Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Involvement of fatty acid synthase in dengue virus infection

Authors: Natthida Tongluan, Suwipa Ramphan, Phitchayapak Wintachai, Janthima Jaresitthikunchai, Sarawut Khongwichit, Nitwara Wikan, Supoth Rajakam, Sutee Yoksan, Nuttaporn Wongsiriroj, Sittiruk Roytrakul, Duncan R. Smith

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

The mosquito transmitted Dengue virus (DENV) remains a significant public health problem in many tropical and subtropical countries. Increasing evidence has suggested that during the infection process cellular lipids play important roles at several stages of the replication cycle. This study sought to characterize the changes in lipid metabolism gene expression and investigated the role of one enzyme, fatty acid synthase, in DENV infection.

Methods

Transcriptional profiles of genes associated with lipid metabolism were evaluated by real-time PCR after infection of different cell lines (HepG2 and HEK293T/17) and with different DENVs (laboratory adapted and low passage). Expression profiles of genes were evaluated by western blotting. A critical lipid metabolism protein, fatty acid synthase was down-regulated through siRNA and inhibited with orlistat and the effect on DENV infection determined by flow cytometry, plaque assay, western blotting and confocal microscopy.

Results

The results showed alterations of gene transcription and expression were seen in genes variously associated with lipogenesis, lipolysis and fatty acid β-oxidation during DENV infection. Interference of fatty acid synthase with either siRNA or orlistat had marked effects on virus production, with orlistat having an EC50 value of 10.07 μM at 24 h post infection. However, non-structural protein expression was largely unaffected.

Conclusions

While drug treatment reduced virus titer by up to 3Log10, no significant effect on DENV non-structural protein expression was observed, suggesting that fatty acid synthase acts through an effect on virion formation.
Appendix
Available only for authorised users
Literature
1.
5.
go back to reference Bhoomiboonchoo P, Nisalak A, Chansatiporn N, Yoon IK, Kalayanarooj S, Thipayamongkolgul M, et al. Sequential dengue virus infections detected in active and passive surveillance programs in Thailand, 1994–2010. BMC Public Health. 2015;15:250.CrossRefPubMedPubMedCentral Bhoomiboonchoo P, Nisalak A, Chansatiporn N, Yoon IK, Kalayanarooj S, Thipayamongkolgul M, et al. Sequential dengue virus infections detected in active and passive surveillance programs in Thailand, 1994–2010. BMC Public Health. 2015;15:250.CrossRefPubMedPubMedCentral
6.
go back to reference Halstead SB. Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenetic cascade. Rev Infect Dis. 1989;11 Suppl 4:S830–9.CrossRefPubMed Halstead SB. Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenetic cascade. Rev Infect Dis. 1989;11 Suppl 4:S830–9.CrossRefPubMed
7.
8.
go back to reference Noisakran S, Onlamoon N, Pattanapanyasat K, Hsiao HM, Songprakhon P, Angkasekwinai N, et al. Role of CD61+ cells in thrombocytopenia of dengue patients. Int J Hematol. 2012;96:600–10.CrossRefPubMedPubMedCentral Noisakran S, Onlamoon N, Pattanapanyasat K, Hsiao HM, Songprakhon P, Angkasekwinai N, et al. Role of CD61+ cells in thrombocytopenia of dengue patients. Int J Hematol. 2012;96:600–10.CrossRefPubMedPubMedCentral
9.
go back to reference Sornjai W, Khungwanmaythawee K, Svasti S, Fucharoen S, Wintachai P, Yoksan S, et al. Dengue virus infection of erythroid precursor cells is modulated by both thalassemia trait status and virus adaptation. Virology. 2014;471–473:61–71.CrossRefPubMed Sornjai W, Khungwanmaythawee K, Svasti S, Fucharoen S, Wintachai P, Yoksan S, et al. Dengue virus infection of erythroid precursor cells is modulated by both thalassemia trait status and virus adaptation. Virology. 2014;471–473:61–71.CrossRefPubMed
10.
go back to reference Suksanpaisan L, Cabrera-Hernandez A, Smith DR. Infection of human primary hepatocytes with dengue virus serotype 2. J Med Virol. 2007;79:300–7.CrossRefPubMed Suksanpaisan L, Cabrera-Hernandez A, Smith DR. Infection of human primary hepatocytes with dengue virus serotype 2. J Med Virol. 2007;79:300–7.CrossRefPubMed
11.
go back to reference Dalrymple N, Mackow ER. Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. J Virol. 2011;85:9478–85.CrossRefPubMedPubMedCentral Dalrymple N, Mackow ER. Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. J Virol. 2011;85:9478–85.CrossRefPubMedPubMedCentral
12.
go back to reference Cruz-Oliveira C, Freire JM, Conceicao TM, Higa LM, Castanho MA, Da Poian AT. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol Rev. 2015;39:155–70.CrossRefPubMed Cruz-Oliveira C, Freire JM, Conceicao TM, Higa LM, Castanho MA, Da Poian AT. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol Rev. 2015;39:155–70.CrossRefPubMed
13.
go back to reference Acosta EG, Castilla V, Damonte EB. Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol. 2009;11:1533–49.CrossRefPubMed Acosta EG, Castilla V, Damonte EB. Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol. 2009;11:1533–49.CrossRefPubMed
15.
go back to reference Clyde K, Kyle JL, Harris E. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol. 2006;80:11418–31.CrossRefPubMedPubMedCentral Clyde K, Kyle JL, Harris E. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol. 2006;80:11418–31.CrossRefPubMedPubMedCentral
16.
go back to reference Russell PK, Brandt WE, Dalrymple JM. Chemical and antigenic structure of flaviviruses. In: Schlesinger RW, editor. The Togaviruses. New York: Academic; 1980. p. 503–29.CrossRef Russell PK, Brandt WE, Dalrymple JM. Chemical and antigenic structure of flaviviruses. In: Schlesinger RW, editor. The Togaviruses. New York: Academic; 1980. p. 503–29.CrossRef
17.
go back to reference Perera R, Riley C, Isaac G, Hopf-Jannasch AS, Moore RJ, Weitz KW, et al. Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. PLoS Pathog. 2012;8, e1002584.CrossRefPubMedPubMedCentral Perera R, Riley C, Isaac G, Hopf-Jannasch AS, Moore RJ, Weitz KW, et al. Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. PLoS Pathog. 2012;8, e1002584.CrossRefPubMedPubMedCentral
18.
go back to reference Reyes-del Valle J, Chavez-Salinas S, Medina F, Del Angel RM. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol. 2005;79:4557–67.CrossRefPubMedPubMedCentral Reyes-del Valle J, Chavez-Salinas S, Medina F, Del Angel RM. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol. 2005;79:4557–67.CrossRefPubMedPubMedCentral
19.
go back to reference Ceballos-Olvera I, Chavez-Salinas S, Medina F, Ludert JE, Del Angel RM. JNK phosphorylation, induced during dengue virus infection, is important for viral infection and requires the presence of cholesterol. Virology. 2010;396:30–6.CrossRefPubMed Ceballos-Olvera I, Chavez-Salinas S, Medina F, Ludert JE, Del Angel RM. JNK phosphorylation, induced during dengue virus infection, is important for viral infection and requires the presence of cholesterol. Virology. 2010;396:30–6.CrossRefPubMed
20.
go back to reference Junjhon J, Pennington JG, Edwards TJ, Perera R, Lanman J, Kuhn RJ. Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. J Virol. 2014;88:4687–97.CrossRefPubMedPubMedCentral Junjhon J, Pennington JG, Edwards TJ, Perera R, Lanman J, Kuhn RJ. Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. J Virol. 2014;88:4687–97.CrossRefPubMedPubMedCentral
21.
go back to reference Uchida L, Espada-Murao LA, Takamatsu Y, Okamoto K, Hayasaka D, Yu F, et al. The dengue virus conceals double-stranded RNA in the intracellular membrane to escape from an interferon response. Sci Rep. 2014;4:7395.CrossRefPubMedPubMedCentral Uchida L, Espada-Murao LA, Takamatsu Y, Okamoto K, Hayasaka D, Yu F, et al. The dengue virus conceals double-stranded RNA in the intracellular membrane to escape from an interferon response. Sci Rep. 2014;4:7395.CrossRefPubMedPubMedCentral
23.
go back to reference Lee YR, Lei HY, Liu MT, Wang JR, Chen SH, Jiang-Shieh YF, et al. Autophagic machinery activated by dengue virus enhances virus replication. Virology. 2008;374:240–8.CrossRefPubMed Lee YR, Lei HY, Liu MT, Wang JR, Chen SH, Jiang-Shieh YF, et al. Autophagic machinery activated by dengue virus enhances virus replication. Virology. 2008;374:240–8.CrossRefPubMed
24.
go back to reference Panyasrivanit M, Khakpoor A, Wikan N, Smith DR. Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. J Gen Virol. 2009;90:448–56.CrossRefPubMed Panyasrivanit M, Khakpoor A, Wikan N, Smith DR. Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. J Gen Virol. 2009;90:448–56.CrossRefPubMed
25.
go back to reference Heaton NS, Perera R, Berger KL, Khadka S, Lacount DJ, Kuhn RJ, et al. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci U S A. 2010;107:17345–50.CrossRefPubMedPubMedCentral Heaton NS, Perera R, Berger KL, Khadka S, Lacount DJ, Kuhn RJ, et al. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci U S A. 2010;107:17345–50.CrossRefPubMedPubMedCentral
26.
go back to reference Tang WC, Lin RJ, Liao CL, Lin YL. Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication. J Virol. 2014;88:6793–804.CrossRefPubMedPubMedCentral Tang WC, Lin RJ, Liao CL, Lin YL. Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication. J Virol. 2014;88:6793–804.CrossRefPubMedPubMedCentral
27.
go back to reference Rungruengphol C, Jaresitthikunchai J, Wikan N, Phaonakrop N, Keadsanti S, Yoksan S, et al. Evidence of plasticity in the dengue virus: Host cell interaction. Microb Pathog. 2015;86:18–25.CrossRefPubMed Rungruengphol C, Jaresitthikunchai J, Wikan N, Phaonakrop N, Keadsanti S, Yoksan S, et al. Evidence of plasticity in the dengue virus: Host cell interaction. Microb Pathog. 2015;86:18–25.CrossRefPubMed
28.
go back to reference Sithisarn P, Suksanpaisan L, Thepparit C, Smith DR. Behavior of the dengue virus in solution. J Med Virol. 2003;71:532–9.CrossRefPubMed Sithisarn P, Suksanpaisan L, Thepparit C, Smith DR. Behavior of the dengue virus in solution. J Med Virol. 2003;71:532–9.CrossRefPubMed
29.
go back to reference Wintachai P, Kaur P, Lee RC, Ramphan S, Kuadkitkan A, Wikan N, et al. Activity of andrographolide against chikungunya virus infection. Sci Rep. 2015;5:14179.CrossRefPubMedPubMedCentral Wintachai P, Kaur P, Lee RC, Ramphan S, Kuadkitkan A, Wikan N, et al. Activity of andrographolide against chikungunya virus infection. Sci Rep. 2015;5:14179.CrossRefPubMedPubMedCentral
30.
go back to reference John A, Umashankar V, Krishnakumar S, Deepa PR. Comparative Modeling and Molecular Dynamics Simulation of Substrate Binding in Human Fatty Acid Synthase: Enoyl Reductase and beta-Ketoacyl Reductase Catalytic Domains. Genomics Inform. 2015;13:15–24.CrossRefPubMedPubMedCentral John A, Umashankar V, Krishnakumar S, Deepa PR. Comparative Modeling and Molecular Dynamics Simulation of Substrate Binding in Human Fatty Acid Synthase: Enoyl Reductase and beta-Ketoacyl Reductase Catalytic Domains. Genomics Inform. 2015;13:15–24.CrossRefPubMedPubMedCentral
31.
go back to reference Cui L, Lee YH, Kumar Y, Xu F, Lu K, Ooi EE, et al. Serum metabolome and lipidome changes in adult patients with primary dengue infection. PLoS Negl Trop Dis. 2013;7, e2373.CrossRefPubMedPubMedCentral Cui L, Lee YH, Kumar Y, Xu F, Lu K, Ooi EE, et al. Serum metabolome and lipidome changes in adult patients with primary dengue infection. PLoS Negl Trop Dis. 2013;7, e2373.CrossRefPubMedPubMedCentral
32.
go back to reference Duran A, Carrero R, Parra B, Gonzalez A, Delgado L, Mosquera J, et al. Association of lipid profile alterations with severe forms of dengue in humans. Arch Virol. 2015;160:1687–92.CrossRefPubMed Duran A, Carrero R, Parra B, Gonzalez A, Delgado L, Mosquera J, et al. Association of lipid profile alterations with severe forms of dengue in humans. Arch Virol. 2015;160:1687–92.CrossRefPubMed
33.
go back to reference Samsa MM, Mondotte JA, Iglesias NG, Assuncao-Miranda I, Barbosa-Lima G, Da Poian AT, et al. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog. 2009;5, e1000632.CrossRefPubMedPubMedCentral Samsa MM, Mondotte JA, Iglesias NG, Assuncao-Miranda I, Barbosa-Lima G, Da Poian AT, et al. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog. 2009;5, e1000632.CrossRefPubMedPubMedCentral
34.
go back to reference Soto-Acosta R, Bautista-Carbajal P, Syed GH, Siddiqui A, Del Angel RM. Nordihydroguaiaretic acid (NDGA) inhibits replication and viral morphogenesis of dengue virus. Antiviral Res. 2014;109:132–40.CrossRefPubMed Soto-Acosta R, Bautista-Carbajal P, Syed GH, Siddiqui A, Del Angel RM. Nordihydroguaiaretic acid (NDGA) inhibits replication and viral morphogenesis of dengue virus. Antiviral Res. 2014;109:132–40.CrossRefPubMed
35.
go back to reference Carvalho FA, Carneiro FA, Martins IC, Assuncao-Miranda I, Faustino AF, Pereira RM, et al. Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J Virol. 2012;86:2096–108.CrossRefPubMedPubMedCentral Carvalho FA, Carneiro FA, Martins IC, Assuncao-Miranda I, Faustino AF, Pereira RM, et al. Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J Virol. 2012;86:2096–108.CrossRefPubMedPubMedCentral
36.
go back to reference Martins IC, Gomes-Neto F, Faustino AF, Carvalho FA, Carneiro FA, Bozza PT, et al. The disordered N-terminal region of dengue virus capsid protein contains a lipid-droplet-binding motif. Biochem J. 2012;444:405–15.CrossRefPubMed Martins IC, Gomes-Neto F, Faustino AF, Carvalho FA, Carneiro FA, Bozza PT, et al. The disordered N-terminal region of dengue virus capsid protein contains a lipid-droplet-binding motif. Biochem J. 2012;444:405–15.CrossRefPubMed
37.
go back to reference Sessions OM, Tan Y, Goh KC, Liu Y, Tan P, Rozen S, et al. Host cell transcriptome profile during wild-type and attenuated dengue virus infection. PLoS Negl Trop Dis. 2013;7, e2107.CrossRefPubMedPubMedCentral Sessions OM, Tan Y, Goh KC, Liu Y, Tan P, Rozen S, et al. Host cell transcriptome profile during wild-type and attenuated dengue virus infection. PLoS Negl Trop Dis. 2013;7, e2107.CrossRefPubMedPubMedCentral
38.
go back to reference Lundberg E, Fagerberg L, Klevebring D, Matic I, Geiger T, Cox J, et al. Defining the transcriptome and proteome in three functionally different human cell lines. Mol Syst Biol. 2010;6:450.CrossRefPubMedPubMedCentral Lundberg E, Fagerberg L, Klevebring D, Matic I, Geiger T, Cox J, et al. Defining the transcriptome and proteome in three functionally different human cell lines. Mol Syst Biol. 2010;6:450.CrossRefPubMedPubMedCentral
39.
go back to reference Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473:337–42.CrossRefPubMed Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473:337–42.CrossRefPubMed
40.
go back to reference Vogel C, Abreu Rde S, Ko D, Le SY, Shapiro BA, Burns SC, et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol. 2010;6:400.CrossRefPubMedPubMedCentral Vogel C, Abreu Rde S, Ko D, Le SY, Shapiro BA, Burns SC, et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol. 2010;6:400.CrossRefPubMedPubMedCentral
41.
go back to reference Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014;509:582–7.CrossRefPubMed Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014;509:582–7.CrossRefPubMed
42.
go back to reference Guerciolini R. Mode of action of orlistat. Int J Obes Relat Metab Disord. 1997;21 Suppl 3:S12–23.PubMed Guerciolini R. Mode of action of orlistat. Int J Obes Relat Metab Disord. 1997;21 Suppl 3:S12–23.PubMed
43.
go back to reference Zhi J, Melia AT, Eggers H, Joly R, Patel IH. Review of limited systemic absorption of orlistat, a lipase inhibitor, in healthy human volunteers. J Clin Pharmacol. 1995;35:1103–8.CrossRefPubMed Zhi J, Melia AT, Eggers H, Joly R, Patel IH. Review of limited systemic absorption of orlistat, a lipase inhibitor, in healthy human volunteers. J Clin Pharmacol. 1995;35:1103–8.CrossRefPubMed
44.
go back to reference Zhi J, Melia AT, Funk C, Viger-Chougnet A, Hopfgartner G, Lausecker B, et al. Metabolic profiles of minimally absorbed orlistat in obese/overweight volunteers. J Clin Pharmacol. 1996;36:1006–11.CrossRefPubMed Zhi J, Melia AT, Funk C, Viger-Chougnet A, Hopfgartner G, Lausecker B, et al. Metabolic profiles of minimally absorbed orlistat in obese/overweight volunteers. J Clin Pharmacol. 1996;36:1006–11.CrossRefPubMed
45.
go back to reference Villareal VA, Rodgers MA, Costello DA, Yang PL. Targeting host lipid synthesis and metabolism to inhibit dengue and hepatitis C viruses. Antiviral Res. 2015;124:110–21.CrossRefPubMedPubMedCentral Villareal VA, Rodgers MA, Costello DA, Yang PL. Targeting host lipid synthesis and metabolism to inhibit dengue and hepatitis C viruses. Antiviral Res. 2015;124:110–21.CrossRefPubMedPubMedCentral
46.
go back to reference Carocci M, Hinshaw SM, Rodgers MA, Villareal VA, Burri DJ, Pilankatta R, et al. The bioactive lipid 4-hydroxyphenyl retinamide inhibits flavivirus replication. Antimicrob Agents Chemother. 2015;59:85–95.CrossRefPubMed Carocci M, Hinshaw SM, Rodgers MA, Villareal VA, Burri DJ, Pilankatta R, et al. The bioactive lipid 4-hydroxyphenyl retinamide inhibits flavivirus replication. Antimicrob Agents Chemother. 2015;59:85–95.CrossRefPubMed
47.
go back to reference Poh MK, Shui G, Xie X, Shi PY, Wenk MR, Gu F. U18666A, an intra-cellular cholesterol transport inhibitor, inhibits dengue virus entry and replication. Antiviral Res. 2012;93:191–8. Poh MK, Shui G, Xie X, Shi PY, Wenk MR, Gu F. U18666A, an intra-cellular cholesterol transport inhibitor, inhibits dengue virus entry and replication. Antiviral Res. 2012;93:191–8.
48.
go back to reference Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J. 2011;8:560.CrossRefPubMedPubMedCentral Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J. 2011;8:560.CrossRefPubMedPubMedCentral
Metadata
Title
Involvement of fatty acid synthase in dengue virus infection
Authors
Natthida Tongluan
Suwipa Ramphan
Phitchayapak Wintachai
Janthima Jaresitthikunchai
Sarawut Khongwichit
Nitwara Wikan
Supoth Rajakam
Sutee Yoksan
Nuttaporn Wongsiriroj
Sittiruk Roytrakul
Duncan R. Smith
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0685-9

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue