 2005. Buller RM, Arif BM, Black DN, Dumbell KR, Esposito JJ, Lefkowitz EJ, Moss B, Mercer AA, Moyer RW, Skinner MA, Tripathy DN. Family Poxviridae. In: Mayo MA, Maniloff J, Desselberger U, Ball LA, editors. Fauquet CM. Virus taxonomy: VIIIth report of the International Committee on Taxonomy of Viruses. Academic Press; 2005.
2.
go back to reference Hosamani M, Nandi S, Mondal B, Singh RK, Rasool TJ, Bandyopadhyay SKA. Vero cell-attenuated Goatpox virus provides protection against virulent virus challenge. Acta Virol. 2003;48:15–21. Hosamani M, Nandi S, Mondal B, Singh RK, Rasool TJ, Bandyopadhyay SKA. Vero cell-attenuated Goatpox virus provides protection against virulent virus challenge. Acta Virol. 2003;48:15–21.
4.
go back to reference Balinsky CA, Delhon G, Smoliga G, Prarat M, French RA, Geary SJ, Rock DL, Rodriguez LL. Rapid preclinical detection of sheeppox virus by a real-time PCR assay. J Clin Microbiol. 2008;46:438–42.CrossRefPubMed Balinsky CA, Delhon G, Smoliga G, Prarat M, French RA, Geary SJ, Rock DL, Rodriguez LL. Rapid preclinical detection of sheeppox virus by a real-time PCR assay. J Clin Microbiol. 2008;46:438–42.CrossRefPubMed
5.
go back to reference Yan XM, Chu YF, Wu GH, Zhao ZX, Li J, Zhu HX, Zhang Q. An outbreak of sheep pox associated with goat poxvirus in Gansu province of China. Vet Microbiol. 2012;156:425–8.CrossRefPubMed Yan XM, Chu YF, Wu GH, Zhao ZX, Li J, Zhu HX, Zhang Q. An outbreak of sheep pox associated with goat poxvirus in Gansu province of China. Vet Microbiol. 2012;156:425–8.CrossRefPubMed
6.
go back to reference Babiuk S, Bowden TR, Boyle DB, Wallace DB, Kitching RP. Capripoxviruses: an emerging worldwide threat to sheep, goats and cattle. Transbound Emerg Dis. 2008;55:263–72.CrossRefPubMed Babiuk S, Bowden TR, Boyle DB, Wallace DB, Kitching RP. Capripoxviruses: an emerging worldwide threat to sheep, goats and cattle. Transbound Emerg Dis. 2008;55:263–72.CrossRefPubMed
7.
go back to reference EFSA AHAW Panel (EFSA panel on animal health and welfare). Scientific opinion on sheep and goat pox. EFSA J. 2014;12(11):3885. EFSA AHAW Panel (EFSA panel on animal health and welfare). Scientific opinion on sheep and goat pox. EFSA J. 2014;12(11):3885.
8.
go back to reference Lee SW, Markham PF, Coppo MJ, Legione AR, Markham JF, Noormohammadi AH, Browning GF, Ficorilli N, Hartley CA, Devlin JM. Attenuated vaccines can recombine to form virulent field viruses. Science. 2012;337:188.CrossRefPubMed Lee SW, Markham PF, Coppo MJ, Legione AR, Markham JF, Noormohammadi AH, Browning GF, Ficorilli N, Hartley CA, Devlin JM. Attenuated vaccines can recombine to form virulent field viruses. Science. 2012;337:188.CrossRefPubMed
9.
go back to reference Tulman ER, Afonso CL, Lu Z, Zsak L, Sur JH, Sandybaev NT, Kerembekova UZ, Zaitsev VL, Kutish GF, Rock DL. The genomes of sheeppox and goatpox viruses. J Virol. 2002;76:6054–61.CrossRefPubMedPubMedCentral Tulman ER, Afonso CL, Lu Z, Zsak L, Sur JH, Sandybaev NT, Kerembekova UZ, Zaitsev VL, Kutish GF, Rock DL. The genomes of sheeppox and goatpox viruses. J Virol. 2002;76:6054–61.CrossRefPubMedPubMedCentral
10.
go back to reference Parthiban M, Govindarajan R, Manoharan S, Purushothaman V, Daniel joy Chandran N, Koteeswaran A. Comparative sequence analysis of diagnostic PCR amplicons from Indian sheeppox virus. Veterinarski arhiv. 2005;75:203–9. Parthiban M, Govindarajan R, Manoharan S, Purushothaman V, Daniel joy Chandran N, Koteeswaran A. Comparative sequence analysis of diagnostic PCR amplicons from Indian sheeppox virus. Veterinarski arhiv. 2005;75:203–9.
11.
go back to reference Lamien CE, Le GC, Silber R, Wallace DB, Gulyaz V, Tuppurainen E, Madani H, Caufour P, Adam T, El HM, Luckins AG, Albina E, Diallo A. Use of the Capripoxvirus homologue of vaccinia virus 30 kDa RNA polymerase subunit (RPO30) gene as a novel diagnostic and genotyping target: development of a classical PCR method to differentiate goat poxvirus from sheep poxvirus. Vet Microbiol. 2011;149:30–9.CrossRefPubMed Lamien CE, Le GC, Silber R, Wallace DB, Gulyaz V, Tuppurainen E, Madani H, Caufour P, Adam T, El HM, Luckins AG, Albina E, Diallo A. Use of the Capripoxvirus homologue of vaccinia virus 30 kDa RNA polymerase subunit (RPO30) gene as a novel diagnostic and genotyping target: development of a classical PCR method to differentiate goat poxvirus from sheep poxvirus. Vet Microbiol. 2011;149:30–9.CrossRefPubMed
12.
go back to reference Lamien CE, Lelenta M, Goger W, Silber R, Tuppurainen E, Matijevic M, Luckins AG, Diallo A. Real time PCR method for simultaneous detection, quantitation and differentiation of capripoxviruses. J Virol Methods. 2011;171:134–40.CrossRefPubMed Lamien CE, Lelenta M, Goger W, Silber R, Tuppurainen E, Matijevic M, Luckins AG, Diallo A. Real time PCR method for simultaneous detection, quantitation and differentiation of capripoxviruses. J Virol Methods. 2011;171:134–40.CrossRefPubMed
13.
go back to reference Gelaye E, Lamien CE, Silber R, Tuppurainen ES, Grabherr R, Diallo A. Development of a cost-effective method for capripoxvirus genotyping using snapback primer and dsDNA intercalating dye. PLoS One. 2013;8:e75971.CrossRefPubMedPubMedCentral Gelaye E, Lamien CE, Silber R, Tuppurainen ES, Grabherr R, Diallo A. Development of a cost-effective method for capripoxvirus genotyping using snapback primer and dsDNA intercalating dye. PLoS One. 2013;8:e75971.CrossRefPubMedPubMedCentral
14.
go back to reference Tuppurainen ES, Venter EH, Shisler JL, Gari G, Mekonnen GA, Juleff N, Lyons NA, De CK, Upton C, Bowden TR, Babiuk S, Review BLA. Capripoxvirus diseases: current status and opportunities for control. Transbound Emerg Dis. 2017;64(3):729–45.CrossRefPubMed Tuppurainen ES, Venter EH, Shisler JL, Gari G, Mekonnen GA, Juleff N, Lyons NA, De CK, Upton C, Bowden TR, Babiuk S, Review BLA. Capripoxvirus diseases: current status and opportunities for control. Transbound Emerg Dis. 2017;64(3):729–45.CrossRefPubMed
15.
go back to reference Haegeman A, Zro K, Sammin D, Vandenbussche F, Ennaji MM, De CK. Investigation of a possible link between vaccination and the 2010 sheep pox epizootic in Morocco. Transbound Emerg Dis. 2016;63:e278–87.CrossRefPubMed Haegeman A, Zro K, Sammin D, Vandenbussche F, Ennaji MM, De CK. Investigation of a possible link between vaccination and the 2010 sheep pox epizootic in Morocco. Transbound Emerg Dis. 2016;63:e278–87.CrossRefPubMed
Metadata
Title
A gel-based PCR method to differentiate sheeppox virus field isolates from vaccine strains
Authors
Tesfaye Rufael Chibssa
Reingard Grabherr
Angelika Loitsch
Tirumala Bharani K. Settypalli
Eeva Tuppurainen
Nick Nwankpa
Karim Tounkara
Hafsa Madani
Amel Omani
Mariane Diop
Giovanni Cattoli
Adama Diallo
Charles Euloge Lamien
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-0969-8

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue