Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Quantitative phosphoproteome on the silkworm (Bombyx mori) cells infected with baculovirus

Authors: Jauharotus Shobahah, Shengjie Xue, Dongbing Hu, Cui Zhao, Ming Wei, Yanping Quan, Wei Yu

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

Bombyx mori has become an important model organism for many fundamental studies. Bombyx mori nucleopolyhedrovirus (BmNPV) is a significant pathogen to Bombyx mori, yet also an efficient vector for recombinant protein production. A previous study indicated that acetylation plays many vital roles in several cellular processes of Bombyx mori while global phosphorylation pattern upon BmNPV infection remains elusive.

Method

Employing tandem mass tag (TMT) labeling and phosphorylation affinity enrichment followed by high-resolution LC-MS/MS analysis and intensive bioinformatics analysis, the quantitative phosphoproteome in Bombyx mori cells infected by BmNPV at 24 hpi with an MOI of 10 was extensively examined.

Results

Totally, 6480 phosphorylation sites in 2112 protein groups were identified, among which 4764 sites in 1717 proteins were quantified. Among the quantified proteins, 81 up-regulated and 25 down-regulated sites were identified with significant criteria (the quantitative ratio above 1.3 was considered as up-regulation and below 0.77 was considered as down-regulation) and with significant p-value (p < 0.05). Some proteins of BmNPV were also hyperphosphorylated during infection, such as P6.9, 39 K, LEF-6, Ac58-like protein, Ac82-like protein and BRO-D.

Conclusion

The phosphorylated proteins were primary involved in several specific functions, out of which, we focused on the binding activity, protein synthesis, viral replication and apoptosis through kinase activity.
Literature
1.
go back to reference Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science. 2004;306:1937–40.CrossRefPubMed Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science. 2004;306:1937–40.CrossRefPubMed
2.
go back to reference Jiang L, Xia Q. The progress and future of enhanching antiviral capacity by transgenic technology in the silkworm Bombyx mori. Insect Biochem Mol Biol Rev. 2014;48:1–7.CrossRef Jiang L, Xia Q. The progress and future of enhanching antiviral capacity by transgenic technology in the silkworm Bombyx mori. Insect Biochem Mol Biol Rev. 2014;48:1–7.CrossRef
3.
go back to reference Sekimizu N, Paudel A, Hamamoto H. Animal welfare and use of silkworm as a model animal. Drug Discov Ther. 2012;6(4):226–9.PubMed Sekimizu N, Paudel A, Hamamoto H. Animal welfare and use of silkworm as a model animal. Drug Discov Ther. 2012;6(4):226–9.PubMed
4.
go back to reference Mita K. Genome of a lepidopteran model insect, the silkworm Bombyx mori. Seikagaku. 2009;81(5):353–60.PubMed Mita K. Genome of a lepidopteran model insect, the silkworm Bombyx mori. Seikagaku. 2009;81(5):353–60.PubMed
5.
go back to reference Mon H, Izumi M, Mitsunobu H, Tatsuke T, Liyama K, Jikuya H, et al. Post-translational modification of the N-terminal tail of histone H3 in holocentric chromosomes of Bombyx mori. Insect Biochem Mol Biol. 2011;41:902–8.CrossRefPubMed Mon H, Izumi M, Mitsunobu H, Tatsuke T, Liyama K, Jikuya H, et al. Post-translational modification of the N-terminal tail of histone H3 in holocentric chromosomes of Bombyx mori. Insect Biochem Mol Biol. 2011;41:902–8.CrossRefPubMed
6.
go back to reference Nie Z, Zhu H, Zhou Y, Wu C, Liu Y, Sheng Q, et al. Comprehensive profiling of lysine acetylation suggest the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori. Proteomics. 2015;15:3253–66.CrossRefPubMed Nie Z, Zhu H, Zhou Y, Wu C, Liu Y, Sheng Q, et al. Comprehensive profiling of lysine acetylation suggest the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori. Proteomics. 2015;15:3253–66.CrossRefPubMed
7.
go back to reference Jiang L, Zhao P, Cheng T, Sun Q, Peng Z, Dang Y, et al. A transgenic animal with antiviral properties that might inhibit multiple stages of infection. Antivir Res. 2013;98:171–3.CrossRefPubMed Jiang L, Zhao P, Cheng T, Sun Q, Peng Z, Dang Y, et al. A transgenic animal with antiviral properties that might inhibit multiple stages of infection. Antivir Res. 2013;98:171–3.CrossRefPubMed
8.
go back to reference Lee TI, Young RA. Transcription of eukaryotic protein-coding genes. Annu Rev Genet. 2000;34:77–137.CrossRefPubMed Lee TI, Young RA. Transcription of eukaryotic protein-coding genes. Annu Rev Genet. 2000;34:77–137.CrossRefPubMed
9.
go back to reference Lee DF, Chen CC, Hsu TA, Juang JL. A baculovirus super infection system: efficient vehicle for gene transfer into drosophila S2 cells. J Virol. 2000;74:11873–80.CrossRefPubMedPubMedCentral Lee DF, Chen CC, Hsu TA, Juang JL. A baculovirus super infection system: efficient vehicle for gene transfer into drosophila S2 cells. J Virol. 2000;74:11873–80.CrossRefPubMedPubMedCentral
10.
go back to reference Deribe YL, Pawson T, Dikic I. Post-translational modifications in signal integration. Nat Struct Mol Biol. 2010;17:666–72.CrossRefPubMed Deribe YL, Pawson T, Dikic I. Post-translational modifications in signal integration. Nat Struct Mol Biol. 2010;17:666–72.CrossRefPubMed
11.
go back to reference Chang C, Stewart RC. The two-component system. Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiol. 1998;117(3):723–31.CrossRefPubMedPubMedCentral Chang C, Stewart RC. The two-component system. Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiol. 1998;117(3):723–31.CrossRefPubMedPubMedCentral
12.
go back to reference van Weeren PC, de Bruyn KM, de Vries-Smits AM, van Lint J, Burgering BM. Essential role for protein kinase B (PKB) in insulin-induced glycogen synthase kinase 3 inactivation. Characterization of dominant-negative mutant of PKB. J Biol Chem. 1998;273:13150–6.CrossRefPubMed van Weeren PC, de Bruyn KM, de Vries-Smits AM, van Lint J, Burgering BM. Essential role for protein kinase B (PKB) in insulin-induced glycogen synthase kinase 3 inactivation. Characterization of dominant-negative mutant of PKB. J Biol Chem. 1998;273:13150–6.CrossRefPubMed
13.
go back to reference Cole PA, Shen K, Qiao Y, Wang D. Protein tyrosine kinases Src and Csk: a tail's tale. Curr Opin Chem Biol. 2003;7:580–5.CrossRefPubMed Cole PA, Shen K, Qiao Y, Wang D. Protein tyrosine kinases Src and Csk: a tail's tale. Curr Opin Chem Biol. 2003;7:580–5.CrossRefPubMed
14.
15.
go back to reference Zemskov EA, Kang W, Maeda S. Evidence for nucleic acid binding ability and nucleosome association of Bombyx mori nucleopolyhedrovirus BRO proteins. J Virol. 2000;74(15):6784–9.CrossRefPubMedPubMedCentral Zemskov EA, Kang W, Maeda S. Evidence for nucleic acid binding ability and nucleosome association of Bombyx mori nucleopolyhedrovirus BRO proteins. J Virol. 2000;74(15):6784–9.CrossRefPubMedPubMedCentral
16.
go back to reference Rahman MM, Gopinathan KP. Systemic and in vitro infection process of Bombyx mori nucleopolyhedrovirus. Virus Res. 2004;101:109–18.CrossRefPubMed Rahman MM, Gopinathan KP. Systemic and in vitro infection process of Bombyx mori nucleopolyhedrovirus. Virus Res. 2004;101:109–18.CrossRefPubMed
17.
go back to reference Xue J, Qiao N, Zhang W, Cheng RL, Zhang XQ, Bao YY, et al. Dynamic interaction between Bombyx mori nucleopolyhedrovirus and its host cells revealed by transcriptome analysis. J Virol. 2012;86:7345–59.CrossRefPubMedPubMedCentral Xue J, Qiao N, Zhang W, Cheng RL, Zhang XQ, Bao YY, et al. Dynamic interaction between Bombyx mori nucleopolyhedrovirus and its host cells revealed by transcriptome analysis. J Virol. 2012;86:7345–59.CrossRefPubMedPubMedCentral
18.
go back to reference Earnshaw WC, Heck MM. Localization of topoisomerase II in mitotic chromosomes. J Cell Biol. 1985;100:1716–25.CrossRefPubMed Earnshaw WC, Heck MM. Localization of topoisomerase II in mitotic chromosomes. J Cell Biol. 1985;100:1716–25.CrossRefPubMed
19.
go back to reference Liu LF, Liu CC, Alberts BM. Type II DNA topoisomerases: enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break. Cell. 1980;19(3):697–707.CrossRefPubMed Liu LF, Liu CC, Alberts BM. Type II DNA topoisomerases: enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break. Cell. 1980;19(3):697–707.CrossRefPubMed
20.
go back to reference Ullsperger CJ, Vologodskii AV, Cozzarelli NR. Unlinking of DNA topoisomerase during DNA replication. In: Eckstein F, David M, Lilley J, editors. Nucleic acid and molecular biology. Berlin: Springer; 1995. p. 115.CrossRef Ullsperger CJ, Vologodskii AV, Cozzarelli NR. Unlinking of DNA topoisomerase during DNA replication. In: Eckstein F, David M, Lilley J, editors. Nucleic acid and molecular biology. Berlin: Springer; 1995. p. 115.CrossRef
21.
go back to reference Berrios M, Osheroff N, Fisher PA. In situ localization of DNA topoisomerase II, a major polypeptide component of the drosophila nuclear matrix fraction. Proc Natl Acad Sci U S A. 1985;82:4142–6.CrossRefPubMedPubMedCentral Berrios M, Osheroff N, Fisher PA. In situ localization of DNA topoisomerase II, a major polypeptide component of the drosophila nuclear matrix fraction. Proc Natl Acad Sci U S A. 1985;82:4142–6.CrossRefPubMedPubMedCentral
22.
go back to reference Wu Y, Wu Y, Wu Y, Tang H, Wu H, Zhang G, et al. Screening of candidate proteins interacting with IE-2 of BmNPV. Mol Biol Rep. 2013;40:5797–804.CrossRefPubMed Wu Y, Wu Y, Wu Y, Tang H, Wu H, Zhang G, et al. Screening of candidate proteins interacting with IE-2 of BmNPV. Mol Biol Rep. 2013;40:5797–804.CrossRefPubMed
24.
go back to reference Vu L, Siddiqi I, Lee BS, Josaitis CA, Nomura M. RNA polymerase switch in transcription of yeast rDNA: role of transcription factor UAF (upstream activation factor) in silencing rDNA transcription by RNA polymerase II. Proc Natl Acad Sci U S A. 1999;96:4390–5.CrossRefPubMedPubMedCentral Vu L, Siddiqi I, Lee BS, Josaitis CA, Nomura M. RNA polymerase switch in transcription of yeast rDNA: role of transcription factor UAF (upstream activation factor) in silencing rDNA transcription by RNA polymerase II. Proc Natl Acad Sci U S A. 1999;96:4390–5.CrossRefPubMedPubMedCentral
25.
go back to reference Liu M, Guo A, Boukhgalter B, Van Den Heuvel K, Tripp M. Et el. Characterization of the fission yeast ribosomal DNA binding factor: components share homology with upstream activating factor and with SWI/SNF subunits. Nucleic Acids Res. 2002;30(24):5347–59.CrossRefPubMedPubMedCentral Liu M, Guo A, Boukhgalter B, Van Den Heuvel K, Tripp M. Et el. Characterization of the fission yeast ribosomal DNA binding factor: components share homology with upstream activating factor and with SWI/SNF subunits. Nucleic Acids Res. 2002;30(24):5347–59.CrossRefPubMedPubMedCentral
26.
go back to reference Nakazawa N, Nakamura T, Kokubu A, Ebe M, Nagao K, Yanagida M. Dissection of the essential steps for condensin accumulation at kinetochores and rDNAs during fission yeast mitosis. J Cell Biol. 2008;180(6):1115–31.CrossRefPubMedPubMedCentral Nakazawa N, Nakamura T, Kokubu A, Ebe M, Nagao K, Yanagida M. Dissection of the essential steps for condensin accumulation at kinetochores and rDNAs during fission yeast mitosis. J Cell Biol. 2008;180(6):1115–31.CrossRefPubMedPubMedCentral
27.
go back to reference Singh CP, Singh J, Nagaraju J. A baculovirus-encoded microRNA (miRNA) suppresses its host miRNA biogenesis by regulating the exportin-5 cofactor ran. J Virol. 2012;86:7867–79.CrossRefPubMedPubMedCentral Singh CP, Singh J, Nagaraju J. A baculovirus-encoded microRNA (miRNA) suppresses its host miRNA biogenesis by regulating the exportin-5 cofactor ran. J Virol. 2012;86:7867–79.CrossRefPubMedPubMedCentral
28.
go back to reference Sanger JM, Golla R, Safer D, Choi JK, Yu KR, Sanger JW, et al. Increasing intracellular concentrations of thymosin beta 4 in PtK2 cells: effects on stress fibers, cytokinesis, and cell spreading. Cell Motil Cytoskeleton. 1995;31:307–22.CrossRefPubMed Sanger JM, Golla R, Safer D, Choi JK, Yu KR, Sanger JW, et al. Increasing intracellular concentrations of thymosin beta 4 in PtK2 cells: effects on stress fibers, cytokinesis, and cell spreading. Cell Motil Cytoskeleton. 1995;31:307–22.CrossRefPubMed
29.
go back to reference Safer D, Elzinga M, Nachmias VT. Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J Biol Chem. 1991;266(7):4029–32.PubMed Safer D, Elzinga M, Nachmias VT. Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J Biol Chem. 1991;266(7):4029–32.PubMed
30.
go back to reference Grant DS, Kinsella JL, Kibbey MC, LaFlamme S, Burbelo PD, Goldstein AL, et al. Matrigel induces thymosin beta 4 gene in differentiating endothelial cells. J Cell Sci. 1995;108(12):3685–94.PubMed Grant DS, Kinsella JL, Kibbey MC, LaFlamme S, Burbelo PD, Goldstein AL, et al. Matrigel induces thymosin beta 4 gene in differentiating endothelial cells. J Cell Sci. 1995;108(12):3685–94.PubMed
31.
go back to reference Kim S, Kwon J. Actin cytoskeletal rearrangement and dysfunction due to activation of the receptor for advanced glycation end products is inhibited by thymosin beta 4. J Physiol. 2015;593(8):1873–86.CrossRefPubMedPubMedCentral Kim S, Kwon J. Actin cytoskeletal rearrangement and dysfunction due to activation of the receptor for advanced glycation end products is inhibited by thymosin beta 4. J Physiol. 2015;593(8):1873–86.CrossRefPubMedPubMedCentral
32.
go back to reference Radtke K, Döhner K, Sodeik B. Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell. Cell Microbiol. 2006;8(3):387–400.CrossRefPubMed Radtke K, Döhner K, Sodeik B. Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell. Cell Microbiol. 2006;8(3):387–400.CrossRefPubMed
33.
go back to reference Li Y, Ming F, Huang H, Guo K, Chen H, Jin M, et al. Proteome response of chicken embryo fibroblast cells to recombinant H5N1 avian influenza viruses with different neuraminidase stalk lengths. Sci Rep. 2017;12(7):40698.CrossRef Li Y, Ming F, Huang H, Guo K, Chen H, Jin M, et al. Proteome response of chicken embryo fibroblast cells to recombinant H5N1 avian influenza viruses with different neuraminidase stalk lengths. Sci Rep. 2017;12(7):40698.CrossRef
34.
35.
go back to reference Champoux JJ. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem. 2001;70:369–413.CrossRefPubMed Champoux JJ. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem. 2001;70:369–413.CrossRefPubMed
36.
go back to reference Scheper GC, Vries RG, Broere M, Usmany M, Voorma HO, Vlak JM, et al. Translational properties of the untranslated regions of the p10 messenger RNA of Autographa californica multicapsid nucleopolyhedrovirus. J Gen Virol. 1997;78:687–96.CrossRefPubMed Scheper GC, Vries RG, Broere M, Usmany M, Voorma HO, Vlak JM, et al. Translational properties of the untranslated regions of the p10 messenger RNA of Autographa californica multicapsid nucleopolyhedrovirus. J Gen Virol. 1997;78:687–96.CrossRefPubMed
37.
go back to reference Chang YW, Traugh JA. Phosphorylation of elongation factor 1 and ribosomal protein S6 by multipotential S6 kinase and insulin stimulation of translational elongation. J Biol Chem. 1997;272:28252–7.CrossRefPubMed Chang YW, Traugh JA. Phosphorylation of elongation factor 1 and ribosomal protein S6 by multipotential S6 kinase and insulin stimulation of translational elongation. J Biol Chem. 1997;272:28252–7.CrossRefPubMed
38.
go back to reference Minella O, Cormier P, Morales J, Poulhe R, Belle R, Mulner-Lorillon O. cdc2 kinase sets a memory phosphorylation signal on elongation factor EF-1 delta during meiotic cell division, which perdures in early development. Cell Mol Biol (Noisy-Le-Grand). 1994;40:521–5. Minella O, Cormier P, Morales J, Poulhe R, Belle R, Mulner-Lorillon O. cdc2 kinase sets a memory phosphorylation signal on elongation factor EF-1 delta during meiotic cell division, which perdures in early development. Cell Mol Biol (Noisy-Le-Grand). 1994;40:521–5.
39.
go back to reference Venema RC, Peters HI, Traugh JA. Phosphorylation of elongation factor 1 (EF-1) and valyl-tRNA synthetase by protein kinase C and stimulation of EF-1 activity. J Biol Chem. 1991;266:12574–80.PubMed Venema RC, Peters HI, Traugh JA. Phosphorylation of elongation factor 1 (EF-1) and valyl-tRNA synthetase by protein kinase C and stimulation of EF-1 activity. J Biol Chem. 1991;266:12574–80.PubMed
40.
go back to reference Kawaguchi Y, Kato K, Tanaka M, Kanamori M, Nishiyama Y, Yamanashi Y. Conserved protein Kinases encoded by Herpesviruses and cellular protein Kinase cdc2 target the same Phosphorylation site in eukaryotic elongation factor 1δ. J Virol. 2003;77(4):2359–68.CrossRefPubMedPubMedCentral Kawaguchi Y, Kato K, Tanaka M, Kanamori M, Nishiyama Y, Yamanashi Y. Conserved protein Kinases encoded by Herpesviruses and cellular protein Kinase cdc2 target the same Phosphorylation site in eukaryotic elongation factor 1δ. J Virol. 2003;77(4):2359–68.CrossRefPubMedPubMedCentral
41.
go back to reference Jankowsky E. RNA Helicases at work: binding and rearranging. Trends Biochem Sci. 2010;36:19–29.CrossRef Jankowsky E. RNA Helicases at work: binding and rearranging. Trends Biochem Sci. 2010;36:19–29.CrossRef
43.
go back to reference Gorbalenya AE, Koonin EV. Helicases: amino acid comparisons and structure-function relationships. Curr Opin Struct Biol. 1993;3:419–29.CrossRef Gorbalenya AE, Koonin EV. Helicases: amino acid comparisons and structure-function relationships. Curr Opin Struct Biol. 1993;3:419–29.CrossRef
44.
go back to reference Xu L, Khadijah S, Fang S, Wang L, Tay FP, Liu DX. The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication. J Virol. 2010;84:8571–83.CrossRefPubMedPubMedCentral Xu L, Khadijah S, Fang S, Wang L, Tay FP, Liu DX. The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication. J Virol. 2010;84:8571–83.CrossRefPubMedPubMedCentral
45.
go back to reference Sunden Y, Semba S, Suzuki T, Okada Y, Orba Y, Nagashima K, et al. Identification of DDX1 as a JC virus transcriptional control region-binding protein. Microbiol Immunol. 2007;51:327–37.CrossRefPubMed Sunden Y, Semba S, Suzuki T, Okada Y, Orba Y, Nagashima K, et al. Identification of DDX1 as a JC virus transcriptional control region-binding protein. Microbiol Immunol. 2007;51:327–37.CrossRefPubMed
46.
go back to reference Pan TT, Fang CY, Yi ZG, Yang PY, Yuan ZG. Subproteomic analysis of the cellular proteins associated with the 3′ untranslated region of the hepatitis C virus genome in human liver cells. Biochem Biophys Res Commun. 2006;347:683–91.CrossRef Pan TT, Fang CY, Yi ZG, Yang PY, Yuan ZG. Subproteomic analysis of the cellular proteins associated with the 3′ untranslated region of the hepatitis C virus genome in human liver cells. Biochem Biophys Res Commun. 2006;347:683–91.CrossRef
47.
go back to reference Edgcomb SP, Carmel AB, Naji S, Ambrus-Aikelin G, Reyes JR, Saphire AC, et al. DDX1 is an RNA-dependent ATPase involved in HIV-1 rev function and virus replication. J Mol Biol. 2012;415:61–74.CrossRefPubMed Edgcomb SP, Carmel AB, Naji S, Ambrus-Aikelin G, Reyes JR, Saphire AC, et al. DDX1 is an RNA-dependent ATPase involved in HIV-1 rev function and virus replication. J Mol Biol. 2012;415:61–74.CrossRefPubMed
48.
go back to reference Braunagel SC, Parr R, Belyavskyi M, Summers MD. Autographa californica Nucleopolyhedrovirus infection results in Sf9 cell cycle arrest at G2/M phase. Virology. 1998;244:195–211.CrossRefPubMed Braunagel SC, Parr R, Belyavskyi M, Summers MD. Autographa californica Nucleopolyhedrovirus infection results in Sf9 cell cycle arrest at G2/M phase. Virology. 1998;244:195–211.CrossRefPubMed
49.
go back to reference Vanarsdall AL, Okano K, Rohrmann GF. Characterization of the replication of a baculovirus mutant lacking the DNA polymerase gene. Virology. 2005;331:175–80.CrossRefPubMed Vanarsdall AL, Okano K, Rohrmann GF. Characterization of the replication of a baculovirus mutant lacking the DNA polymerase gene. Virology. 2005;331:175–80.CrossRefPubMed
51.
go back to reference Lin YCJ, Li J, Irwin CR, Jenkins H, DeLange L, Evans DH. Vaccinia virus DNA ligase recruits cellular topoisomerase II to sites of viral replication and assembly. J Virol. 2008;82(12):5922–32.CrossRefPubMedPubMedCentral Lin YCJ, Li J, Irwin CR, Jenkins H, DeLange L, Evans DH. Vaccinia virus DNA ligase recruits cellular topoisomerase II to sites of viral replication and assembly. J Virol. 2008;82(12):5922–32.CrossRefPubMedPubMedCentral
52.
go back to reference Yang HP, Luo SJ, Li YN, Zhang YZ, Zhang ZF. Identification and characterization of the DNA replication origin recognition complex gene family in the silkworm Bombyx mori. Biosci Rep. 2011;31(5):353–61.CrossRefPubMed Yang HP, Luo SJ, Li YN, Zhang YZ, Zhang ZF. Identification and characterization of the DNA replication origin recognition complex gene family in the silkworm Bombyx mori. Biosci Rep. 2011;31(5):353–61.CrossRefPubMed
54.
go back to reference Chaudhuri B, Xu H, Todorov I, Dutta A, Yates JL. Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc Natl Acad Sci U S A. 2001;98:10085–9.CrossRefPubMedPubMedCentral Chaudhuri B, Xu H, Todorov I, Dutta A, Yates JL. Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc Natl Acad Sci U S A. 2001;98:10085–9.CrossRefPubMedPubMedCentral
56.
go back to reference Acrani GO, Gomes R, Proença-Módena JL, da Silva AF, Carminati PO, Silva ML, et al. Apoptosis induced by Oropouche virus infection in HeLa cells is dependent on virus protein expression. Virus Res. 2010;149:56–63.CrossRefPubMed Acrani GO, Gomes R, Proença-Módena JL, da Silva AF, Carminati PO, Silva ML, et al. Apoptosis induced by Oropouche virus infection in HeLa cells is dependent on virus protein expression. Virus Res. 2010;149:56–63.CrossRefPubMed
57.
go back to reference Crook NE, Clem RJ, Miller LK. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol. 1993;67(4):2168–74.PubMedPubMedCentral Crook NE, Clem RJ, Miller LK. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol. 1993;67(4):2168–74.PubMedPubMedCentral
58.
go back to reference RJ BMJC, Miller LK. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/his sequence motifs. J Virol. 1994;68(4):2521–8. RJ BMJC, Miller LK. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/his sequence motifs. J Virol. 1994;68(4):2521–8.
59.
go back to reference Utz P, Anderson P. Life and death decisions: regulation of apoptosis by proteolysis of signaling molecules. Cell Death Differ. 2000;7:589–602.CrossRefPubMed Utz P, Anderson P. Life and death decisions: regulation of apoptosis by proteolysis of signaling molecules. Cell Death Differ. 2000;7:589–602.CrossRefPubMed
60.
go back to reference Wheeler DL, Martin KE, Ness KJ, Li Y, Dreckschmidt NE, Wartman M, et al. Protein kinase C epsilon is an endogenous photosensitizer that enhances ultraviolet radiation-induced cutaneous damage and development of squamous cell carcinomas1. Cancer Res. 2004;64:7756–65.CrossRefPubMed Wheeler DL, Martin KE, Ness KJ, Li Y, Dreckschmidt NE, Wartman M, et al. Protein kinase C epsilon is an endogenous photosensitizer that enhances ultraviolet radiation-induced cutaneous damage and development of squamous cell carcinomas1. Cancer Res. 2004;64:7756–65.CrossRefPubMed
61.
go back to reference Catley MC, Cambridge LM, Nasuhara Y, Ito K, Chivers JE, Baton A, et al. Inhibitors of protein kinase C (PKC) prevent activated transcription: role of events downstream of NF-KappaB DNA binding. J Biol Chem. 2004;279:18457–66.CrossRefPubMed Catley MC, Cambridge LM, Nasuhara Y, Ito K, Chivers JE, Baton A, et al. Inhibitors of protein kinase C (PKC) prevent activated transcription: role of events downstream of NF-KappaB DNA binding. J Biol Chem. 2004;279:18457–66.CrossRefPubMed
63.
go back to reference Lin CH, Jarvis DL. Utility of temporally distinct baculovirus promoters for constitutive and baculovirus-inducible transgene expression in transformed insect cells. J Biotechnol. 2013;165(1):11–7.CrossRefPubMedPubMedCentral Lin CH, Jarvis DL. Utility of temporally distinct baculovirus promoters for constitutive and baculovirus-inducible transgene expression in transformed insect cells. J Biotechnol. 2013;165(1):11–7.CrossRefPubMedPubMedCentral
64.
go back to reference Gomi S, Zhou CE, Yih W, Majima K, Maeda S. Deletion analysis of four of eighteen late gene expression factor gene homologues of the baculovirus, BmNPV. Virology. 1997;230(1):35–47.CrossRefPubMed Gomi S, Zhou CE, Yih W, Majima K, Maeda S. Deletion analysis of four of eighteen late gene expression factor gene homologues of the baculovirus, BmNPV. Virology. 1997;230(1):35–47.CrossRefPubMed
65.
go back to reference Broussard DR, Guarino LA, Jarvis DL. Dynamic phosphorylation of Autographa californica nuclear polyhedrosis virus pp31. J Virol. 1996;70(10):6767–74.PubMedPubMedCentral Broussard DR, Guarino LA, Jarvis DL. Dynamic phosphorylation of Autographa californica nuclear polyhedrosis virus pp31. J Virol. 1996;70(10):6767–74.PubMedPubMedCentral
66.
go back to reference Oppenheimer DI, Volkman LE. Proteolysis of p6.9 induced by cytochalasin D in Autographa californica M nuclear polyhedrosis virus-infected cells. Virology. 1995;207(1):1–11.CrossRefPubMed Oppenheimer DI, Volkman LE. Proteolysis of p6.9 induced by cytochalasin D in Autographa californica M nuclear polyhedrosis virus-infected cells. Virology. 1995;207(1):1–11.CrossRefPubMed
67.
go back to reference Tweeten KA, Bulla LA, Consigli RA. Characterization of an extremely basic protein derived from granulosis virus nucleocapsids. J Virol. 1980;33(2):866–76.PubMedPubMedCentral Tweeten KA, Bulla LA, Consigli RA. Characterization of an extremely basic protein derived from granulosis virus nucleocapsids. J Virol. 1980;33(2):866–76.PubMedPubMedCentral
68.
go back to reference Funk CJ, Consigli RA. Phosphate cycling on the basic protein of Plodia interpunctella granulosis virus. Virology. 1993;193(1):396–402.CrossRefPubMed Funk CJ, Consigli RA. Phosphate cycling on the basic protein of Plodia interpunctella granulosis virus. Virology. 1993;193(1):396–402.CrossRefPubMed
69.
go back to reference Wilson ME, Consigli RA. Functions of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella. Virology. 1985;143(2):526–35.CrossRefPubMed Wilson ME, Consigli RA. Functions of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella. Virology. 1985;143(2):526–35.CrossRefPubMed
70.
go back to reference Li A, Zhao H, Lai Q, Huang Z, Yuan M, Yang K. Posttranslational modifications of Baculovirus Protamine-like protein P6.9 and the significance of its hyperphosphorylation for viral very late Gene Hyperexpression. Sandri-Goldin RM ed. J Virol. 2015;89(15):7646–59.CrossRefPubMedPubMedCentral Li A, Zhao H, Lai Q, Huang Z, Yuan M, Yang K. Posttranslational modifications of Baculovirus Protamine-like protein P6.9 and the significance of its hyperphosphorylation for viral very late Gene Hyperexpression. Sandri-Goldin RM ed. J Virol. 2015;89(15):7646–59.CrossRefPubMedPubMedCentral
71.
go back to reference Lin G, Blissard GW. Analysis of an Autographa californica multicapsid nucleopolyhedrovirus LEF-6-null virus: LEF-6 is not essential for viral replication but appears to accelerate late gene transcription. J Virol. 2002;76(11):5503–14.CrossRefPubMedPubMedCentral Lin G, Blissard GW. Analysis of an Autographa californica multicapsid nucleopolyhedrovirus LEF-6-null virus: LEF-6 is not essential for viral replication but appears to accelerate late gene transcription. J Virol. 2002;76(11):5503–14.CrossRefPubMedPubMedCentral
Metadata
Title
Quantitative phosphoproteome on the silkworm (Bombyx mori) cells infected with baculovirus
Authors
Jauharotus Shobahah
Shengjie Xue
Dongbing Hu
Cui Zhao
Ming Wei
Yanping Quan
Wei Yu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0783-8

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue