Skip to main content
Top
Published in: Virology Journal 1/2016

Open Access 01-12-2016 | Research

Common position of indels that cause deviations from canonical genome organization in different measles virus strains

Authors: Jelena Ivancic-Jelecki, Anamarija Slovic, Maja Šantak, Goran Tešović, Dubravko Forcic

Published in: Virology Journal | Issue 1/2016

Login to get access

Abstract

Background

The canonical genome organization of measles virus (MV) is characterized by total size of 15 894 nucleotides (nts) and defined length of every genomic region, both coding and non-coding. Only rarely have reports of strains possessing non-canonical genomic properties (possessing indels, with or without the change of total genome length) been published. The observed mutations are mutually compensatory in a sense that the total genome length remains polyhexameric. Although programmed and highly precise pseudo-templated nucleotide additions during transcription are inherent to polymerases of all viruses belonging to family Paramyxoviridae, a similar mechanism that would serve to non-randomly correct genome length, if an indel has occurred during replication, has so far not been described in the context of a complete virus genome.

Methods

We compiled all complete MV genomic sequences (64 in total) available in open access sequence databases. Multiple sequence comparisons and phylogenetic analyses were performed with the aim of exploring whether non-recombinant and non-evolutionary linked measles strains that show deviations from canonical genome organization possess a common genetic characteristic.

Results

In 11 MV sequences we detected deviations from canonical genome organization due to short indels located within homopolymeric stretches or next to them. In nine out of 11 identified non-canonical MV sequences, a common feature was observed: one mutation, either an insertion or a deletion, was located in a 28 nts long region in F gene 5′ untranslated region (positions 5051–5078 in genomic cDNA of canonical strains). This segment is composed of five tandemly linked homopolymeric stretches, its consensus sequence is G6-7C7-8A6-7G1-3C5-6. Although none of the mononucleotide repeats within this segment has fixed length, the total number of nts in canonical strains is always 28. These nine non-canonical strains, as well as the tenth (not mutated in 5051–5078 segment), can be grouped in three clusters, based on their passage histories/epidemiological data/genetic similarities. There are no indications that the 3 clusters are evolutionary linked, other than the fact that they all belong to clade D.

Conclusions

A common narrow genomic region was found to be mutated in different, non-related, wild type strains suggesting that this region might have a function in non-random genome length corrections occurring during MV replication.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wong TC, Wipf G, Hirano A. The measles virus matrix gene and gene product defined by in vitro and in vivo expression. Virology. 1987;157:497–508.CrossRefPubMed Wong TC, Wipf G, Hirano A. The measles virus matrix gene and gene product defined by in vitro and in vivo expression. Virology. 1987;157:497–508.CrossRefPubMed
2.
go back to reference Cathomen T, Buchholz CJ, Spielhofer P, Cattaneo R. Preferential initiation at the second AUG of the measles virus F mRNA: a role for the long untranslated region. Virology. 1995;214:628–32.CrossRefPubMed Cathomen T, Buchholz CJ, Spielhofer P, Cattaneo R. Preferential initiation at the second AUG of the measles virus F mRNA: a role for the long untranslated region. Virology. 1995;214:628–32.CrossRefPubMed
3.
go back to reference Takeda M, Ohno S, Seki F, Nakatsu Y, Tahara M, Yanagi Y. Long untranslated regions of the measles virus M and F genes control virus replication and cytopathogenicity. J Virol. 2005;79:14346–54.CrossRefPubMedPubMedCentral Takeda M, Ohno S, Seki F, Nakatsu Y, Tahara M, Yanagi Y. Long untranslated regions of the measles virus M and F genes control virus replication and cytopathogenicity. J Virol. 2005;79:14346–54.CrossRefPubMedPubMedCentral
4.
go back to reference Anderson DE, von Messling V. Region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression. J Virol. 2008;82:10510–8.CrossRefPubMedPubMedCentral Anderson DE, von Messling V. Region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression. J Virol. 2008;82:10510–8.CrossRefPubMedPubMedCentral
5.
go back to reference Anderson DE, Castan A, Bisaillon M, von Messling V. Elements in the canine distemper virus M 3′ UTR contribute to control of replication efficiency and virulence. PLoS One. 2012;7:e31561.CrossRefPubMedPubMedCentral Anderson DE, Castan A, Bisaillon M, von Messling V. Elements in the canine distemper virus M 3′ UTR contribute to control of replication efficiency and virulence. PLoS One. 2012;7:e31561.CrossRefPubMedPubMedCentral
6.
go back to reference Chulakasian S, Chang TJ, Tsai CH, Wong ML, Hsu WL. Translational enhancing activity in 5′ UTR of peste des petits ruminants virus fusion gene. FEBS J. 2013;280:1237–48.CrossRefPubMed Chulakasian S, Chang TJ, Tsai CH, Wong ML, Hsu WL. Translational enhancing activity in 5′ UTR of peste des petits ruminants virus fusion gene. FEBS J. 2013;280:1237–48.CrossRefPubMed
7.
go back to reference Penedos AR, Myers R, Hadef B, Aladin F, Brown KE. Assessment of the utility of whole genome sequencing of measles virus in the characterisation of outbreaks. PLoS One. 2015;10:e0143081.CrossRefPubMedPubMedCentral Penedos AR, Myers R, Hadef B, Aladin F, Brown KE. Assessment of the utility of whole genome sequencing of measles virus in the characterisation of outbreaks. PLoS One. 2015;10:e0143081.CrossRefPubMedPubMedCentral
8.
go back to reference Šantak M, Baričević M, Mažuran R, Forčić D. Intra- and intergenotype characterization of D6 measles virus genotype. Infect Genet Evol. 2007;7:645–50.CrossRefPubMed Šantak M, Baričević M, Mažuran R, Forčić D. Intra- and intergenotype characterization of D6 measles virus genotype. Infect Genet Evol. 2007;7:645–50.CrossRefPubMed
9.
go back to reference Heider A, Santibanez S, Tischer A, Gerike E, Tikhonova N, Ignatyev G, Mrazova M, Enders G, Schreier E. Comparative investigation of the long non-coding M-F genome region of wild-type and vaccine measles viruses. Arch Virol. 1997;142:2521–8.CrossRefPubMed Heider A, Santibanez S, Tischer A, Gerike E, Tikhonova N, Ignatyev G, Mrazova M, Enders G, Schreier E. Comparative investigation of the long non-coding M-F genome region of wild-type and vaccine measles viruses. Arch Virol. 1997;142:2521–8.CrossRefPubMed
10.
go back to reference Calain P, Roux L. The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol. 1993;67:4822–30.PubMedPubMedCentral Calain P, Roux L. The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol. 1993;67:4822–30.PubMedPubMedCentral
11.
go back to reference Kolakofsky D, Pelet T, Garcin D, Hausmann S, Curran J, Roux L. Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol. 1998;72:891–9.PubMedPubMedCentral Kolakofsky D, Pelet T, Garcin D, Hausmann S, Curran J, Roux L. Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol. 1998;72:891–9.PubMedPubMedCentral
13.
go back to reference Rima BK, Collin AMJ, Earle JAP. Completion of the sequence of a cetacean morbillivirus and comparative analysis of the complete genome sequences of four morbilliviruses. Virus Genes. 2005;30:113–9.CrossRefPubMed Rima BK, Collin AMJ, Earle JAP. Completion of the sequence of a cetacean morbillivirus and comparative analysis of the complete genome sequences of four morbilliviruses. Virus Genes. 2005;30:113–9.CrossRefPubMed
14.
go back to reference Rima BK, Duprex WP. The measles virus replication cycle. Curr Top Microbiol Immunol. 2009;329:77–102.PubMed Rima BK, Duprex WP. The measles virus replication cycle. Curr Top Microbiol Immunol. 2009;329:77–102.PubMed
15.
go back to reference Baricevic M, Forcic D, Santak M, Mazuran R. A comparison of complete untranslated regions of measles virus genomes derived from wild-type viruses and SSPE brain tissues. Virus Genes. 2007;35:17–27.CrossRefPubMed Baricevic M, Forcic D, Santak M, Mazuran R. A comparison of complete untranslated regions of measles virus genomes derived from wild-type viruses and SSPE brain tissues. Virus Genes. 2007;35:17–27.CrossRefPubMed
16.
go back to reference Bankamp B, Liu C, Rivailler P, Bera J, Shrivastava S, Kirkness EF, Bellini WJ, Rota PA. Wild-type measles viruses with non-standard genome lengths. PLoS One. 2014;9:e95470.CrossRefPubMedPubMedCentral Bankamp B, Liu C, Rivailler P, Bera J, Shrivastava S, Kirkness EF, Bellini WJ, Rota PA. Wild-type measles viruses with non-standard genome lengths. PLoS One. 2014;9:e95470.CrossRefPubMedPubMedCentral
17.
go back to reference Skiadopoulos MH, Vogel L, Riggs JM, Surman SR, Collins PL, Murphy BR. The genome length of human parainfluenza virus type 2 follows the rule of six, and recombinant viruses recovered from non-polyhexameric-length antigenomic cDNAs contain a biased distribution of correcting mutations. J Virol. 2003;77:270–9.CrossRefPubMedPubMedCentral Skiadopoulos MH, Vogel L, Riggs JM, Surman SR, Collins PL, Murphy BR. The genome length of human parainfluenza virus type 2 follows the rule of six, and recombinant viruses recovered from non-polyhexameric-length antigenomic cDNAs contain a biased distribution of correcting mutations. J Virol. 2003;77:270–9.CrossRefPubMedPubMedCentral
18.
go back to reference Skiadopoulos MH, Surman SR, Riggs JM, Orvell C, Collins PL, Murphy BR. Evaluation of the replication and immunogenicity of recombinant human parainfluenza virus type 3 vectors expressing up to three foreign glycoproteins. Virology. 2002;297:136–52.CrossRefPubMed Skiadopoulos MH, Surman SR, Riggs JM, Orvell C, Collins PL, Murphy BR. Evaluation of the replication and immunogenicity of recombinant human parainfluenza virus type 3 vectors expressing up to three foreign glycoproteins. Virology. 2002;297:136–52.CrossRefPubMed
20.
go back to reference Hausmann S, Jacques JP, Kolakofsky D. Paramyxovirus RNA editing and the requirement for hexamer genome length. RNA. 1996;2:1033–45.PubMedPubMedCentral Hausmann S, Jacques JP, Kolakofsky D. Paramyxovirus RNA editing and the requirement for hexamer genome length. RNA. 1996;2:1033–45.PubMedPubMedCentral
21.
go back to reference Jacques JP, Kolakofsky D. Pseudo-templated transcription in prokaryotic and eukaryotic organisms. Genes Dev. 1991;5:707–13.CrossRefPubMed Jacques JP, Kolakofsky D. Pseudo-templated transcription in prokaryotic and eukaryotic organisms. Genes Dev. 1991;5:707–13.CrossRefPubMed
22.
go back to reference Kolakofsky D, Roux L, Garcin D, Ruigrok RW. Paramyxovirus mRNA editing, the “rule of six” and error catastrophe: a hypothesis. J Gen Virol. 2005;86:1869–77.CrossRefPubMed Kolakofsky D, Roux L, Garcin D, Ruigrok RW. Paramyxovirus mRNA editing, the “rule of six” and error catastrophe: a hypothesis. J Gen Virol. 2005;86:1869–77.CrossRefPubMed
23.
go back to reference Ivancic-Jelecki J, Baricevic M, Šantak M, Harcet M, Tešović G, Marusic Della Marina B, Forcic D. The first genetic characterization of a D4 measles virus strain derived from a patient with subacute sclerosing panencephalitis. Infect Genet Evol. 2013;17:71–8.CrossRefPubMed Ivancic-Jelecki J, Baricevic M, Šantak M, Harcet M, Tešović G, Marusic Della Marina B, Forcic D. The first genetic characterization of a D4 measles virus strain derived from a patient with subacute sclerosing panencephalitis. Infect Genet Evol. 2013;17:71–8.CrossRefPubMed
24.
go back to reference Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9.CrossRefPubMed Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9.CrossRefPubMed
25.
go back to reference Lou M, Golding GB. Fingerprint: Visual depiction of variation in multiple sequence alignments. Mol Ecol Notes. 2007;7:908–14.CrossRef Lou M, Golding GB. Fingerprint: Visual depiction of variation in multiple sequence alignments. Mol Ecol Notes. 2007;7:908–14.CrossRef
26.
go back to reference WHO. Measles virus nomenclature update:2012. Wkly Epidemiol Rec. 2012;89:73–80. WHO. Measles virus nomenclature update:2012. Wkly Epidemiol Rec. 2012;89:73–80.
27.
go back to reference Rota PA, Liffick SL, Rota JS, Katz RS, Redd S, Papania M, Bellini WJ. Molecular epidemiology of measles viruses in the United States, 1997-2001. Emerg Infect Dis. 2002;8:902–8.CrossRefPubMedPubMedCentral Rota PA, Liffick SL, Rota JS, Katz RS, Redd S, Papania M, Bellini WJ. Molecular epidemiology of measles viruses in the United States, 1997-2001. Emerg Infect Dis. 2002;8:902–8.CrossRefPubMedPubMedCentral
28.
go back to reference Forčić D, Baričević M, Zgorelec R, Kružić V, Kaić B, Marušić Della Marina B, Šojat Cvitanović L, Tešović G, Mažuran R. Detection and characterization of measles virus strains in cases of subacute sclerosing panencephalitis in Croatia. Virus Res. 2004;99:51–6.CrossRefPubMed Forčić D, Baričević M, Zgorelec R, Kružić V, Kaić B, Marušić Della Marina B, Šojat Cvitanović L, Tešović G, Mažuran R. Detection and characterization of measles virus strains in cases of subacute sclerosing panencephalitis in Croatia. Virus Res. 2004;99:51–6.CrossRefPubMed
29.
go back to reference Dong J, Saito A, Mine Y, Sakuraba Y, Nibe K, Goto Y, Komase K, Nakayama T, Miyata H, Iwata H, Haga T. Adaptation of wild-type measles virus to cotton rat lung cells: E89K mutation in matrix protein contributes to its fitness. Virus Genes. 2009;39:330–4.CrossRefPubMed Dong J, Saito A, Mine Y, Sakuraba Y, Nibe K, Goto Y, Komase K, Nakayama T, Miyata H, Iwata H, Haga T. Adaptation of wild-type measles virus to cotton rat lung cells: E89K mutation in matrix protein contributes to its fitness. Virus Genes. 2009;39:330–4.CrossRefPubMed
30.
go back to reference Hotta H, Nihei K, Abe Y, Kato S, Jiang DP, Nagano-Fujii M, Sada K. Full-length sequence analysis of subacute sclerosing panencephalitis (SSPE) virus, a mutant of measles virus, isolated from brain tissues of a patient shortly after onset of SSPE. Microbiol Immunol. 2006;50:525–34.CrossRefPubMed Hotta H, Nihei K, Abe Y, Kato S, Jiang DP, Nagano-Fujii M, Sada K. Full-length sequence analysis of subacute sclerosing panencephalitis (SSPE) virus, a mutant of measles virus, isolated from brain tissues of a patient shortly after onset of SSPE. Microbiol Immunol. 2006;50:525–34.CrossRefPubMed
31.
go back to reference Cattaneo R, Schmid A, Spielhofer P, Kaelin K, Baczko K, ter Meulen V, Pardowitz J, Flanagan S, Rima BK, Udem SA, Billeter MA. Mutated and hypermutated genes of persistent measles viruses which caused lethal human brain diseases. Virology. 1989;173:415–25.CrossRefPubMed Cattaneo R, Schmid A, Spielhofer P, Kaelin K, Baczko K, ter Meulen V, Pardowitz J, Flanagan S, Rima BK, Udem SA, Billeter MA. Mutated and hypermutated genes of persistent measles viruses which caused lethal human brain diseases. Virology. 1989;173:415–25.CrossRefPubMed
32.
go back to reference Rota JS, Wang ZD, Rota PA, Bellini WJ. Comparison of sequences of the H, F, and N coding genes of measles virus vaccine strains. Virus Res. 1994;31:317–30.CrossRefPubMed Rota JS, Wang ZD, Rota PA, Bellini WJ. Comparison of sequences of the H, F, and N coding genes of measles virus vaccine strains. Virus Res. 1994;31:317–30.CrossRefPubMed
33.
go back to reference Blumberg BM, Crowley JC, Silverman JI, Menonna J, Cook SD, Dowling PC. Measles virus L protein evidences elements of ancestral RNA polymerase. Virology. 1988;164:487–97.CrossRefPubMed Blumberg BM, Crowley JC, Silverman JI, Menonna J, Cook SD, Dowling PC. Measles virus L protein evidences elements of ancestral RNA polymerase. Virology. 1988;164:487–97.CrossRefPubMed
34.
go back to reference Paldurai A, Xiao S, Kim SH, Kumar S, Nayak B, Samal S, Collins PL, Samal SK. Effects of naturally occurring six- and twelve-nucleotide inserts on Newcastle disease virus replication and pathogenesis. PLoS One. 2014;9:e103951.CrossRefPubMedPubMedCentral Paldurai A, Xiao S, Kim SH, Kumar S, Nayak B, Samal S, Collins PL, Samal SK. Effects of naturally occurring six- and twelve-nucleotide inserts on Newcastle disease virus replication and pathogenesis. PLoS One. 2014;9:e103951.CrossRefPubMedPubMedCentral
35.
go back to reference Wernegreen JJ, Kauppinen SN, Degnan PH. Slip into something more functional: selection maintains ancient frameshifts in homopolymeric sequences. Mol Biol Evol. 2010;27:833–9.CrossRefPubMed Wernegreen JJ, Kauppinen SN, Degnan PH. Slip into something more functional: selection maintains ancient frameshifts in homopolymeric sequences. Mol Biol Evol. 2010;27:833–9.CrossRefPubMed
37.
go back to reference Baranov PV, Hammer AW, Zhou J, Gesteland RF, Atkins JF. Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression. Genome Biol. 2005;6:R25.CrossRefPubMedPubMedCentral Baranov PV, Hammer AW, Zhou J, Gesteland RF, Atkins JF. Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression. Genome Biol. 2005;6:R25.CrossRefPubMedPubMedCentral
38.
go back to reference Wagner LA, Weiss RB, Driscoll R, Dunn DS, Gesteland RF. Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res. 1990;18:3529–35.CrossRefPubMedPubMedCentral Wagner LA, Weiss RB, Driscoll R, Dunn DS, Gesteland RF. Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res. 1990;18:3529–35.CrossRefPubMedPubMedCentral
39.
go back to reference Wenthzel AM, Stancek M, Isaksson LA. Growth phase dependent stop codon readthrough and shift of translation reading frame in Escherichia coli. FEBS Lett. 1998;421:237–42.CrossRefPubMed Wenthzel AM, Stancek M, Isaksson LA. Growth phase dependent stop codon readthrough and shift of translation reading frame in Escherichia coli. FEBS Lett. 1998;421:237–42.CrossRefPubMed
40.
go back to reference Parks CL, Lerch RA, Walpita P, Wang HP, Sidhu MS, Udem SA. Analysis of the noncoding regions of measles virus strains in the Edmonston vaccine lineage. J Virol. 2001;75:921–33.CrossRefPubMedPubMedCentral Parks CL, Lerch RA, Walpita P, Wang HP, Sidhu MS, Udem SA. Analysis of the noncoding regions of measles virus strains in the Edmonston vaccine lineage. J Virol. 2001;75:921–33.CrossRefPubMedPubMedCentral
41.
go back to reference Domingo E, Holland JJ. RNA virus mutations and fitness for survival. Annu Rev Microbiol. 1997;51:151–78.CrossRefPubMed Domingo E, Holland JJ. RNA virus mutations and fitness for survival. Annu Rev Microbiol. 1997;51:151–78.CrossRefPubMed
Metadata
Title
Common position of indels that cause deviations from canonical genome organization in different measles virus strains
Authors
Jelena Ivancic-Jelecki
Anamarija Slovic
Maja Šantak
Goran Tešović
Dubravko Forcic
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2016
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-016-0587-2

Other articles of this Issue 1/2016

Virology Journal 1/2016 Go to the issue