Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

Engineering T7 bacteriophage as a potential DNA vaccine targeting delivery vector

Authors: Hai Xu, Xi Bao, Yiwei Wang, Yue Xu, Bihua Deng, Yu Lu, Jibo Hou

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

DNA delivery with bacteriophage by surface-displayed mammalian cell penetrating peptides has been reported. Although, various phages have been used to facilitate DNA transfer by surface displaying the protein transduction domain of human immunodeficiency virus type 1 Tat protein (Tat peptide), no similar study has been conducted using T7 phage.

Methods

In this study, we engineeredT7 phage as a DNA targeting delivery vector to facilitate cellular internalization. We constructed recombinant T7 phages that displayed Tat peptide on their surface and carried eukaryotic expression box (EEB) as a part of their genomes (T7-EEB-Tat).

Results

We demonstrated that T7 phage harboring foreign gene insertion had packaged into infective progeny phage particles. Moreover, when mammalian cells that were briefly exposed to T7-EEB-Tat, expressed a significant higher level of the marker gene with the control cells infected with the wide type phage without displaying Tat peptides.

Conclusion

These data suggested that the potential of T7 phage as an effective delivery vector for DNA vaccine transfer.
Literature
1.
go back to reference Shah MA, Ali Z, Ahmad R, Qadri I, Fatima K, He N. DNA mediated vaccines delivery through nanoparticles. J Nanosci Nanotechnol. 2015;15:41–53.CrossRefPubMed Shah MA, Ali Z, Ahmad R, Qadri I, Fatima K, He N. DNA mediated vaccines delivery through nanoparticles. J Nanosci Nanotechnol. 2015;15:41–53.CrossRefPubMed
2.
go back to reference Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465–8.CrossRefPubMed Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465–8.CrossRefPubMed
3.
go back to reference Tang DC, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature. 1992;356:152–4.CrossRefPubMed Tang DC, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature. 1992;356:152–4.CrossRefPubMed
4.
go back to reference Yang Z, Sahay G, Sriadibhatla S, Kabanov AV. Amphiphilic block copolymers enhance cellular uptake and nuclear entry of polyplex-delivered DNA. Bioconjug Chem. 2008;19:1987–94.CrossRefPubMedPubMedCentral Yang Z, Sahay G, Sriadibhatla S, Kabanov AV. Amphiphilic block copolymers enhance cellular uptake and nuclear entry of polyplex-delivered DNA. Bioconjug Chem. 2008;19:1987–94.CrossRefPubMedPubMedCentral
5.
go back to reference Karkada M, Weir GM, Quinton T, Fuentes-Ortega A, Mansour M. A liposome-based platform, VacciMax, and its modified water-free platform DepoVax enhance efficacy of in vivo nucleic acid delivery. Vaccine. 2010;28:6176–82.CrossRefPubMed Karkada M, Weir GM, Quinton T, Fuentes-Ortega A, Mansour M. A liposome-based platform, VacciMax, and its modified water-free platform DepoVax enhance efficacy of in vivo nucleic acid delivery. Vaccine. 2010;28:6176–82.CrossRefPubMed
6.
7.
go back to reference Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet. 2011;12:341–55.CrossRefPubMed Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet. 2011;12:341–55.CrossRefPubMed
8.
go back to reference Verma IM, Weitzman MD. Gene therapy: twenty-first century medicine. Annu Rev Biochem. 2005;74:711–38.CrossRefPubMed Verma IM, Weitzman MD. Gene therapy: twenty-first century medicine. Annu Rev Biochem. 2005;74:711–38.CrossRefPubMed
10.
go back to reference Thomas M, Klibanov AM. Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol. 2003;62:27–34.CrossRefPubMed Thomas M, Klibanov AM. Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol. 2003;62:27–34.CrossRefPubMed
11.
go back to reference Lee CC, MacKay JA, Frechet JM, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23:1517–26.CrossRefPubMed Lee CC, MacKay JA, Frechet JM, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23:1517–26.CrossRefPubMed
14.
go back to reference Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed Engl. 2008;47:1382–95.CrossRefPubMed Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed Engl. 2008;47:1382–95.CrossRefPubMed
15.
go back to reference Monk AB, Rees CD, Barrow P, Hagens S, Harper DR. Bacteriophage applications: where are we now? Lett Appl Microbiol. 2010;51:363–9.CrossRefPubMed Monk AB, Rees CD, Barrow P, Hagens S, Harper DR. Bacteriophage applications: where are we now? Lett Appl Microbiol. 2010;51:363–9.CrossRefPubMed
16.
go back to reference March JB, Clark JR, Jepson CD. Genetic immunisation against hepatitis B using whole bacteriophage lambda particles. Vaccine. 2004;22:1666–71.CrossRefPubMed March JB, Clark JR, Jepson CD. Genetic immunisation against hepatitis B using whole bacteriophage lambda particles. Vaccine. 2004;22:1666–71.CrossRefPubMed
17.
go back to reference Jepson CD, March JB. Bacteriophage lambda is a highly stable DNA vaccine delivery vehicle. Vaccine. 2004;22:2413–9.CrossRefPubMed Jepson CD, March JB. Bacteriophage lambda is a highly stable DNA vaccine delivery vehicle. Vaccine. 2004;22:2413–9.CrossRefPubMed
18.
go back to reference Clark JR, Bartley K, Jepson CD, Craik V, March JB. Comparison of a bacteriophage-delivered DNA vaccine and a commercially available recombinant protein vaccine against hepatitis B. FEMS Immunol Med Microbiol. 2011;61:197–204.CrossRefPubMed Clark JR, Bartley K, Jepson CD, Craik V, March JB. Comparison of a bacteriophage-delivered DNA vaccine and a commercially available recombinant protein vaccine against hepatitis B. FEMS Immunol Med Microbiol. 2011;61:197–204.CrossRefPubMed
19.
go back to reference Ghaemi A, Soleimanjahi H, Gill P, Hassan Z, Jahromi SR, Roohvand F. Recombinant lambda-phage nanobioparticles for tumor therapy in mice models. Genet Vaccines Ther. 2010;8:3.CrossRefPubMedPubMedCentral Ghaemi A, Soleimanjahi H, Gill P, Hassan Z, Jahromi SR, Roohvand F. Recombinant lambda-phage nanobioparticles for tumor therapy in mice models. Genet Vaccines Ther. 2010;8:3.CrossRefPubMedPubMedCentral
20.
go back to reference Hashemi H, Bamdad T, Jamali A, Pouyanfard S, Mohammadi MG. Evaluation of humoral and cellular immune responses against HSV-1 using genetic immunization by filamentous phage particles: a comparative approach to conventional DNA vaccine. J Virol Methods. 2010;163:440–4.CrossRefPubMed Hashemi H, Bamdad T, Jamali A, Pouyanfard S, Mohammadi MG. Evaluation of humoral and cellular immune responses against HSV-1 using genetic immunization by filamentous phage particles: a comparative approach to conventional DNA vaccine. J Virol Methods. 2010;163:440–4.CrossRefPubMed
21.
go back to reference Larocca D, Jensen-Pergakes K, Burg MA, Baird A. Receptor-targeted gene delivery using multivalent phagemid particles. Mol Ther. 2001;3:476–84.CrossRefPubMed Larocca D, Jensen-Pergakes K, Burg MA, Baird A. Receptor-targeted gene delivery using multivalent phagemid particles. Mol Ther. 2001;3:476–84.CrossRefPubMed
22.
go back to reference Mount JD, Samoylova TI, Morrison NE, Cox NR, Baker HJ, Petrenko VA. Cell targeted phagemid rescued by preselected landscape phage. Gene. 2004;341:59–65.CrossRefPubMed Mount JD, Samoylova TI, Morrison NE, Cox NR, Baker HJ, Petrenko VA. Cell targeted phagemid rescued by preselected landscape phage. Gene. 2004;341:59–65.CrossRefPubMed
23.
go back to reference Piersanti S, Cherubini G, Martina Y, Salone B, Avitabile D, Grosso F, Cundari E, Di Zenzo G, Saggio I. Mammalian cell transduction and internalization properties of lambda phages displaying the full-length adenoviral penton base or its central domain. J Mol Med (Berl). 2004;82:467–76.CrossRef Piersanti S, Cherubini G, Martina Y, Salone B, Avitabile D, Grosso F, Cundari E, Di Zenzo G, Saggio I. Mammalian cell transduction and internalization properties of lambda phages displaying the full-length adenoviral penton base or its central domain. J Mol Med (Berl). 2004;82:467–76.CrossRef
24.
go back to reference Di Giovine M, Salone B, Martina Y, Amati V, Zambruno G, Cundari E, Failla CM, Saggio I. Binding properties, cell delivery, and gene transfer of adenoviral penton base displaying bacteriophage. Virology. 2001;282:102–12.CrossRefPubMed Di Giovine M, Salone B, Martina Y, Amati V, Zambruno G, Cundari E, Failla CM, Saggio I. Binding properties, cell delivery, and gene transfer of adenoviral penton base displaying bacteriophage. Virology. 2001;282:102–12.CrossRefPubMed
25.
go back to reference Li Z, Zhang J, Zhao R, Xu Y, Gu J. Preparation of peptide-targeted phagemid particles using a protein III-modified helper phage. BioTechniques. 2005;39:493–7.CrossRefPubMed Li Z, Zhang J, Zhao R, Xu Y, Gu J. Preparation of peptide-targeted phagemid particles using a protein III-modified helper phage. BioTechniques. 2005;39:493–7.CrossRefPubMed
26.
go back to reference Banerjee D, Liu AP, Voss NR, Schmid SL, Finn MG. Multivalent display and receptor-mediated endocytosis of transferrin on virus-like particles. Chembiochem. 2010;11:1273–9.CrossRefPubMedPubMedCentral Banerjee D, Liu AP, Voss NR, Schmid SL, Finn MG. Multivalent display and receptor-mediated endocytosis of transferrin on virus-like particles. Chembiochem. 2010;11:1273–9.CrossRefPubMedPubMedCentral
27.
go back to reference Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986;189:113–30.CrossRefPubMed Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986;189:113–30.CrossRefPubMed
28.
go back to reference Xu H, Bao X, Lu Y, Liu Y, Deng B, Wang Y, Xu Y, Hou J. Immunogenicity of T7 bacteriophage nanoparticles displaying G-H loop of foot-and-mouth disease virus (FMDV). Vet Microbiol. 2017;205:46–52.CrossRefPubMed Xu H, Bao X, Lu Y, Liu Y, Deng B, Wang Y, Xu Y, Hou J. Immunogenicity of T7 bacteriophage nanoparticles displaying G-H loop of foot-and-mouth disease virus (FMDV). Vet Microbiol. 2017;205:46–52.CrossRefPubMed
29.
go back to reference Liu SG, Tobias R, McClure S, Styba G, Shi QW, Jackowski E. Removal of endotoxin from recombinant protein preparations. Clin Biochem. 1997;30:455–63.CrossRefPubMed Liu SG, Tobias R, McClure S, Styba G, Shi QW, Jackowski E. Removal of endotoxin from recombinant protein preparations. Clin Biochem. 1997;30:455–63.CrossRefPubMed
30.
go back to reference Hashemi H, Pouyanfard S, Bandehpour M, Mahmoudi M, Bernasconi M, Kazemi B, Mokhtari-Azad T. Efficient endotoxin removal from T7 phage preparations by a mild detergent treatment followed by ultrafiltration. Acta Virol. 2013;57:373–4.PubMed Hashemi H, Pouyanfard S, Bandehpour M, Mahmoudi M, Bernasconi M, Kazemi B, Mokhtari-Azad T. Efficient endotoxin removal from T7 phage preparations by a mild detergent treatment followed by ultrafiltration. Acta Virol. 2013;57:373–4.PubMed
31.
go back to reference Frampton RA, Acedo EL, Young VL, Chen D, Tong B, Taylor C, Easingwood RA, Pitman AR, Kleffmann T, Bostina M, Fineran PC. Genome, proteome and structure of a T7-like bacteriophage of the kiwifruit canker Phytopathogen pseudomonas syringae pv. Actinidiae. Viruses. 2015;7:3361–79.CrossRefPubMedPubMedCentral Frampton RA, Acedo EL, Young VL, Chen D, Tong B, Taylor C, Easingwood RA, Pitman AR, Kleffmann T, Bostina M, Fineran PC. Genome, proteome and structure of a T7-like bacteriophage of the kiwifruit canker Phytopathogen pseudomonas syringae pv. Actinidiae. Viruses. 2015;7:3361–79.CrossRefPubMedPubMedCentral
32.
go back to reference Fagbohun OA, Bedi D, Grabchenko NI, Deinnocentes PA, Bird RC, Petrenko VA. Landscape phages and their fusion proteins targeted to breast cancer cells. Protein Eng Des Sel. 2012;25:271–83.CrossRefPubMedPubMedCentral Fagbohun OA, Bedi D, Grabchenko NI, Deinnocentes PA, Bird RC, Petrenko VA. Landscape phages and their fusion proteins targeted to breast cancer cells. Protein Eng Des Sel. 2012;25:271–83.CrossRefPubMedPubMedCentral
33.
go back to reference Gillespie JW, Wei L, Petrenko VA. Selection of lung cancer-specific landscape phage for targeted drug delivery. Comb Chem High Throughput Screen. 2016;19:412–22.CrossRefPubMedPubMedCentral Gillespie JW, Wei L, Petrenko VA. Selection of lung cancer-specific landscape phage for targeted drug delivery. Comb Chem High Throughput Screen. 2016;19:412–22.CrossRefPubMedPubMedCentral
34.
go back to reference Wadia J, Eguchi A, Dowdy SF. DNA delivery into mammalian cells using bacteriophage lambda displaying the TAT transduction domain. Cold Spring Harb Protoc. 2013;2013:59–65. Wadia J, Eguchi A, Dowdy SF. DNA delivery into mammalian cells using bacteriophage lambda displaying the TAT transduction domain. Cold Spring Harb Protoc. 2013;2013:59–65.
35.
go back to reference Eguchi A, Akuta T, Okuyama H, Senda T, Yokoi H, Inokuchi H, Fujita S, Hayakawa T, Takeda K, Hasegawa M, Nakanishi M. Protein transduction domain of HIV-1 tat protein promotes efficient delivery of DNA into mammalian cells. J Biol Chem. 2001;276:26204–10.CrossRefPubMed Eguchi A, Akuta T, Okuyama H, Senda T, Yokoi H, Inokuchi H, Fujita S, Hayakawa T, Takeda K, Hasegawa M, Nakanishi M. Protein transduction domain of HIV-1 tat protein promotes efficient delivery of DNA into mammalian cells. J Biol Chem. 2001;276:26204–10.CrossRefPubMed
36.
go back to reference Kim A, Shin TH, Shin SM, Pham CD, Choi DK, Kwon MH, Kim YS. Cellular internalization mechanism and intracellular trafficking of filamentous M13 phages displaying a cell-penetrating transbody and TAT peptide. PLoS One. 2012;7:e51813.CrossRefPubMedPubMedCentral Kim A, Shin TH, Shin SM, Pham CD, Choi DK, Kwon MH, Kim YS. Cellular internalization mechanism and intracellular trafficking of filamentous M13 phages displaying a cell-penetrating transbody and TAT peptide. PLoS One. 2012;7:e51813.CrossRefPubMedPubMedCentral
37.
go back to reference Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE, Moir RD, Nath A, He JJ. Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med. 2000;6:1380–7.CrossRefPubMed Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE, Moir RD, Nath A, He JJ. Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med. 2000;6:1380–7.CrossRefPubMed
38.
go back to reference Vives E, Brodin P, Lebleu B. A truncated HIV-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 1997;272:16010–7.CrossRefPubMed Vives E, Brodin P, Lebleu B. A truncated HIV-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 1997;272:16010–7.CrossRefPubMed
Metadata
Title
Engineering T7 bacteriophage as a potential DNA vaccine targeting delivery vector
Authors
Hai Xu
Xi Bao
Yiwei Wang
Yue Xu
Bihua Deng
Yu Lu
Jibo Hou
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-0955-1

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue