Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

Longitudinal study of age-specific pattern of coronavirus infection in Lyle’s flying fox (Pteropus lylei) in Thailand

Authors: Supaporn Wacharapluesadee, Prateep Duengkae, Aingorn Chaiyes, Thongchai Kaewpom, Apaporn Rodpan, Sangchai Yingsakmongkon, Sininat Petcharat, Patcharakiti Phengsakul, Pattarapol Maneeorn, Thiravat Hemachudha

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

Bats are natural reservoirs for several highly pathogenic and novel viruses including coronaviruses (CoVs) (mainly Alphacoronavirus and Betacoronavirus). Lyle’s flying fox (Pteropus lylei)‘s roosts and foraging sites are usually in the proximity to humans and animals. Knowledge about age-specific pattern of CoV infection in P. lylei, prevalence, and viral shedding at roosts and foraging sites may have an impact on infection-age-structure model to control CoV outbreak.

Methods

P. lylei bats were captured monthly during January–December 2012 for detection of CoV at three areas in Chonburi province; two human dwellings, S1 and S2, where few fruit trees were located with an open pig farm, 0.6 km and 5.5 km away from the bat roost, S3. Nested RT-PCR of RNA-dependent RNA polymerase (RdRp) gene from rectal swabs was used for CoV detection. The strain of CoV was confirmed by sequencing and phylogenetic analysis.

Results

CoV infection was found in both juveniles and adult bats between May and October (January, in adults only and April, in juveniles only). Of total rectal swab positives (68/367, 18.5%), ratio was higher in bats captured at S1 (11/44, 25.0%) and S2 (35/99, 35.4%) foraging sites than at roost (S3) (22/224, 9.8%). Juveniles (forearm length ≤ 136 mm) were found with more CoV infection than adults at all three sites; S1 (9/24, 37.5% vs 2/20, 10%), S2 (22/49, 44.9% vs 13/50, 26.0%), and S3 (10/30, 33.3% vs 12/194, 6.2%). The average BCI of CoV infected bats was significantly lower than uninfected bats. No gender difference related to infection was found at the sites. Phylogenetic analysis of conserved RdRp gene revealed that the detected CoVs belonged to group D betacoronavirus (n = 64) and alphacoronavirus (n = 4).

Conclusions

The fact that CoV infection and shedding was found in more juvenile than adult bats may suggest transmission from mother during peripartum period. Whether viral reactivation during parturition period or stress is responsible in maintaining transmission in the bat colony needs to be explored.
Literature
1.
go back to reference Adams MJ, Carstens EB. Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses. Arch Virol. 2012;157:1411–22.CrossRefPubMed Adams MJ, Carstens EB. Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses. Arch Virol. 2012;157:1411–22.CrossRefPubMed
2.
go back to reference Woo PC, Sk L, Lam CS, Lau CC, Tsang AK, Lau JH, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus. J Virol. 2012;86:3995–4008.CrossRefPubMedPubMedCentral Woo PC, Sk L, Lam CS, Lau CC, Tsang AK, Lau JH, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus. J Virol. 2012;86:3995–4008.CrossRefPubMedPubMedCentral
3.
go back to reference de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, et al. Family Coronaviridae. In: King AMQ, Lefkowitz E, Adams MJ, Carstens EB, editors. Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Amsterdam: Elsevier; 2012. p. 806–20. de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, et al. Family Coronaviridae. In: King AMQ, Lefkowitz E, Adams MJ, Carstens EB, editors. Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Amsterdam: Elsevier; 2012. p. 806–20.
4.
go back to reference Drexler JF, Corman VM, Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antivir Res. 2014;101:45–56.CrossRefPubMed Drexler JF, Corman VM, Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antivir Res. 2014;101:45–56.CrossRefPubMed
5.
go back to reference Chan JF, Li KS, To KK, Cheng VC, Chen H, Yuen KY. Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoVEMC) the beginning of another SARS-like pandemic? J Inf Secur. 2012;65:477–89. Chan JF, Li KS, To KK, Cheng VC, Chen H, Yuen KY. Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoVEMC) the beginning of another SARS-like pandemic? J Inf Secur. 2012;65:477–89.
6.
go back to reference Woo PC, Wang M, Lau SK, Xu H, Poon RW, Guo R, et al. Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. J Virol. 2007;81:1574–85.CrossRefPubMed Woo PC, Wang M, Lau SK, Xu H, Poon RW, Guo R, et al. Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. J Virol. 2007;81:1574–85.CrossRefPubMed
7.
go back to reference Ithete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR, Schoeman MC, et al. Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg Infect Dis. 2013;19:1697–9.CrossRefPubMedPubMedCentral Ithete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR, Schoeman MC, et al. Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg Infect Dis. 2013;19:1697–9.CrossRefPubMedPubMedCentral
8.
go back to reference Anthony SJ, Gilardi K, Menachery VD, Goldstein T, Ssebide B, Mbabazi R, et al. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. MBio. 2017;8(2):e00373-17.CrossRefPubMedPubMedCentral Anthony SJ, Gilardi K, Menachery VD, Goldstein T, Ssebide B, Mbabazi R, et al. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. MBio. 2017;8(2):e00373-17.CrossRefPubMedPubMedCentral
9.
go back to reference Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A. 2005;102:14040–5.CrossRefPubMedPubMedCentral Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A. 2005;102:14040–5.CrossRefPubMedPubMedCentral
10.
go back to reference Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:676–9.CrossRefPubMed Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:676–9.CrossRefPubMed
11.
go back to reference Tong S, Conrardy C, Ruone S, Kuzmin IV, Guo X, Tao Y, et al. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg Infect Dis. 2009;15:482–5.CrossRefPubMedPubMedCentral Tong S, Conrardy C, Ruone S, Kuzmin IV, Guo X, Tao Y, et al. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg Infect Dis. 2009;15:482–5.CrossRefPubMedPubMedCentral
12.
go back to reference Razanajatovo NH, Nomenjanahary LA, Wilkinson DA, Razafimanahaka JH, Goodman SM, Jenkins RK, et al. Detection of new genetic variants of Betacoronaviruses in endemic frugivorous bats of Madagascar. Virol J. 2015;12:42.CrossRefPubMedPubMedCentral Razanajatovo NH, Nomenjanahary LA, Wilkinson DA, Razafimanahaka JH, Goodman SM, Jenkins RK, et al. Detection of new genetic variants of Betacoronaviruses in endemic frugivorous bats of Madagascar. Virol J. 2015;12:42.CrossRefPubMedPubMedCentral
13.
go back to reference Lau SK, Poon RW, Wong BH, Wang M, Huang Y, Xu H, et al. Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU9 belonging to a novel Betacoronavirus subgroup. J Virol. 2010;84:11385–94.CrossRefPubMedPubMedCentral Lau SK, Poon RW, Wong BH, Wang M, Huang Y, Xu H, et al. Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU9 belonging to a novel Betacoronavirus subgroup. J Virol. 2010;84:11385–94.CrossRefPubMedPubMedCentral
14.
go back to reference Watanabe S, Masangkay JS, Nagata N, Morikawa S, Mizutani T, Fukushi S, et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg Infect Dis. 2010;16:1217–23.CrossRefPubMedPubMedCentral Watanabe S, Masangkay JS, Nagata N, Morikawa S, Mizutani T, Fukushi S, et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg Infect Dis. 2010;16:1217–23.CrossRefPubMedPubMedCentral
15.
go back to reference Tsuda S, Watanabe S, Masangkay JS, Mizutani T, Alviola P, Ueda N, et al. Genomic and serological detection of bat coronavirus from bats in the Philippines. Arch Virol. 2012;157:2349–55.CrossRefPubMed Tsuda S, Watanabe S, Masangkay JS, Mizutani T, Alviola P, Ueda N, et al. Genomic and serological detection of bat coronavirus from bats in the Philippines. Arch Virol. 2012;157:2349–55.CrossRefPubMed
16.
go back to reference Anthony SJ, Epstein JH, Murray KA, Navarrete-Macias I, Zambrana-Torrelio CM, Solovyov A, et al. A strategy to estimate unknown viral diversity in mammals. MBio. 2013;4:e00598-13.CrossRefPubMedPubMedCentral Anthony SJ, Epstein JH, Murray KA, Navarrete-Macias I, Zambrana-Torrelio CM, Solovyov A, et al. A strategy to estimate unknown viral diversity in mammals. MBio. 2013;4:e00598-13.CrossRefPubMedPubMedCentral
17.
go back to reference Wacharapluesadee S, Duengkae P, Rodpan A, Kaewpom T, Maneeorn P, Kanchanasaka B, et al. Diversity of coronavirus in bats from eastern Thailand. Virol J. 2015;12:57.CrossRefPubMedPubMedCentral Wacharapluesadee S, Duengkae P, Rodpan A, Kaewpom T, Maneeorn P, Kanchanasaka B, et al. Diversity of coronavirus in bats from eastern Thailand. Virol J. 2015;12:57.CrossRefPubMedPubMedCentral
18.
go back to reference Karnpun S, Wongwai A, Soisook P. Cave-dwelling bats of Thailand. Bangkok: Wildlife Research Section, Department of National Parks Wildlife and Plant Conservation; 2016. Karnpun S, Wongwai A, Soisook P. Cave-dwelling bats of Thailand. Bangkok: Wildlife Research Section, Department of National Parks Wildlife and Plant Conservation; 2016.
19.
go back to reference Wacharapluesadee S, Sintunawa C, Kaewpom T, Khongnomnan K, Olival KJ, Epstein JH, et al. Group C betacoronavirus in bat guano fertilizer, Thailand. Emerg Infect Dis. 2013;19:1349–51.CrossRefPubMedPubMedCentral Wacharapluesadee S, Sintunawa C, Kaewpom T, Khongnomnan K, Olival KJ, Epstein JH, et al. Group C betacoronavirus in bat guano fertilizer, Thailand. Emerg Infect Dis. 2013;19:1349–51.CrossRefPubMedPubMedCentral
20.
go back to reference Gouilh MA, Puechmaille SJ, Gonzalez JP, Teeling E, Kittayapong P, Manuguerra JC. SARS-coronavirus ancestor's foot-prints in south-east Asian bat colonies and the refuge theory. Infect Genet Evol. 2011;11:1690–1702. Gouilh MA, Puechmaille SJ, Gonzalez JP, Teeling E, Kittayapong P, Manuguerra JC. SARS-coronavirus ancestor's foot-prints in south-east Asian bat colonies and the refuge theory. Infect Genet Evol. 2011;11:1690–1702.
21.
go back to reference Wacharapluesadee S, Lumlertdacha B, Boongird K, Wanghongsa S, Chanhome L, Rollin P, et al. Bat Nipah virus, Thailand. Emerg Infect Dis. 2005;11:1949–51.CrossRefPubMedPubMedCentral Wacharapluesadee S, Lumlertdacha B, Boongird K, Wanghongsa S, Chanhome L, Rollin P, et al. Bat Nipah virus, Thailand. Emerg Infect Dis. 2005;11:1949–51.CrossRefPubMedPubMedCentral
22.
go back to reference Wacharapluesadee S, Boongird K, Wanghongsa S, Ratanasetyuth N, Supavonwong P, Saengsen D, et al. A longitudinal study of the prevalence of Nipah virus in Pteropus Lylei bats in Thailand: evidence for seasonal preference in disease transmission. Vector Borne Zoonotic Dis. 2010;10:183–90.CrossRefPubMed Wacharapluesadee S, Boongird K, Wanghongsa S, Ratanasetyuth N, Supavonwong P, Saengsen D, et al. A longitudinal study of the prevalence of Nipah virus in Pteropus Lylei bats in Thailand: evidence for seasonal preference in disease transmission. Vector Borne Zoonotic Dis. 2010;10:183–90.CrossRefPubMed
24.
go back to reference Wacharapluesadee S, Olival KJ, Kanchanasaka B, Duengkae P, Kaewchot S, Srongmongkol P, et al. Surveillance for Ebola virus in wildlife, Thailand. Emerg Infect Dis. 2015;21:2271–3.CrossRefPubMedPubMedCentral Wacharapluesadee S, Olival KJ, Kanchanasaka B, Duengkae P, Kaewchot S, Srongmongkol P, et al. Surveillance for Ebola virus in wildlife, Thailand. Emerg Infect Dis. 2015;21:2271–3.CrossRefPubMedPubMedCentral
25.
go back to reference Osborne C, Cryan PM, O'Shea TJ, Oko LM, Ndaluka C, Calisher CH, et al. Alphacoronaviruses in new world bats: prevalence, persistence, phylogeny, and potential for interaction with humans. PLoS One. 2011;6:e19156.CrossRefPubMedPubMedCentral Osborne C, Cryan PM, O'Shea TJ, Oko LM, Ndaluka C, Calisher CH, et al. Alphacoronaviruses in new world bats: prevalence, persistence, phylogeny, and potential for interaction with humans. PLoS One. 2011;6:e19156.CrossRefPubMedPubMedCentral
26.
go back to reference Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CrossRefPubMedPubMedCentral Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CrossRefPubMedPubMedCentral
27.
go back to reference Silvestro D, Michalak I. raxmlGUI: a graphical front-end for RAxML. Org Divers Evol. 2012;12:335–7.CrossRef Silvestro D, Michalak I. raxmlGUI: a graphical front-end for RAxML. Org Divers Evol. 2012;12:335–7.CrossRef
29.
go back to reference Wanghongsa S, Boongird K. On the population number and distribution of Lyle's flying fox (Pteropus lylei) in central plain. In: Wildlife research section annual report. Department of National Parks Wildlife and Plant Conservation. Bangkok; 2003. p. 89–100. Wanghongsa S, Boongird K. On the population number and distribution of Lyle's flying fox (Pteropus lylei) in central plain. In: Wildlife research section annual report. Department of National Parks Wildlife and Plant Conservation. Bangkok; 2003. p. 89–100.
30.
go back to reference Weber N, Duengkae P, Fahr J, Dechmann DK, Phengsakul P, Khumbucha W, et al. High-resolution GPS tracking of Lyle's flying fox between temples and orchards in central Thailand. J Wildl Manag. 2015;79:957–68.CrossRef Weber N, Duengkae P, Fahr J, Dechmann DK, Phengsakul P, Khumbucha W, et al. High-resolution GPS tracking of Lyle's flying fox between temples and orchards in central Thailand. J Wildl Manag. 2015;79:957–68.CrossRef
31.
go back to reference Lau SK, Woo PC, Li KS, Huang Y, Wang M, Lam CS, et al. Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. Virology. 2007;367:428–39.CrossRefPubMed Lau SK, Woo PC, Li KS, Huang Y, Wang M, Lam CS, et al. Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. Virology. 2007;367:428–39.CrossRefPubMed
32.
go back to reference Chu DK, Poon LL, Chan KH, Chen H, Guan Y, Yuen KY, Peiris JS. Coronaviruses in bent-winged bats (Miniopterus spp.). J Gen Virol. 2006;87:2461–6.CrossRefPubMed Chu DK, Poon LL, Chan KH, Chen H, Guan Y, Yuen KY, Peiris JS. Coronaviruses in bent-winged bats (Miniopterus spp.). J Gen Virol. 2006;87:2461–6.CrossRefPubMed
33.
go back to reference Gloza-Rausch F, Ipsen A, Seebens A, Göttsche M, Panning M, Drexler JF, et al. Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg Infect Dis. 2008;14:626–31.CrossRefPubMedPubMedCentral Gloza-Rausch F, Ipsen A, Seebens A, Göttsche M, Panning M, Drexler JF, et al. Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg Infect Dis. 2008;14:626–31.CrossRefPubMedPubMedCentral
34.
go back to reference Lau SK, Li KS, Tsang AK, Shek CT, Wang M, Choi GK, et al. Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault's rousettes to pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. J Virol. 2012;86:11906–18.CrossRefPubMedPubMedCentral Lau SK, Li KS, Tsang AK, Shek CT, Wang M, Choi GK, et al. Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault's rousettes to pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. J Virol. 2012;86:11906–18.CrossRefPubMedPubMedCentral
Metadata
Title
Longitudinal study of age-specific pattern of coronavirus infection in Lyle’s flying fox (Pteropus lylei) in Thailand
Authors
Supaporn Wacharapluesadee
Prateep Duengkae
Aingorn Chaiyes
Thongchai Kaewpom
Apaporn Rodpan
Sangchai Yingsakmongkon
Sininat Petcharat
Patcharakiti Phengsakul
Pattarapol Maneeorn
Thiravat Hemachudha
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-0950-6

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue