Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Marburg virus-like particles by co-expression of glycoprotein and matrix protein in insect cells induces immune responses in mice

Authors: Weiwei Gai, Xuexing Zheng, Chong Wang, Hualei Wang, Yongkun Zhao, Qi Wang, Gary Wong, Weijiao Zhang, Na Feng, Boning Qiu, Hang Chi, Nan Li, Tiecheng Wang, Yuwei Gao, Junjie Shan, Songtao Yang, Xianzhu Xia

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

Marburg virus (MARV) causes severe haemorrhagic fever in humans and nonhuman primates and has a high mortality rate. However, effective drugs or licensed vaccines are not currently available to control the outbreak and spread of this disease.

Methods

In this study, we generated MARV virus-like particles (VLPs) by co-expressing the glycoprotein (GP) and matrix protein (VP40) using the baculovirus expression system. MARV VLPs and three adjuvants, Poria cocos polysaccharide (PCP-II), poly(I:C) and aluminium hydroxide, were evaluated after intramuscular vaccination in mice.

Results

Murine studies demonstrated that vaccination with the MARV VLPs induce neutralizing antibodies and cellar immune responses. MARV VLPs and the PCP-II adjuvant group resulted in high titres of MARV-specific antibodies, activated relatively higher numbers of B cells and T cells in peripheral blood mononuclear cells (PBMCs), and induced greater cytokine secretion from splenocytes than the other adjuvants.

Conclusion

MARV VLPs with the PCP-II adjuvant may constitute an effective vaccination and PCP-II should be further investigated as a novel adjuvant.
Literature
1.
go back to reference Feldmann H, Klenk HD, Sanchez A. Molecular biology and evolution of filoviruses. Arch Virol Suppl. 1993;7:81–100.CrossRefPubMed Feldmann H, Klenk HD, Sanchez A. Molecular biology and evolution of filoviruses. Arch Virol Suppl. 1993;7:81–100.CrossRefPubMed
5.
6.
go back to reference Alibek K. The soviet Union's anti-agricultural biological weapons. Ann N Y Acad Sci. 1999;894:18–9.CrossRefPubMed Alibek K. The soviet Union's anti-agricultural biological weapons. Ann N Y Acad Sci. 1999;894:18–9.CrossRefPubMed
7.
go back to reference Dye JM, et al. Virus-like particle vaccination protects nonhuman primates from lethal aerosol exposure with Marburgvirus (VLP vaccination protects macaques against aerosol challenges). Viruses. 2016;8(4):94.CrossRefPubMedPubMedCentral Dye JM, et al. Virus-like particle vaccination protects nonhuman primates from lethal aerosol exposure with Marburgvirus (VLP vaccination protects macaques against aerosol challenges). Viruses. 2016;8(4):94.CrossRefPubMedPubMedCentral
8.
go back to reference Mire CE, et al. A single-vector, single-injection trivalent Filovirus vaccine: proof of concept study in Outbred Guinea pigs. J Infect Dis. 2015;212 Suppl 2:S384–8.CrossRefPubMed Mire CE, et al. A single-vector, single-injection trivalent Filovirus vaccine: proof of concept study in Outbred Guinea pigs. J Infect Dis. 2015;212 Suppl 2:S384–8.CrossRefPubMed
9.
go back to reference Grant-Klein RJ, et al. Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges. Hum Vaccin Immunother. 2015;11(8):1991–2004.CrossRefPubMedPubMedCentral Grant-Klein RJ, et al. Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges. Hum Vaccin Immunother. 2015;11(8):1991–2004.CrossRefPubMedPubMedCentral
10.
go back to reference Warfield KL, Aman MJ. Advances in virus-like particle vaccines for filoviruses. J Infect Dis. 2011;204 Suppl 3:S1053–9.CrossRefPubMed Warfield KL, Aman MJ. Advances in virus-like particle vaccines for filoviruses. J Infect Dis. 2011;204 Suppl 3:S1053–9.CrossRefPubMed
11.
go back to reference Falzarano D, Geisbert TW, Feldmann H. Progress in filovirus vaccine development: evaluating the potential for clinical use. Expert Rev Vaccines. 2011;10(1):63–77.CrossRefPubMedPubMedCentral Falzarano D, Geisbert TW, Feldmann H. Progress in filovirus vaccine development: evaluating the potential for clinical use. Expert Rev Vaccines. 2011;10(1):63–77.CrossRefPubMedPubMedCentral
12.
go back to reference Shen HG, Halbur PG, Opriessnig T. Prevalence and phylogenetic analysis of the current porcine circovirus 2 genotypes after implementation of widespread vaccination programmes in the USA. J Gen Virol. 2012;93(Pt 6):1345–55.CrossRefPubMed Shen HG, Halbur PG, Opriessnig T. Prevalence and phylogenetic analysis of the current porcine circovirus 2 genotypes after implementation of widespread vaccination programmes in the USA. J Gen Virol. 2012;93(Pt 6):1345–55.CrossRefPubMed
13.
go back to reference Kushnir N, Streatfield SJ, Yusibov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine. 2012;31(1):58–83.CrossRefPubMed Kushnir N, Streatfield SJ, Yusibov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine. 2012;31(1):58–83.CrossRefPubMed
14.
go back to reference Tyler M, et al. The use of hybrid virus-like particles to enhance the immunogenicity of a broadly protective HPV vaccine. Biotechnol Bioeng. 2014;111(12):2398–406.CrossRefPubMedPubMedCentral Tyler M, et al. The use of hybrid virus-like particles to enhance the immunogenicity of a broadly protective HPV vaccine. Biotechnol Bioeng. 2014;111(12):2398–406.CrossRefPubMedPubMedCentral
15.
go back to reference Yang L, et al. HIV-1 virus-like particles produced by stably transfected drosophila S2 cells: a desirable vaccine component. J Virol. 2012;86(14):7662–76.CrossRefPubMedPubMedCentral Yang L, et al. HIV-1 virus-like particles produced by stably transfected drosophila S2 cells: a desirable vaccine component. J Virol. 2012;86(14):7662–76.CrossRefPubMedPubMedCentral
16.
go back to reference Warfield KL, et al. Filovirus-like particles produced in insect cells: immunogenicity and protection in rodents. J Infect Dis. 2007;196 Suppl 2:S421–9.CrossRefPubMed Warfield KL, et al. Filovirus-like particles produced in insect cells: immunogenicity and protection in rodents. J Infect Dis. 2007;196 Suppl 2:S421–9.CrossRefPubMed
17.
go back to reference Swenson DL, et al. Monovalent virus-like particle vaccine protects guinea pigs and nonhuman primates against infection with multiple Marburg viruses. Expert Rev Vaccines. 2008;7(4):417–29.CrossRefPubMed Swenson DL, et al. Monovalent virus-like particle vaccine protects guinea pigs and nonhuman primates against infection with multiple Marburg viruses. Expert Rev Vaccines. 2008;7(4):417–29.CrossRefPubMed
18.
go back to reference Conner ME, et al. Virus-like particles as a rotavirus subunit vaccine. J Infect Dis. 1996;174 Suppl 1:S88–92.CrossRefPubMed Conner ME, et al. Virus-like particles as a rotavirus subunit vaccine. J Infect Dis. 1996;174 Suppl 1:S88–92.CrossRefPubMed
19.
go back to reference Sasagawa T, et al. Immunoglobulin-a and -G responses against virus-like particles (VLP) of human papillomavirus type 16 in women with cervical cancer and cervical intra-epithelial lesions. Int J Cancer. 1998;75(4):529–35.CrossRefPubMed Sasagawa T, et al. Immunoglobulin-a and -G responses against virus-like particles (VLP) of human papillomavirus type 16 in women with cervical cancer and cervical intra-epithelial lesions. Int J Cancer. 1998;75(4):529–35.CrossRefPubMed
20.
go back to reference Palker TJ, et al. Antibody, cytokine and cytotoxic T lymphocyte responses in chimpanzees immunized with human papillomavirus virus-like particles. Vaccine. 2001;19(27):3733–43.CrossRefPubMed Palker TJ, et al. Antibody, cytokine and cytotoxic T lymphocyte responses in chimpanzees immunized with human papillomavirus virus-like particles. Vaccine. 2001;19(27):3733–43.CrossRefPubMed
21.
22.
go back to reference Watanabe S, et al. Production of novel ebola virus-like particles from cDNAs: an alternative to ebola virus generation by reverse genetics. J Virol. 2004;78(2):999–1005.CrossRefPubMedPubMedCentral Watanabe S, et al. Production of novel ebola virus-like particles from cDNAs: an alternative to ebola virus generation by reverse genetics. J Virol. 2004;78(2):999–1005.CrossRefPubMedPubMedCentral
23.
go back to reference Swenson DL, et al. Generation of Marburg virus-like particles by co-expression of glycoprotein and matrix protein. FEMS Immunol Med Microbiol. 2004;40(1):27–31.CrossRefPubMed Swenson DL, et al. Generation of Marburg virus-like particles by co-expression of glycoprotein and matrix protein. FEMS Immunol Med Microbiol. 2004;40(1):27–31.CrossRefPubMed
24.
go back to reference Warfield KL, et al. Marburg virus-like particles protect guinea pigs from lethal Marburg virus infection. Vaccine. 2004;22(25–26):3495–502.CrossRefPubMed Warfield KL, et al. Marburg virus-like particles protect guinea pigs from lethal Marburg virus infection. Vaccine. 2004;22(25–26):3495–502.CrossRefPubMed
25.
go back to reference Song JD, Qu JG, Hong T. Characterization of Marburg virus morphology. Bing Du Xue Bao. 2014;30(3):292–7.PubMed Song JD, Qu JG, Hong T. Characterization of Marburg virus morphology. Bing Du Xue Bao. 2014;30(3):292–7.PubMed
26.
go back to reference Mohan T, Verma P, Rao DN. Novel adjuvants & delivery vehicles for vaccines development: a road ahead. Indian J Med Res. 2013;138(5):779–95.PubMedPubMedCentral Mohan T, Verma P, Rao DN. Novel adjuvants & delivery vehicles for vaccines development: a road ahead. Indian J Med Res. 2013;138(5):779–95.PubMedPubMedCentral
27.
go back to reference Li P, Wang F. Polysaccharides: candidates of promising vaccine adjuvants. Drug Discov Ther. 2015;9(2):88–93.CrossRefPubMed Li P, Wang F. Polysaccharides: candidates of promising vaccine adjuvants. Drug Discov Ther. 2015;9(2):88–93.CrossRefPubMed
28.
go back to reference Liu Y, et al. Adjuvant activity of Chinese herbal polysaccharides in inactivated veterinary rabies vaccines. Int J Biol Macromol. 2012;50(3):598–602.CrossRefPubMed Liu Y, et al. Adjuvant activity of Chinese herbal polysaccharides in inactivated veterinary rabies vaccines. Int J Biol Macromol. 2012;50(3):598–602.CrossRefPubMed
29.
go back to reference Su X, Pei Z, Hu S. Ginsenoside re as an adjuvant to enhance the immune response to the inactivated rabies virus vaccine in mice. Int Immunopharmacol. 2014;20(2):283–9.CrossRefPubMed Su X, Pei Z, Hu S. Ginsenoside re as an adjuvant to enhance the immune response to the inactivated rabies virus vaccine in mice. Int Immunopharmacol. 2014;20(2):283–9.CrossRefPubMed
30.
go back to reference Sun Y. Biological activities and potential health benefits of polysaccharides from Poria Cocos and their derivatives. Int J Biol Macromol. 2014;68:131–4.CrossRefPubMed Sun Y. Biological activities and potential health benefits of polysaccharides from Poria Cocos and their derivatives. Int J Biol Macromol. 2014;68:131–4.CrossRefPubMed
31.
go back to reference Rios JL. Chemical constituents and pharmacological properties of Poria Cocos. Planta Med. 2011;77(7):681–91.CrossRefPubMed Rios JL. Chemical constituents and pharmacological properties of Poria Cocos. Planta Med. 2011;77(7):681–91.CrossRefPubMed
32.
go back to reference Lin Y, et al. Molecular mass and antitumor activities of sulfated derivatives of alpha-glucan from Poria Cocos mycelia. Int J Biol Macromol. 2004;34(5):289–94.CrossRefPubMed Lin Y, et al. Molecular mass and antitumor activities of sulfated derivatives of alpha-glucan from Poria Cocos mycelia. Int J Biol Macromol. 2004;34(5):289–94.CrossRefPubMed
33.
go back to reference Wu Y, et al. Effect of a polysaccharide from Poria Cocos on humoral response in mice immunized by H1N1 influenza and HBsAg vaccines. Int J Biol Macromol. 2016;91:248–57.CrossRefPubMed Wu Y, et al. Effect of a polysaccharide from Poria Cocos on humoral response in mice immunized by H1N1 influenza and HBsAg vaccines. Int J Biol Macromol. 2016;91:248–57.CrossRefPubMed
34.
go back to reference Zhang W, et al. Isatis Indigotica root polysaccharides as adjuvants for an inactivated rabies virus vaccine. Int J Biol Macromol. 2016;87:7–15.CrossRefPubMed Zhang W, et al. Isatis Indigotica root polysaccharides as adjuvants for an inactivated rabies virus vaccine. Int J Biol Macromol. 2016;87:7–15.CrossRefPubMed
35.
go back to reference Mao YF, Yan J. Construction of prokaryotic expression system of ureB gene from a clinical helicobacter pylori strain and identification of the recombinant protein immunity. World J Gastroenterol. 2004;10(7):977–84.PubMedPubMedCentral Mao YF, Yan J. Construction of prokaryotic expression system of ureB gene from a clinical helicobacter pylori strain and identification of the recombinant protein immunity. World J Gastroenterol. 2004;10(7):977–84.PubMedPubMedCentral
36.
go back to reference Wang Q, et al. Codon preference optimization increases prokaryotic cystatin C expression. J Biomed Biotechnol. 2012;2012:732017.PubMedPubMedCentral Wang Q, et al. Codon preference optimization increases prokaryotic cystatin C expression. J Biomed Biotechnol. 2012;2012:732017.PubMedPubMedCentral
37.
go back to reference Ou W, et al. Development and characterization of rabbit and mouse antibodies against ebolavirus envelope glycoproteins. J Virol Methods. 2011;174(1–2):99–109.CrossRefPubMedPubMedCentral Ou W, et al. Development and characterization of rabbit and mouse antibodies against ebolavirus envelope glycoproteins. J Virol Methods. 2011;174(1–2):99–109.CrossRefPubMedPubMedCentral
38.
go back to reference Li Y, et al. A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein. Cell Res. 2015;25(11):1237–49.CrossRefPubMedPubMedCentral Li Y, et al. A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein. Cell Res. 2015;25(11):1237–49.CrossRefPubMedPubMedCentral
39.
go back to reference Summers MD. Milestones leading to the genetic engineering of baculoviruses as expression vector systems and viral pesticides. Adv Virus Res. 2006;68:3–73.CrossRefPubMed Summers MD. Milestones leading to the genetic engineering of baculoviruses as expression vector systems and viral pesticides. Adv Virus Res. 2006;68:3–73.CrossRefPubMed
40.
41.
go back to reference Exley C, Siesjo P, Eriksson H. The immunobiology of aluminium adjuvants: how do they really work? Trends Immunol. 2010;31(3):103–9.CrossRefPubMed Exley C, Siesjo P, Eriksson H. The immunobiology of aluminium adjuvants: how do they really work? Trends Immunol. 2010;31(3):103–9.CrossRefPubMed
42.
go back to reference Brewer JM, et al. Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4- or IL-13-mediated signaling. J Immunol. 1999;163(12):6448–54.PubMed Brewer JM, et al. Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4- or IL-13-mediated signaling. J Immunol. 1999;163(12):6448–54.PubMed
43.
go back to reference Thomas M, et al. Poly I:C adjuvanted inactivated swine influenza vaccine induces heterologous protective immunity in pigs. Vaccine. 2015;33(4):542–8.CrossRefPubMed Thomas M, et al. Poly I:C adjuvanted inactivated swine influenza vaccine induces heterologous protective immunity in pigs. Vaccine. 2015;33(4):542–8.CrossRefPubMed
44.
go back to reference Perez-Giron JV, et al. Mucosal polyinosinic-polycytidylic acid improves protection elicited by replicating influenza vaccines via enhanced dendritic cell function and T cell immunity. J Immunol. 2014;193(3):1324–32.CrossRefPubMedPubMedCentral Perez-Giron JV, et al. Mucosal polyinosinic-polycytidylic acid improves protection elicited by replicating influenza vaccines via enhanced dendritic cell function and T cell immunity. J Immunol. 2014;193(3):1324–32.CrossRefPubMedPubMedCentral
45.
go back to reference McNally B, et al. Intranasal administration of dsRNA analog poly(I:C) induces interferon-alpha receptor-dependent accumulation of antigen experienced T cells in the airways. PLoS One. 2012;7(12):e51351.CrossRefPubMedPubMedCentral McNally B, et al. Intranasal administration of dsRNA analog poly(I:C) induces interferon-alpha receptor-dependent accumulation of antigen experienced T cells in the airways. PLoS One. 2012;7(12):e51351.CrossRefPubMedPubMedCentral
46.
go back to reference Schepetkin IA, Quinn MT. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol. 2006;6(3):317–33.CrossRefPubMed Schepetkin IA, Quinn MT. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol. 2006;6(3):317–33.CrossRefPubMed
47.
go back to reference Buonaguro L, Tornesello ML, Buonaguro FM. Virus-like particles as particulate vaccines. Curr HIV Res. 2010;8(4):299–309.CrossRefPubMed Buonaguro L, Tornesello ML, Buonaguro FM. Virus-like particles as particulate vaccines. Curr HIV Res. 2010;8(4):299–309.CrossRefPubMed
48.
go back to reference Geisbert TW, et al. Vesicular stomatitis virus-based vaccines protect nonhuman primates against aerosol challenge with Ebola and Marburg viruses. Vaccine. 2008;26(52):6894–900.CrossRefPubMedPubMedCentral Geisbert TW, et al. Vesicular stomatitis virus-based vaccines protect nonhuman primates against aerosol challenge with Ebola and Marburg viruses. Vaccine. 2008;26(52):6894–900.CrossRefPubMedPubMedCentral
Metadata
Title
Marburg virus-like particles by co-expression of glycoprotein and matrix protein in insect cells induces immune responses in mice
Authors
Weiwei Gai
Xuexing Zheng
Chong Wang
Hualei Wang
Yongkun Zhao
Qi Wang
Gary Wong
Weijiao Zhang
Na Feng
Boning Qiu
Hang Chi
Nan Li
Tiecheng Wang
Yuwei Gao
Junjie Shan
Songtao Yang
Xianzhu Xia
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0869-3

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue