Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Co-infection of two reoviruses increases both viruses accumulation in rice by up-regulating of viroplasm components and movement proteins bilaterally and RNA silencing suppressor unilaterally

Authors: Shu Li, Tong Zhang, Yingzhi Zhu, Guohui Zhou

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

Synergism between southern rice black-streaked dwarf virus (SRBSDV) and rice ragged stunt virus (RRSV) not only aggravates disease symptoms but also enhances their vector acquisition efficiencies by increasing both viruses’ titers in co-infected rice plants, which may exacerbate the epidemic of both viruses and cause significant damage to rice production. The molecular mechanism of viral synergism of these two viruses remains unexplored.

Methods

Single and double infection of SRBSDV and RRSV were obtained with the viruliferous white-backed planthopper and brown planthopper inoculation on four-leaf stage rice seedlings, respectively, under experimental condition. The second upper leaf from each inoculated rice plants were collected at 9, 15, and 20 days post inoculation (dpi) and used for relative quantification of 13 SRBSDV genes and 11 RRSV genes by the reverse-transcription quantitative PCR. Viral gene expression levels were compared between singly and doubly infected samples at the same stage.

Results

The movement protein and viroplasm matrix-related genes as well as the structural (capsid) protein genes of both viruses were remarkably up-regulated at different time points in the co-infected rice plants compared with the samples singly infected with SRBSDV or RRSV, however, the RNA silencing suppressor (P6) of only RRSV, but not of both the viruses, was up-regulated.

Conclusions

The SRBSDV-RRSV synergism promoted replication and movement of both viruses and inhibited the host immunity by enhancing the gene suppressing effect exerted by one of them (RRSV).
Appendix
Available only for authorised users
Literature
1.
go back to reference Hibino H, Roechan M, Sudarisman S, Tantera DM. A virus disease of rice (Kerdil hampa) transmitted by brown planthopper, Nilaparvata lugens Stal in Indonesia. Contr Centr Res Inst Agric. 1977;35:1–15. Hibino H, Roechan M, Sudarisman S, Tantera DM. A virus disease of rice (Kerdil hampa) transmitted by brown planthopper, Nilaparvata lugens Stal in Indonesia. Contr Centr Res Inst Agric. 1977;35:1–15.
2.
go back to reference Pu LL, Xie GH, Ji CY, Ling B, Zhang MX, Xu DL, Zhou GH. Transmission characters of Southern rice black-streaked dwarf virus by rice planthoppers. Crop Prot. 2012;41:71–6.CrossRef Pu LL, Xie GH, Ji CY, Ling B, Zhang MX, Xu DL, Zhou GH. Transmission characters of Southern rice black-streaked dwarf virus by rice planthoppers. Crop Prot. 2012;41:71–6.CrossRef
3.
go back to reference Zhou GH, Wen JJ, Cai DJ, Li P, Xu DL, Zhang SG. Southern rice black-streaked dwarf virus: a new proposed Fijivirus species in the family Reoviridae. Chin Sci Bull. 2008;53:3677–85.CrossRef Zhou GH, Wen JJ, Cai DJ, Li P, Xu DL, Zhang SG. Southern rice black-streaked dwarf virus: a new proposed Fijivirus species in the family Reoviridae. Chin Sci Bull. 2008;53:3677–85.CrossRef
5.
go back to reference Matsukura K, Towata T, Sakai J, Onuki M, Okuda M, Matsumura M. Dynamics of Southern rice black-streaked dwarf virus in rice and implication or virus acquisition. Phytopathology. 2013;103:509–12.CrossRefPubMed Matsukura K, Towata T, Sakai J, Onuki M, Okuda M, Matsumura M. Dynamics of Southern rice black-streaked dwarf virus in rice and implication or virus acquisition. Phytopathology. 2013;103:509–12.CrossRefPubMed
6.
go back to reference Zhou LG, Du JY, Li XR, Cao L. Research on the Rice ragged dwarf virus in Guangdong. J Guangdong Agric Sci. 1982;3:31–4. Zhou LG, Du JY, Li XR, Cao L. Research on the Rice ragged dwarf virus in Guangdong. J Guangdong Agric Sci. 1982;3:31–4.
7.
go back to reference Li S, Wang H, Zhou GH. Synergism between Southern rice black-streaked dwarf virus and Rice ragged stunt virus enhances their insect vector acquisition. Phytopathology. 2014;104:794–9.CrossRefPubMed Li S, Wang H, Zhou GH. Synergism between Southern rice black-streaked dwarf virus and Rice ragged stunt virus enhances their insect vector acquisition. Phytopathology. 2014;104:794–9.CrossRefPubMed
8.
go back to reference Wang Q, Yang J, Zhou GH, Zhang HM, Chen JP, Adams MJ. The complete genome sequence of two isolates of Southern rice black-streaked dwarf virus, a new fijivirus. J Phytopathol. 2010;158:733–7.CrossRef Wang Q, Yang J, Zhou GH, Zhang HM, Chen JP, Adams MJ. The complete genome sequence of two isolates of Southern rice black-streaked dwarf virus, a new fijivirus. J Phytopathol. 2010;158:733–7.CrossRef
9.
go back to reference Lu YH, Zhang JF, Xiong RY, Xu QF, Zhou YJ. Identification of an RNA silencing suppressor encoded by Southern rice black- streaked dwarf virus S6. Sci Agric Sin. 2011;44:2909–17. Lu YH, Zhang JF, Xiong RY, Xu QF, Zhou YJ. Identification of an RNA silencing suppressor encoded by Southern rice black- streaked dwarf virus S6. Sci Agric Sin. 2011;44:2909–17.
10.
go back to reference Li J, Xue J, Zhang HM, Yang J, Lv MF, Xie L. Interactions between the P6 and P5- 1 proteins of southern rice black- streaked dwarf fijivirus in yeast and plant cells. Arch Virol. 2013;158:1649–59.CrossRefPubMed Li J, Xue J, Zhang HM, Yang J, Lv MF, Xie L. Interactions between the P6 and P5- 1 proteins of southern rice black- streaked dwarf fijivirus in yeast and plant cells. Arch Virol. 2013;158:1649–59.CrossRefPubMed
11.
go back to reference Mao Q, Zheng S, Han Q, Chen H, Ma Y, Jia D, Chen Q, Wei T. New model for the genesis and maturation of viroplasms induced by fijiviruses in insect vector cells. J Virol. 2013;87:6819–28.CrossRefPubMedPubMedCentral Mao Q, Zheng S, Han Q, Chen H, Ma Y, Jia D, Chen Q, Wei T. New model for the genesis and maturation of viroplasms induced by fijiviruses in insect vector cells. J Virol. 2013;87:6819–28.CrossRefPubMedPubMedCentral
12.
go back to reference Liu Y, Jia D, Chen H, Chen Q, Xie L, Wu Z, Wei T. The P7-1 protein of Southern rice black-streaked dwarf virus, a fijivirus, induces the formation of tubular structures in insect cells. Arch Virol. 2011;156:1729–36.CrossRefPubMed Liu Y, Jia D, Chen H, Chen Q, Xie L, Wu Z, Wei T. The P7-1 protein of Southern rice black-streaked dwarf virus, a fijivirus, induces the formation of tubular structures in insect cells. Arch Virol. 2011;156:1729–36.CrossRefPubMed
13.
go back to reference Supyani S, Hillman BI, Suzuki N. Baculovirus expression of the 11 mycoreovirus-1 genome segments and identification of the guanylyltransferase-encoding segment. J Gen Virol. 2007;88:342–50.CrossRefPubMed Supyani S, Hillman BI, Suzuki N. Baculovirus expression of the 11 mycoreovirus-1 genome segments and identification of the guanylyltransferase-encoding segment. J Gen Virol. 2007;88:342–50.CrossRefPubMed
14.
go back to reference Upadhyaya NM, Ramm K, Gellatly JA, Li Z, Kositratana W, Waterhouse PM. Rice ragged stunt oryzavirus genome segment S4 could encode an RNA dependent RNA polymerase and a second protein of unknown function. Arch Virol. 1998;143:1815–22.CrossRefPubMed Upadhyaya NM, Ramm K, Gellatly JA, Li Z, Kositratana W, Waterhouse PM. Rice ragged stunt oryzavirus genome segment S4 could encode an RNA dependent RNA polymerase and a second protein of unknown function. Arch Virol. 1998;143:1815–22.CrossRefPubMed
15.
go back to reference Li Z, Upadhyaya NM, Kositratana W, Gibbs AJ, Waterhouse PM. Genome segment 5 of rice ragged stunt virus encodes a virion protein. J Gen Virol. 1996;77:3155–60.CrossRefPubMed Li Z, Upadhyaya NM, Kositratana W, Gibbs AJ, Waterhouse PM. Genome segment 5 of rice ragged stunt virus encodes a virion protein. J Gen Virol. 1996;77:3155–60.CrossRefPubMed
16.
go back to reference Hagiwara K, Minobe Y, Nozu Y, Hibino H, Kimura I, Omura T. Component proteins and structures of rice ragged stunt virus. J Gen Virol. 1986;67:1711–5.CrossRef Hagiwara K, Minobe Y, Nozu Y, Hibino H, Kimura I, Omura T. Component proteins and structures of rice ragged stunt virus. J Gen Virol. 1986;67:1711–5.CrossRef
17.
go back to reference Upadhyaya NM, Zinkowsky E, Li Z, Kositratana W, Waterhouse PM. The Mr 43K major capsid protein of rice ragged stunt oryzavirus is a post-translationally processed product of a Mr 67,348 polypeptide encoded by genome segment 8. Arch Virol. 1996;141:1689–701.CrossRefPubMed Upadhyaya NM, Zinkowsky E, Li Z, Kositratana W, Waterhouse PM. The Mr 43K major capsid protein of rice ragged stunt oryzavirus is a post-translationally processed product of a Mr 67,348 polypeptide encoded by genome segment 8. Arch Virol. 1996;141:1689–701.CrossRefPubMed
18.
go back to reference Zhou GY, Lu XB, Lu HJ, Lei JL, Chen SX, Gong ZX. Rice ragged stunt oryzavirus: role of the viral spike protein in transmission by the insect vector. Ann Appl Biol. 1999;135:573–8.CrossRef Zhou GY, Lu XB, Lu HJ, Lei JL, Chen SX, Gong ZX. Rice ragged stunt oryzavirus: role of the viral spike protein in transmission by the insect vector. Ann Appl Biol. 1999;135:573–8.CrossRef
19.
go back to reference Wu J, Du Z, Wang C, Cai L, Hu M, Lin Q, Wu Z, Li Y, Xie L. Identification of Pns6, a putative movement protein of RRSV, as a silencing suppressor. Virol J. 2010;7:1–6.CrossRef Wu J, Du Z, Wang C, Cai L, Hu M, Lin Q, Wu Z, Li Y, Xie L. Identification of Pns6, a putative movement protein of RRSV, as a silencing suppressor. Virol J. 2010;7:1–6.CrossRef
20.
go back to reference Upadhyaya NM, Ramm K, Gellatly JA, Li Z, Kositratana W, Waterhouse PM. Rice ragged stunt oryzavirus genome segments S7 and S10 encode non-structural proteins of Mr 68,025 (Pns7) and Mr 32,364 (Pns10). Arch Virol. 1997;142:1719–26.CrossRefPubMed Upadhyaya NM, Ramm K, Gellatly JA, Li Z, Kositratana W, Waterhouse PM. Rice ragged stunt oryzavirus genome segments S7 and S10 encode non-structural proteins of Mr 68,025 (Pns7) and Mr 32,364 (Pns10). Arch Virol. 1997;142:1719–26.CrossRefPubMed
21.
go back to reference Jia DS, Guo NM, Chen HY, Akita F, Xie LH, Omura T, Wei TY. Assembly of the viroplasm by viral non-structural protein Pns10 is essential for persistent infection of rice ragged stunt virus in its insect vector. J Gen Virol. 2012;93:2299–309.CrossRefPubMed Jia DS, Guo NM, Chen HY, Akita F, Xie LH, Omura T, Wei TY. Assembly of the viroplasm by viral non-structural protein Pns10 is essential for persistent infection of rice ragged stunt virus in its insect vector. J Gen Virol. 2012;93:2299–309.CrossRefPubMed
22.
go back to reference Yoshida S, Forno DA, Gomez KA. Laboratory manual for physiological studies of rice. 3rd ed. Manila, Philippines: International Rice Research Institute; 1976. p. 61–4. Yoshida S, Forno DA, Gomez KA. Laboratory manual for physiological studies of rice. 3rd ed. Manila, Philippines: International Rice Research Institute; 1976. p. 61–4.
23.
go back to reference Wang H, Xu DL, Pu LL, Zhou GH. Southern rice black-streaked dwarf virus alters insect vectors’ host orientation preferences to enhance spread and increase Rice ragged stunt virus coinfection. Phytopathology. 2014;104:196–201.CrossRefPubMed Wang H, Xu DL, Pu LL, Zhou GH. Southern rice black-streaked dwarf virus alters insect vectors’ host orientation preferences to enhance spread and increase Rice ragged stunt virus coinfection. Phytopathology. 2014;104:196–201.CrossRefPubMed
24.
25.
go back to reference Alvarado V, Scholthof HB. Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens. Semin Cell Dev Biol. 2009;20:1032–40.CrossRefPubMedPubMedCentral Alvarado V, Scholthof HB. Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens. Semin Cell Dev Biol. 2009;20:1032–40.CrossRefPubMedPubMedCentral
26.
go back to reference Dunoyer P, Voinnet O. The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol. 2005;8:415–23.CrossRefPubMed Dunoyer P, Voinnet O. The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol. 2005;8:415–23.CrossRefPubMed
27.
go back to reference Pruss G, Ge X, Shi XM, Carrington JC, Vance VB. Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell. 1997;9:859–68.CrossRefPubMedPubMedCentral Pruss G, Ge X, Shi XM, Carrington JC, Vance VB. Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell. 1997;9:859–68.CrossRefPubMedPubMedCentral
28.
go back to reference Srinivasan R, Alvarez JM. Effect of mixed viral infections (Potato virus Y-Potato leaf roll virus) on biology and preference of vectors Myzus persicae and Macrosiphum euphorbiae (Hemiptera: Aphididae). J Econ Entomol. 2007;100:646–55.CrossRefPubMed Srinivasan R, Alvarez JM. Effect of mixed viral infections (Potato virus Y-Potato leaf roll virus) on biology and preference of vectors Myzus persicae and Macrosiphum euphorbiae (Hemiptera: Aphididae). J Econ Entomol. 2007;100:646–55.CrossRefPubMed
29.
go back to reference Takeshita M, Koizumi M, Noguchi M, Sueda K, Shimura H, Ishikawa N, Matsuura H, Ohshima K, Natsuaki T, Kuwata S, Furuya N, Tsuchiya K, Masuta C. Infection dynamics in viral spread and interference under the synergism between Cucumber mosaic virus and Turnip mosaic virus. Mol Plant-Microbe Interact. 2011;25:18–27.CrossRef Takeshita M, Koizumi M, Noguchi M, Sueda K, Shimura H, Ishikawa N, Matsuura H, Ohshima K, Natsuaki T, Kuwata S, Furuya N, Tsuchiya K, Masuta C. Infection dynamics in viral spread and interference under the synergism between Cucumber mosaic virus and Turnip mosaic virus. Mol Plant-Microbe Interact. 2011;25:18–27.CrossRef
30.
go back to reference Atabekov JG, Taliansky ME. Expression of a plant virus-coded transport function by different viral genomes. Adv Virus Res. 1990;38:201–48.CrossRefPubMed Atabekov JG, Taliansky ME. Expression of a plant virus-coded transport function by different viral genomes. Adv Virus Res. 1990;38:201–48.CrossRefPubMed
31.
go back to reference Ryabov EV, Robinson DJ, Taliansky ME. A plant virus-encoded protein facilitates long-distance movement of heterlogous RNA. Proc Natl Acad Sci U S A. 1999;96:1212–7.CrossRefPubMedPubMedCentral Ryabov EV, Robinson DJ, Taliansky ME. A plant virus-encoded protein facilitates long-distance movement of heterlogous RNA. Proc Natl Acad Sci U S A. 1999;96:1212–7.CrossRefPubMedPubMedCentral
32.
go back to reference Tomenius K. Function and localisation of movement proteins of Tobacco mosaic virus and Red clover mottle virus. NATO ASI series H: Cell biology; 1990. p. 249–59. Tomenius K. Function and localisation of movement proteins of Tobacco mosaic virus and Red clover mottle virus. NATO ASI series H: Cell biology; 1990. p. 249–59.
Metadata
Title
Co-infection of two reoviruses increases both viruses accumulation in rice by up-regulating of viroplasm components and movement proteins bilaterally and RNA silencing suppressor unilaterally
Authors
Shu Li
Tong Zhang
Yingzhi Zhu
Guohui Zhou
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0819-0

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue