Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Short report

The sense behind retroviral anti-sense transcription

Authors: Mamneet Manghera, Alycia Magnusson, Renée N. Douville

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Retroviruses are known to rely extensively on the expression of viral proteins from the sense proviral genomic strand. Yet, the production of regulatory retroviral proteins from antisense-encoded viral genes is gaining research attention, due to their clinical significance. This report will discuss what is known about antisense transcription in Retroviridae, and provide new information about antisense transcriptional regulation through a comparison of Human Immunodeficiency Virus (HIV), Human T-cell Lymphotrophic Virus (HTLV-1) and endogenous retrovirus-K (ERVK) long terminal repeats (LTRs). We will attempt to demonstrate that the potential for antisense transcription is more widespread within retroviruses than has been previously appreciated, with this feature being the rule, rather than the exception.
Literature
1.
go back to reference Bet A, Maze EA, Bansal A, Sterrett S, Gross A, Graff-Dubois S, et al. The HIV-1 antisense protein (ASP) induces CD8 T cell responses during chronic infection. Retrovirology. 2015;12:15.CrossRefPubMedPubMedCentral Bet A, Maze EA, Bansal A, Sterrett S, Gross A, Graff-Dubois S, et al. The HIV-1 antisense protein (ASP) induces CD8 T cell responses during chronic infection. Retrovirology. 2015;12:15.CrossRefPubMedPubMedCentral
2.
go back to reference Cassan E, Arigon-Chifolleau A-M, Mesnard J-M, Gross A, Gascuel O. Concomitant emergence of the antisense protein gene of HIV-1 and of the pandemic. Proc Natl Acad Sci USA. 2016;113(41):1–6.CrossRef Cassan E, Arigon-Chifolleau A-M, Mesnard J-M, Gross A, Gascuel O. Concomitant emergence of the antisense protein gene of HIV-1 and of the pandemic. Proc Natl Acad Sci USA. 2016;113(41):1–6.CrossRef
3.
go back to reference Ma G, Yasunaga J-I, Matsuoka M. Multifaceted functions and roles of HBZ in HTLV-1 pathogenesis. Retrovirology BioMed Central. 2016;13:1–9. Ma G, Yasunaga J-I, Matsuoka M. Multifaceted functions and roles of HBZ in HTLV-1 pathogenesis. Retrovirology BioMed Central. 2016;13:1–9.
4.
go back to reference Panfil AR, Dissinger NJ, Howard CM, Murphy BM, Landes K, Fernandez SA, et al. Functional comparison of HBZ and the related APH-2 protein provides insight into human T-cell leukemia virus type 1. J Virol. 2016;90:3760–72.CrossRefPubMedPubMedCentral Panfil AR, Dissinger NJ, Howard CM, Murphy BM, Landes K, Fernandez SA, et al. Functional comparison of HBZ and the related APH-2 protein provides insight into human T-cell leukemia virus type 1. J Virol. 2016;90:3760–72.CrossRefPubMedPubMedCentral
5.
go back to reference Miller R. Human immunodeficiency virus may encode a novel protein on the genomic DNA plus strand. Science. 1988;239:1420–2.CrossRefPubMed Miller R. Human immunodeficiency virus may encode a novel protein on the genomic DNA plus strand. Science. 1988;239:1420–2.CrossRefPubMed
6.
go back to reference Landry S, Halin M, Lefort S, Audet B, Vaquero C, Mesnard J-M, et al. Detection, characterization and regulation of antisense transcripts in HIV-1. Retrovirology. 2007;4:71.CrossRefPubMedPubMedCentral Landry S, Halin M, Lefort S, Audet B, Vaquero C, Mesnard J-M, et al. Detection, characterization and regulation of antisense transcripts in HIV-1. Retrovirology. 2007;4:71.CrossRefPubMedPubMedCentral
7.
go back to reference Ludwig LB, Ambrus JL, Krawczyk KA, Sharma S, Brooks S, Hsiao C-B, et al. Human immunodeficiency virus-type 1 LTR DNA contains an intrinsic gene producing antisense RNA and protein products. Retrovirology. 2006;3:80.CrossRefPubMedPubMedCentral Ludwig LB, Ambrus JL, Krawczyk KA, Sharma S, Brooks S, Hsiao C-B, et al. Human immunodeficiency virus-type 1 LTR DNA contains an intrinsic gene producing antisense RNA and protein products. Retrovirology. 2006;3:80.CrossRefPubMedPubMedCentral
8.
go back to reference Kobayashi-Ishihara M, Yamagishi M, Hara T, Matsuda Y, Takahashi R, Miyake A, et al. HIV-1-encoded antisense RNA suppresses viral replication for a prolonged period. Retrovirology. 2012;9:38.CrossRefPubMedPubMedCentral Kobayashi-Ishihara M, Yamagishi M, Hara T, Matsuda Y, Takahashi R, Miyake A, et al. HIV-1-encoded antisense RNA suppresses viral replication for a prolonged period. Retrovirology. 2012;9:38.CrossRefPubMedPubMedCentral
9.
go back to reference Clerc I, Laverdure S, Torresilla C, Landry S, Borel S, Vargas A, et al. Polarized expression of the membrane ASP protein derived from HIV-1 antisense transcription in T cells. Retrovirology. 2011;8:74.CrossRefPubMedPubMedCentral Clerc I, Laverdure S, Torresilla C, Landry S, Borel S, Vargas A, et al. Polarized expression of the membrane ASP protein derived from HIV-1 antisense transcription in T cells. Retrovirology. 2011;8:74.CrossRefPubMedPubMedCentral
10.
go back to reference Torresilla C, Mesnard J, Barbeau B. Reviving an old HIV-1 gene: the HIV-1 antisense protein. Curr HIV Res. 2015;13:117–24.CrossRefPubMed Torresilla C, Mesnard J, Barbeau B. Reviving an old HIV-1 gene: the HIV-1 antisense protein. Curr HIV Res. 2015;13:117–24.CrossRefPubMed
11.
go back to reference Vanhee-Brossollet C, Thoreau H, Serpente N, D’Auriol L, Levy J-P, Vaquero C. A natural antisense RNA derived from the HIV-1 env gene encodes a protein which is recognized by circulating antibodies of HIV+ individuals. Virology. 1995;206:196–202.CrossRefPubMed Vanhee-Brossollet C, Thoreau H, Serpente N, D’Auriol L, Levy J-P, Vaquero C. A natural antisense RNA derived from the HIV-1 env gene encodes a protein which is recognized by circulating antibodies of HIV+ individuals. Virology. 1995;206:196–202.CrossRefPubMed
12.
go back to reference Torresilla C, Larocque É, Landry S, Halin M, Coulombe Y, Masson J-Y, et al. Detection of the HIV-1 minus-strand-encoded antisense protein and its association with autophagy. J Virol. 2013;87:5089–105.CrossRefPubMedPubMedCentral Torresilla C, Larocque É, Landry S, Halin M, Coulombe Y, Masson J-Y, et al. Detection of the HIV-1 minus-strand-encoded antisense protein and its association with autophagy. J Virol. 2013;87:5089–105.CrossRefPubMedPubMedCentral
13.
go back to reference Barbeau B, Devaux C, Mesnard J-M. Antisense transcription in human T-cell leukemia virus type 1: discovery of a new viral gene. In: Lever AM, Jeang K-T, Berkhout B, editors. Recent Adv. Hum. retroviruses Princ. replication Pathog. Singapore: World Scientific Publishing Company; 2010. p. 105–27.CrossRef Barbeau B, Devaux C, Mesnard J-M. Antisense transcription in human T-cell leukemia virus type 1: discovery of a new viral gene. In: Lever AM, Jeang K-T, Berkhout B, editors. Recent Adv. Hum. retroviruses Princ. replication Pathog. Singapore: World Scientific Publishing Company; 2010. p. 105–27.CrossRef
14.
go back to reference Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet. 2007;8:424–36.CrossRefPubMed Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet. 2007;8:424–36.CrossRefPubMed
15.
go back to reference Peeters A, Lambert PF. A fourth Sp1 site in the human immunodeficiency virus type 1 long terminal repeat is essential for negative-sense transcription. J Virol. 1996;70:6665–72.PubMedPubMedCentral Peeters A, Lambert PF. A fourth Sp1 site in the human immunodeficiency virus type 1 long terminal repeat is essential for negative-sense transcription. J Virol. 1996;70:6665–72.PubMedPubMedCentral
16.
go back to reference Lin S, Zhang L, Luo W, Zhang X. Characteristics of antisense transcript promoters and the regulation of their activity. Int J Mol Sci. 2015;17:1–17.CrossRef Lin S, Zhang L, Luo W, Zhang X. Characteristics of antisense transcript promoters and the regulation of their activity. Int J Mol Sci. 2015;17:1–17.CrossRef
17.
go back to reference Michael NL, Vahey MT, Arcy LD, Ehrenberg PK, Mosca JD, Rappaport JAY, et al. Negative-strand RNA transcripts are produced in human immunodeficiency virus type 1-infected cells and patients by a novel promoter downregulated by Tat. J Virol. 1994;68:979–87.PubMedPubMedCentral Michael NL, Vahey MT, Arcy LD, Ehrenberg PK, Mosca JD, Rappaport JAY, et al. Negative-strand RNA transcripts are produced in human immunodeficiency virus type 1-infected cells and patients by a novel promoter downregulated by Tat. J Virol. 1994;68:979–87.PubMedPubMedCentral
18.
go back to reference Nonnemacher MR, Pirrone V, Feng R, Moldover B, Passic S, Aiamkitsumrit B, et al. HIV-1 promoter single nucleotide polymorphisms are associated with clinical disease severity. PLoS One. 2016;11:e0150835.CrossRefPubMedPubMedCentral Nonnemacher MR, Pirrone V, Feng R, Moldover B, Passic S, Aiamkitsumrit B, et al. HIV-1 promoter single nucleotide polymorphisms are associated with clinical disease severity. PLoS One. 2016;11:e0150835.CrossRefPubMedPubMedCentral
19.
go back to reference Shah S, Alexaki A, Pirrone V, Dahiya S, Nonnemacher MR, Wigdahl B. Functional properties of the HIV-1 long terminal repeat containing single-nucleotide polymorphisms in Sp site III and CCAAT / enhancer binding protein site I. Virol J. 2014;11:92.CrossRefPubMedPubMedCentral Shah S, Alexaki A, Pirrone V, Dahiya S, Nonnemacher MR, Wigdahl B. Functional properties of the HIV-1 long terminal repeat containing single-nucleotide polymorphisms in Sp site III and CCAAT / enhancer binding protein site I. Virol J. 2014;11:92.CrossRefPubMedPubMedCentral
20.
go back to reference Jeeninga RE, Hoogenkamp M, Armand-ugon M, Baar MDE, Verhoef K, Berkhout BEN. Functional differences between the long terminal repeat transcriptional promoters of human immunodeficiency virus type 1 subtypes a through G. J Virol. 2000;74:3740–51.CrossRefPubMedPubMedCentral Jeeninga RE, Hoogenkamp M, Armand-ugon M, Baar MDE, Verhoef K, Berkhout BEN. Functional differences between the long terminal repeat transcriptional promoters of human immunodeficiency virus type 1 subtypes a through G. J Virol. 2000;74:3740–51.CrossRefPubMedPubMedCentral
21.
go back to reference Verhoef K, Sanders RW, Fontaine V, Kitajima S, Berkhout BEN. Evolution of the human immunodeficiency virus type 1 long terminal repeat promoter by conversion of an NF-kB enhancer element into a GABP binding site. J Virol. 1999;73:1331–40.PubMedPubMedCentral Verhoef K, Sanders RW, Fontaine V, Kitajima S, Berkhout BEN. Evolution of the human immunodeficiency virus type 1 long terminal repeat promoter by conversion of an NF-kB enhancer element into a GABP binding site. J Virol. 1999;73:1331–40.PubMedPubMedCentral
22.
go back to reference Laverdure S, Gross A, Arpin-André C, Clerc I, Beaumelle B, Barbeau B, et al. HIV-1 antisense transcription is preferentially activated in primary monocyte-derived cells. J Virol. 2012;86:13785–9.CrossRefPubMedPubMedCentral Laverdure S, Gross A, Arpin-André C, Clerc I, Beaumelle B, Barbeau B, et al. HIV-1 antisense transcription is preferentially activated in primary monocyte-derived cells. J Virol. 2012;86:13785–9.CrossRefPubMedPubMedCentral
23.
go back to reference Arpin-André C, Laverdure S, Barbeau B, Gross A, Mesnard J-M. Construction of a reporter vector for analysis of bidirectional transcriptional activity of retrovirus LTR. Plasmid. 2014;74:45–51.CrossRefPubMed Arpin-André C, Laverdure S, Barbeau B, Gross A, Mesnard J-M. Construction of a reporter vector for analysis of bidirectional transcriptional activity of retrovirus LTR. Plasmid. 2014;74:45–51.CrossRefPubMed
24.
go back to reference Satou Y, Yasunaga J-I, Zhao T, Yoshida M, Miyazato P, Takai K, et al. HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo. PLoS Pathog. 2011;7:e1001274.CrossRefPubMedPubMedCentral Satou Y, Yasunaga J-I, Zhao T, Yoshida M, Miyazato P, Takai K, et al. HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo. PLoS Pathog. 2011;7:e1001274.CrossRefPubMedPubMedCentral
25.
go back to reference Miyazato P, Matsuo M, Katsuya H, Satou Y. Transcriptional and epigenetic regulatory mechanisms affecting HTLV-1 provirus. Viruses. 2016;8:1–14.CrossRef Miyazato P, Matsuo M, Katsuya H, Satou Y. Transcriptional and epigenetic regulatory mechanisms affecting HTLV-1 provirus. Viruses. 2016;8:1–14.CrossRef
26.
go back to reference Barbeau B, Mesnard J-M. Does chronic infection in retroviruses have a sense? Trends Microbiol Elsevier Ltd. 2015;23:367–75.CrossRef Barbeau B, Mesnard J-M. Does chronic infection in retroviruses have a sense? Trends Microbiol Elsevier Ltd. 2015;23:367–75.CrossRef
27.
go back to reference Sugata K, Yasunaga J-I, Kinosada H, Mitobe Y, Furuta R, Mahgoub M, et al. HTLV-1 viral factor HBZ induces CCR4 to promote T-cell migration and proliferation. Cancer Res. 2016;76:5068–79.CrossRefPubMed Sugata K, Yasunaga J-I, Kinosada H, Mitobe Y, Furuta R, Mahgoub M, et al. HTLV-1 viral factor HBZ induces CCR4 to promote T-cell migration and proliferation. Cancer Res. 2016;76:5068–79.CrossRefPubMed
28.
29.
go back to reference Larocque É, Halin M, Landry S, Marriott SJ, Switzer WM, Barbeau B. Human T-cell lymphotropic virus type 3 (HTLV-3)- and HTLV-4-derived antisense transcripts encode proteins with similar Tax-inhibiting functions but distinct subcellular localization. J Virol. 2011;85:12673–85.CrossRefPubMedPubMedCentral Larocque É, Halin M, Landry S, Marriott SJ, Switzer WM, Barbeau B. Human T-cell lymphotropic virus type 3 (HTLV-3)- and HTLV-4-derived antisense transcripts encode proteins with similar Tax-inhibiting functions but distinct subcellular localization. J Virol. 2011;85:12673–85.CrossRefPubMedPubMedCentral
30.
go back to reference Switzer WM, Salemi M, Qari SH, Jia H, Gray RR, Katzourakis A, et al. Ancient, independent evolution and distinct molecular features of the novel human T-lymphotropic virus type 4. Retrovirology. 2009;6:1–20.CrossRef Switzer WM, Salemi M, Qari SH, Jia H, Gray RR, Katzourakis A, et al. Ancient, independent evolution and distinct molecular features of the novel human T-lymphotropic virus type 4. Retrovirology. 2009;6:1–20.CrossRef
31.
go back to reference Cavanagh M-H, Landry S, Audet B, Arpin-André C, Hivin P, Paré M-E, et al. HTLV-I antisense transcripts initiating in the 3’LTR are alternatively spliced and polyadenylated. Retrovirology. 2006;3:15.CrossRefPubMedPubMedCentral Cavanagh M-H, Landry S, Audet B, Arpin-André C, Hivin P, Paré M-E, et al. HTLV-I antisense transcripts initiating in the 3’LTR are alternatively spliced and polyadenylated. Retrovirology. 2006;3:15.CrossRefPubMedPubMedCentral
32.
go back to reference Larocca D, Chao L, Seto H, Brunck T. Human T-cell leukemia virus minus strand transcription in infected T-cells. Biochem Biophys Res Commun. 1989;163:1006–13.CrossRefPubMed Larocca D, Chao L, Seto H, Brunck T. Human T-cell leukemia virus minus strand transcription in infected T-cells. Biochem Biophys Res Commun. 1989;163:1006–13.CrossRefPubMed
33.
go back to reference Murata K, Hayashibara T, Sugahara K, Uemura A, Yamaguchi T, Harasawa H, et al. A novel alternative splicing isoform of human T-cell leukemia virus type 1 bZIP factor (HBZ-SI) targets distinct subnuclear localization. J Virol. 2006;80:2495–505.CrossRefPubMedPubMedCentral Murata K, Hayashibara T, Sugahara K, Uemura A, Yamaguchi T, Harasawa H, et al. A novel alternative splicing isoform of human T-cell leukemia virus type 1 bZIP factor (HBZ-SI) targets distinct subnuclear localization. J Virol. 2006;80:2495–505.CrossRefPubMedPubMedCentral
34.
go back to reference Yoshida M, Satou Y, Yasunaga J-I, Fujisawa J-I, Matsuoka M. Transcriptional control of spliced and unspliced human T-cell leukemia virus type 1 bZIP factor (HBZ) gene. J Virol. 2008;82:9359–68.CrossRefPubMedPubMedCentral Yoshida M, Satou Y, Yasunaga J-I, Fujisawa J-I, Matsuoka M. Transcriptional control of spliced and unspliced human T-cell leukemia virus type 1 bZIP factor (HBZ) gene. J Virol. 2008;82:9359–68.CrossRefPubMedPubMedCentral
35.
go back to reference Satou Y, Yasunaga J, Yoshida M, Matsuoka M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. PNAS. 2006;103:1–6.CrossRef Satou Y, Yasunaga J, Yoshida M, Matsuoka M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. PNAS. 2006;103:1–6.CrossRef
36.
go back to reference Gazon H, Lemasson I, Polakowski N, Césaire R, Matsuoka M, Barbeau B, et al. Human T-cell leukemia virus type 1 (HTLV-1) bZIP factor requires cellular transcription factor JunD to upregulate HTLV-1 antisense transcription from the 3’ long terminal repeat. J Virol. 2012;86:9070–8.CrossRefPubMedPubMedCentral Gazon H, Lemasson I, Polakowski N, Césaire R, Matsuoka M, Barbeau B, et al. Human T-cell leukemia virus type 1 (HTLV-1) bZIP factor requires cellular transcription factor JunD to upregulate HTLV-1 antisense transcription from the 3’ long terminal repeat. J Virol. 2012;86:9070–8.CrossRefPubMedPubMedCentral
37.
go back to reference Lemasson I, Polakowski NJ, Laybourn PJ, Nyborg JK. Transcription regulatory complexes bind the human T-cell leukemia virus 5 J and 3 J long terminal repeats to control gene expression. Mol Cell Biol. 2004;24:6117–26.CrossRefPubMedPubMedCentral Lemasson I, Polakowski NJ, Laybourn PJ, Nyborg JK. Transcription regulatory complexes bind the human T-cell leukemia virus 5 J and 3 J long terminal repeats to control gene expression. Mol Cell Biol. 2004;24:6117–26.CrossRefPubMedPubMedCentral
38.
go back to reference Ma G, Yasunaga J, Akari H, Matsuoka M. TCF1 and LEF1 act as T-cell intrinsic HTLV-1 antagonists by targeting Tax. Proc Natl Acad Sci U S A. 2015;112:2216–21.CrossRefPubMedPubMedCentral Ma G, Yasunaga J, Akari H, Matsuoka M. TCF1 and LEF1 act as T-cell intrinsic HTLV-1 antagonists by targeting Tax. Proc Natl Acad Sci U S A. 2015;112:2216–21.CrossRefPubMedPubMedCentral
39.
go back to reference Gaudray G, Gachon F, Basbous J, Biard-piechaczyk M, Devaux C, Mesnard J. The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription. J Virol. 2002;76:12813–22.CrossRefPubMedPubMedCentral Gaudray G, Gachon F, Basbous J, Biard-piechaczyk M, Devaux C, Mesnard J. The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription. J Virol. 2002;76:12813–22.CrossRefPubMedPubMedCentral
40.
go back to reference Landry S, Halin M, Vargas A, Lemasson I, Mesnard J-M, Barbeau B. Upregulation of human T-cell leukemia virus type 1 antisense transcription by the viral tax protein. J Virol. 2009;83:2048–54.CrossRefPubMed Landry S, Halin M, Vargas A, Lemasson I, Mesnard J-M, Barbeau B. Upregulation of human T-cell leukemia virus type 1 antisense transcription by the viral tax protein. J Virol. 2009;83:2048–54.CrossRefPubMed
41.
go back to reference Laverdure S, Polakowski N, Hoang K, Lemasson I. Permissive sense and antisense transcription from the 5’ and 3' long terminal repeats of human T-cell leukemia virus type 1. J Virol. 2016;90:3600–10.CrossRefPubMedPubMedCentral Laverdure S, Polakowski N, Hoang K, Lemasson I. Permissive sense and antisense transcription from the 5’ and 3' long terminal repeats of human T-cell leukemia virus type 1. J Virol. 2016;90:3600–10.CrossRefPubMedPubMedCentral
42.
go back to reference Durkin K, Rosewick N, Artesi M, Hahaut V, Griebel P, Arsic N, et al. Characterization of novel Bovine Leukemia Virus (BLV) antisense transcripts by deep sequencing reveals constitutive expression in tumors and transcriptional interaction with viral microRNAs. Retrovirology. 2016;13:33.CrossRefPubMedPubMedCentral Durkin K, Rosewick N, Artesi M, Hahaut V, Griebel P, Arsic N, et al. Characterization of novel Bovine Leukemia Virus (BLV) antisense transcripts by deep sequencing reveals constitutive expression in tumors and transcriptional interaction with viral microRNAs. Retrovirology. 2016;13:33.CrossRefPubMedPubMedCentral
43.
go back to reference Miura M, Yasunaga J, Tanabe J, Sugata K, Zhao T, Ma G, et al. Characterization of simian T-cell leukemia virus type 1 in naturally infected Japanese macaques as a model of HTLV-1 infection. Retrovirology. 2013;10:118.CrossRefPubMedPubMedCentral Miura M, Yasunaga J, Tanabe J, Sugata K, Zhao T, Ma G, et al. Characterization of simian T-cell leukemia virus type 1 in naturally infected Japanese macaques as a model of HTLV-1 infection. Retrovirology. 2013;10:118.CrossRefPubMedPubMedCentral
44.
go back to reference Vaquero C, Briquet S, Richardson J, Vanhe C. Natural antisense transcripts are detected in different cell lines and tissues of cats infected with feline immunodeficiency virus. Gene. 2001;267:157–64.CrossRefPubMed Vaquero C, Briquet S, Richardson J, Vanhe C. Natural antisense transcripts are detected in different cell lines and tissues of cats infected with feline immunodeficiency virus. Gene. 2001;267:157–64.CrossRefPubMed
45.
go back to reference Liu B, Zhao X, Shen W, Kong X. Evidence for the antisense transcription in the proviral R29-127 strain of bovine immunodeficiency virus. Virol Sin. 2015;30:224–7.CrossRefPubMed Liu B, Zhao X, Shen W, Kong X. Evidence for the antisense transcription in the proviral R29-127 strain of bovine immunodeficiency virus. Virol Sin. 2015;30:224–7.CrossRefPubMed
46.
go back to reference Rasmussen MH, Ballarín-González B, Liu J, Lassen LB, Füchtbauer A, Füchtbauer E-M, et al. Antisense transcription in gammaretroviruses as a mechanism of insertional activation of host genes. J Virol. 2010;84:3780–8.CrossRefPubMedPubMedCentral Rasmussen MH, Ballarín-González B, Liu J, Lassen LB, Füchtbauer A, Füchtbauer E-M, et al. Antisense transcription in gammaretroviruses as a mechanism of insertional activation of host genes. J Virol. 2010;84:3780–8.CrossRefPubMedPubMedCentral
47.
go back to reference Xu L, Elkahloun AG, Candotti F, Grajkowski A, Beaucage SL, Petricoin EF, et al. A novel function of RNAs arising from the long terminal repeat of human endogenous retrovirus 9 in cell cycle arrest. J Virol. 2013;87:25–36.CrossRefPubMedPubMedCentral Xu L, Elkahloun AG, Candotti F, Grajkowski A, Beaucage SL, Petricoin EF, et al. A novel function of RNAs arising from the long terminal repeat of human endogenous retrovirus 9 in cell cycle arrest. J Virol. 2013;87:25–36.CrossRefPubMedPubMedCentral
48.
go back to reference Domansky AN, Kopantzev EP, Snezhkov EV, Lebedev YB, Leib-mosch C, Sverdlov ED. Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett. 2000;472:191–5.CrossRefPubMed Domansky AN, Kopantzev EP, Snezhkov EV, Lebedev YB, Leib-mosch C, Sverdlov ED. Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett. 2000;472:191–5.CrossRefPubMed
49.
go back to reference Buzdin A, Kovalskaya-Alexandrova E, Gogvadze E, Sverdlov E. At least 50% of human-specific HERV-K (HML-2) long terminal repeats serve in vivo as active promoters for host nonrepetitive DNA transcription. J Virol. 2006;80:10752–62.CrossRefPubMedPubMedCentral Buzdin A, Kovalskaya-Alexandrova E, Gogvadze E, Sverdlov E. At least 50% of human-specific HERV-K (HML-2) long terminal repeats serve in vivo as active promoters for host nonrepetitive DNA transcription. J Virol. 2006;80:10752–62.CrossRefPubMedPubMedCentral
50.
51.
go back to reference Van Opijnen T, Kamoschinski J, Jeeninga RE, Berkhout B. The human immunodeficiency virus type 1 promoter contains a CATA Box instead of a TATA box for optimal transcription and replication. J Virol. 2004;78:6883–90.CrossRefPubMedPubMedCentral Van Opijnen T, Kamoschinski J, Jeeninga RE, Berkhout B. The human immunodeficiency virus type 1 promoter contains a CATA Box instead of a TATA box for optimal transcription and replication. J Virol. 2004;78:6883–90.CrossRefPubMedPubMedCentral
52.
go back to reference Manghera M, Ferguson-Parry J, Lin R, Douville RN. NF-κB and IRF1 induce endogenous retrovirus K expression via interferon-stimulated response elements in its 5’ long terminal repeat. J Virol. 2016;90:9338–49.CrossRefPubMed Manghera M, Ferguson-Parry J, Lin R, Douville RN. NF-κB and IRF1 induce endogenous retrovirus K expression via interferon-stimulated response elements in its 5’ long terminal repeat. J Virol. 2016;90:9338–49.CrossRefPubMed
53.
54.
go back to reference Grandvaux N, Servant MJ, Sen GC, Balachandran S, Barber GN, Lin R, et al. Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J Virol. 2002;76:5532–9.CrossRefPubMedPubMedCentral Grandvaux N, Servant MJ, Sen GC, Balachandran S, Barber GN, Lin R, et al. Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J Virol. 2002;76:5532–9.CrossRefPubMedPubMedCentral
55.
go back to reference Lin R, Heylbroeck C, Genin P, Pitha PM, Hiscott J, Al LINET, et al. Essential role of interferon regulatory factor 3 in direct activation of RANTES chemokine transcription. Mol Cell Biol. 1999;19:959–66.CrossRefPubMedPubMedCentral Lin R, Heylbroeck C, Genin P, Pitha PM, Hiscott J, Al LINET, et al. Essential role of interferon regulatory factor 3 in direct activation of RANTES chemokine transcription. Mol Cell Biol. 1999;19:959–66.CrossRefPubMedPubMedCentral
56.
go back to reference Ono M, Kawakami M, Ushikubo H. Stimulation of expression of the human endogenous retrovirus genome by female steroid hormones in human breast cancer cell line T47D. J Virol. 1987;61:2059–62.PubMedPubMedCentral Ono M, Kawakami M, Ushikubo H. Stimulation of expression of the human endogenous retrovirus genome by female steroid hormones in human breast cancer cell line T47D. J Virol. 1987;61:2059–62.PubMedPubMedCentral
57.
go back to reference Hanke K, Chudak C, Kurth R, Bannert N. The Rec protein of HERV-K(HML-2) upregulates androgen receptor activity by binding to the human small glutamine-rich tetratricopeptide repeat protein (hSGT). Int J Cancer. 2013;132:556–67.CrossRefPubMed Hanke K, Chudak C, Kurth R, Bannert N. The Rec protein of HERV-K(HML-2) upregulates androgen receptor activity by binding to the human small glutamine-rich tetratricopeptide repeat protein (hSGT). Int J Cancer. 2013;132:556–67.CrossRefPubMed
58.
go back to reference Downey RF, Sullivan FJ, Wang-Johanning F, Ambs S, Giles FJ, Glynn SA. Human endogenous retrovirus K and cancer: Innocent bystander or tumorigenic accomplice? Int J Cancer. 2015;137:1249–57.CrossRefPubMed Downey RF, Sullivan FJ, Wang-Johanning F, Ambs S, Giles FJ, Glynn SA. Human endogenous retrovirus K and cancer: Innocent bystander or tumorigenic accomplice? Int J Cancer. 2015;137:1249–57.CrossRefPubMed
59.
go back to reference Gao J, Chen Y-H, Peterson LC. GATA family transcriptional factors: emerging suspects in hematologic disorders. Exp Hematol Oncol BioMed Central. 2015;4:28.CrossRef Gao J, Chen Y-H, Peterson LC. GATA family transcriptional factors: emerging suspects in hematologic disorders. Exp Hematol Oncol BioMed Central. 2015;4:28.CrossRef
61.
go back to reference Suntsova M, Garazha A, Ivanova A, Kaminsky D, Zhavoronkov A, Buzdin A. Molecular functions of human endogenous retroviruses in health and disease. Cell Mol life Sci Springer Basel. 2015;72:3653–75.CrossRef Suntsova M, Garazha A, Ivanova A, Kaminsky D, Zhavoronkov A, Buzdin A. Molecular functions of human endogenous retroviruses in health and disease. Cell Mol life Sci Springer Basel. 2015;72:3653–75.CrossRef
62.
go back to reference Markine-Goriaynoff N, Gillet L, Van Etten JL, Korres H, Verma N, Vanderplasschen A. Glycosyltransferases encoded by viruses. J Gen Virol. 2004;85:2741–54.CrossRefPubMed Markine-Goriaynoff N, Gillet L, Van Etten JL, Korres H, Verma N, Vanderplasschen A. Glycosyltransferases encoded by viruses. J Gen Virol. 2004;85:2741–54.CrossRefPubMed
63.
go back to reference Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, et al. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem. 1999;274:35809–15.CrossRefPubMed Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, et al. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem. 1999;274:35809–15.CrossRefPubMed
64.
go back to reference Masutani H, Ueda S, Yodoi J. The thioredoxin system in retroviral infection and apoptosis. Cell Death Differ. 2005;12:991–8.CrossRefPubMed Masutani H, Ueda S, Yodoi J. The thioredoxin system in retroviral infection and apoptosis. Cell Death Differ. 2005;12:991–8.CrossRefPubMed
65.
66.
go back to reference Atkinson HJ, Babbitt PC. An atlas of the thioredoxin fold class reveals the complexity of function-enabling adaptations. PLoS Comput Biol. 2009;5:e1000541.CrossRefPubMedPubMedCentral Atkinson HJ, Babbitt PC. An atlas of the thioredoxin fold class reveals the complexity of function-enabling adaptations. PLoS Comput Biol. 2009;5:e1000541.CrossRefPubMedPubMedCentral
67.
go back to reference Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, et al. Essentials of glycobiology. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Larboratory Press; 2009. Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, et al. Essentials of glycobiology. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Larboratory Press; 2009.
68.
go back to reference Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.CrossRefPubMedPubMedCentral Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.CrossRefPubMedPubMedCentral
69.
70.
go back to reference Korber B, Gaschen B, Yusim K, Kesmir C, Detours V. Evolutionary and immunological implications of contemporary HIV-1 variation. Br Med Bull. 2001;58:19–42.CrossRefPubMed Korber B, Gaschen B, Yusim K, Kesmir C, Detours V. Evolutionary and immunological implications of contemporary HIV-1 variation. Br Med Bull. 2001;58:19–42.CrossRefPubMed
71.
go back to reference Pessôa R, Watanabe JT, Nukui Y, Pereira J, Casseb J, Kasseb J, et al. Molecular characterization of human T-cell lymphotropic virus type 1 full and partial genomes by Illumina massively parallel sequencing technology. PLoS One. 2014;9:e93374.CrossRefPubMedPubMedCentral Pessôa R, Watanabe JT, Nukui Y, Pereira J, Casseb J, Kasseb J, et al. Molecular characterization of human T-cell lymphotropic virus type 1 full and partial genomes by Illumina massively parallel sequencing technology. PLoS One. 2014;9:e93374.CrossRefPubMedPubMedCentral
72.
go back to reference Subramanian RP, Wildschutte JH, Russo C, Coffin JM. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology. 2011;8:1–22.CrossRef Subramanian RP, Wildschutte JH, Russo C, Coffin JM. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology. 2011;8:1–22.CrossRef
73.
go back to reference Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinforma Appl Note. 2002;18:333–4.CrossRef Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinforma Appl Note. 2002;18:333–4.CrossRef
74.
go back to reference Zhao J, Li X, Guo M, Yu J, Yan C. The common stress responsive transcription factor ATF3 binds genomic sites enriched with p300 and H3K27ac for transcriptional regulation. BMC Genomics. 2016;17:335.CrossRefPubMedPubMedCentral Zhao J, Li X, Guo M, Yu J, Yan C. The common stress responsive transcription factor ATF3 binds genomic sites enriched with p300 and H3K27ac for transcriptional regulation. BMC Genomics. 2016;17:335.CrossRefPubMedPubMedCentral
75.
go back to reference Patel RD, Kim DJ, Peters JM, Perdew GH. The aryl hydrocarbon receptor directly regulates expression of the potent mitogen epiregulin. Toxicol Sci. 2006;89:75–82.CrossRefPubMed Patel RD, Kim DJ, Peters JM, Perdew GH. The aryl hydrocarbon receptor directly regulates expression of the potent mitogen epiregulin. Toxicol Sci. 2006;89:75–82.CrossRefPubMed
76.
go back to reference Montemayor C, Montemayor OA, Ridgeway A, Lin F, Wheeler DA, Pletcher SD, et al. Genome-wide analysis of binding sites and direct target genes of the orphan nuclear receptor NR2F1/COUP-TFI. PLoS One. 2010;5:e8910.CrossRefPubMedPubMedCentral Montemayor C, Montemayor OA, Ridgeway A, Lin F, Wheeler DA, Pletcher SD, et al. Genome-wide analysis of binding sites and direct target genes of the orphan nuclear receptor NR2F1/COUP-TFI. PLoS One. 2010;5:e8910.CrossRefPubMedPubMedCentral
77.
go back to reference Bieda M, Xu X, Singer MA, Green R, Farnham PJ. Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome. Genome Res. 2006;16:595–605.CrossRefPubMedPubMedCentral Bieda M, Xu X, Singer MA, Green R, Farnham PJ. Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome. Genome Res. 2006;16:595–605.CrossRefPubMedPubMedCentral
78.
go back to reference Kageyama R, Merlino GT, Pastan I. Nuclear factor ETF specifically stimulates transcription from promoters without a TATA Box. J Biol Chem. 1989;264:15508–14.PubMed Kageyama R, Merlino GT, Pastan I. Nuclear factor ETF specifically stimulates transcription from promoters without a TATA Box. J Biol Chem. 1989;264:15508–14.PubMed
79.
go back to reference Comb M, Mermod N, Hyman SE, Pearlberg J, Ross ME, Goodman HM. Proteins bound at adjacent DNA elements act synergistically to regulate human proenkephalin cAMP inducible transcription. EMBO J. 1988;7:3793–805.PubMedPubMedCentral Comb M, Mermod N, Hyman SE, Pearlberg J, Ross ME, Goodman HM. Proteins bound at adjacent DNA elements act synergistically to regulate human proenkephalin cAMP inducible transcription. EMBO J. 1988;7:3793–805.PubMedPubMedCentral
80.
go back to reference Koh KP, Sundrud MS, Rao A. Domain requirements and sequence specificity of DNA binding for the forkhead transcription factor FOXP3. PLoS One. 2009;4:1–9.CrossRef Koh KP, Sundrud MS, Rao A. Domain requirements and sequence specificity of DNA binding for the forkhead transcription factor FOXP3. PLoS One. 2009;4:1–9.CrossRef
81.
go back to reference Lowry JA, Atchley WR. Molecular evolution of the GATA family of transcription factors : conservation within the DNA-binding domain. J Mol Evol. 2000;50:103–15.CrossRefPubMed Lowry JA, Atchley WR. Molecular evolution of the GATA family of transcription factors : conservation within the DNA-binding domain. J Mol Evol. 2000;50:103–15.CrossRefPubMed
82.
go back to reference Murakami A, Ishida S, Dickson C. GATA-4 interacts distinctively with negative and positive regulatory elements in the Fgf-3 promoter. Nucleic Acids Res. 2002;30:1056–64.CrossRefPubMedPubMedCentral Murakami A, Ishida S, Dickson C. GATA-4 interacts distinctively with negative and positive regulatory elements in the Fgf-3 promoter. Nucleic Acids Res. 2002;30:1056–64.CrossRefPubMedPubMedCentral
83.
go back to reference Wang L, Hunt KE, Martin GM, Oshima J. Structure and function of the human Werner syndrome gene promoter: evidence for transcriptional modulation. Nucleic Acids Res. 1998;26:3480–5.CrossRefPubMedPubMedCentral Wang L, Hunt KE, Martin GM, Oshima J. Structure and function of the human Werner syndrome gene promoter: evidence for transcriptional modulation. Nucleic Acids Res. 1998;26:3480–5.CrossRefPubMedPubMedCentral
84.
go back to reference Gardner-Stephen DA, Gregory PA, Mackenzie PI. Identification and characterization of functional hepatocyte nuclear factor 1-binding sites in UDP-glucuronosyltransferase genes. Methods Enzymol. 2005;400:22–46.CrossRefPubMed Gardner-Stephen DA, Gregory PA, Mackenzie PI. Identification and characterization of functional hepatocyte nuclear factor 1-binding sites in UDP-glucuronosyltransferase genes. Methods Enzymol. 2005;400:22–46.CrossRefPubMed
85.
go back to reference Mojsilovic-Petrovic J, Callaghan D, Cui H, Dean C, Stanimirovic DB, Zhang W. Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and MCP-5 (Ccl12) in astrocytes. J Neuroinflammation. 2007;4:12.CrossRefPubMedPubMedCentral Mojsilovic-Petrovic J, Callaghan D, Cui H, Dean C, Stanimirovic DB, Zhang W. Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and MCP-5 (Ccl12) in astrocytes. J Neuroinflammation. 2007;4:12.CrossRefPubMedPubMedCentral
86.
go back to reference Xu H, Fu J, Ha S-W, Ju D, Zheng J, Li L, et al. The CCAAT box-binding transcription factor NF-Y regulates basal expression of human proteasome genes. Biochim Biophys Acta. 2012;1823:818–25.CrossRefPubMed Xu H, Fu J, Ha S-W, Ju D, Zheng J, Li L, et al. The CCAAT box-binding transcription factor NF-Y regulates basal expression of human proteasome genes. Biochim Biophys Acta. 2012;1823:818–25.CrossRefPubMed
87.
go back to reference Rastinejad F, Wagner T, Zhao Q, Khorasanizadeh S. Structure of the RXR – RAR DNA-binding complex on the retinoic acid response element DR1. EMBO J. 2000;19:1045–54.CrossRefPubMedPubMedCentral Rastinejad F, Wagner T, Zhao Q, Khorasanizadeh S. Structure of the RXR – RAR DNA-binding complex on the retinoic acid response element DR1. EMBO J. 2000;19:1045–54.CrossRefPubMedPubMedCentral
88.
go back to reference Kasza A, Wyrzykowska P, Horwacik I, Tymoszuk P, Mizgalska D, Palmer K, et al. Transcription factors Elk-1 and SRF are engaged in IL1-dependent regulation of ZC3H12A expression. BMC Mol Biol. 2010;11:14.CrossRefPubMedPubMedCentral Kasza A, Wyrzykowska P, Horwacik I, Tymoszuk P, Mizgalska D, Palmer K, et al. Transcription factors Elk-1 and SRF are engaged in IL1-dependent regulation of ZC3H12A expression. BMC Mol Biol. 2010;11:14.CrossRefPubMedPubMedCentral
90.
go back to reference Ayers S, Switnicki MP, Angajala A, Lammel J, Arumanayagam AS, Webb P. Genome-wide binding patterns of thyroid hormone receptor beta. PLoS One. 2014;9:e81186.CrossRefPubMedPubMedCentral Ayers S, Switnicki MP, Angajala A, Lammel J, Arumanayagam AS, Webb P. Genome-wide binding patterns of thyroid hormone receptor beta. PLoS One. 2014;9:e81186.CrossRefPubMedPubMedCentral
Metadata
Title
The sense behind retroviral anti-sense transcription
Authors
Mamneet Manghera
Alycia Magnusson
Renée N. Douville
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-016-0667-3

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue