Skip to main content
Top
Published in: Virology Journal 1/2016

Open Access 01-12-2016 | Research

Atlantic salmon (Salmo salar L.) post-smolts challenged two or nine weeks after seawater-transfer show differences in their susceptibility to salmonid alphavirus subtype 3 (SAV3)

Authors: J. Jarungsriapisit, L. J. Moore, G. L. Taranger, T. O. Nilsen, H. C. Morton, I. U. Fiksdal, S. Stefansson, P. G. Fjelldal, Ø. Evensen, S. Patel

Published in: Virology Journal | Issue 1/2016

Login to get access

Abstract

Background

Pancreas disease (PD), caused by salmonid alphavirus (SAV), is an important disease affecting salmonid aquaculture. It has been speculated that Atlantic salmon post-smolts are more prone to infections in the first few weeks following seawater- transfer. After this period of seawater acclimatization, the post-smolts are more robust and better able to resist infection by pathogens. Here we describe how we established a bath immersion (BI) model for SAV subtype 3 (SAV3) in seawater. We also report how this challenge model was used to study the susceptibility of post-smolts to SAV3 infection in two groups of post-smolts two weeks or nine weeks after seawater - transfer.

Methods

Post-smolts, two weeks (Phase-A) or nine weeks (Phase-B) after seawater- transfer, were infected with SAV3 by BI or intramuscular injection (IM) to evaluate their susceptibility to infection. A RT-qPCR assay targeting the non-structural protein (nsP1) gene was performed to detect SAV3-RNA in blood, heart tissue and electropositive-filtered tank-water. Histopathological changes were examined by light microscope, and the presence of SAV3 antigen in pancreas tissue was confirmed using immuno-histochemistry.

Results

Virus shedding from the Phase-B fish injected with SAV3 (IM Phase-B) was markedly lower than that from IM Phase-A fish. A lower percentage of viraemia in Phase-B fish compared with Phase-A fish was also observed. Viral RNA in hearts from IM Phase-A fish was higher than in IM Phase-B fish at all sampling points (p < 0.05) and a similar trend was also seen in the BI groups. Necrosis of exocrine pancreatic cells was observed in all infected groups. Extensive histopathological changes were found in Phase-A fish whereas milder PD-related histopathological lesions were seen in Phase-B fish. The presence of SAV3 in pancreas tissue from all infected groups was also confirmed by immuno-histochemical staining.

Conclusion

Our results suggest that post-smolts are more susceptible to SAV3 infection two weeks after seawater-transfer than nine weeks after transfer. In addition, the BI challenge model described here offers an alternative SAV3 infection model when better control of the time-of-infection is essential for studying basic immunological mechanisms and disease progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Munro ALS, Ellis AE, Mcvicar AH, Mclay HA, Needham EA. An exocrine Pancreas disease of farmed Atlantic salmon in Scotland. Helgolander Meeresuntersuchungen. 1984;37:571–86. Munro ALS, Ellis AE, Mcvicar AH, Mclay HA, Needham EA. An exocrine Pancreas disease of farmed Atlantic salmon in Scotland. Helgolander Meeresuntersuchungen. 1984;37:571–86.
2.
go back to reference Kent ML, Elston RA. Pancreas disease in pen-reared Atlantic salmon in north america. Bull Eur Assoc Fish Pathol. 1987;7:29–31. Kent ML, Elston RA. Pancreas disease in pen-reared Atlantic salmon in north america. Bull Eur Assoc Fish Pathol. 1987;7:29–31.
3.
go back to reference Poppe T, Rimstad E, Hyllseth B. Pancreas disease in Atlantic salmon (Salmo Salar) postsmolts infected with infectious pancreatic necrosis virus (IPNV). Bull Eur Assoc Fish Pathol. 1989;9:83–5. Poppe T, Rimstad E, Hyllseth B. Pancreas disease in Atlantic salmon (Salmo Salar) postsmolts infected with infectious pancreatic necrosis virus (IPNV). Bull Eur Assoc Fish Pathol. 1989;9:83–5.
4.
go back to reference Murphy TM, Rodger HD, Drinan EM, Gannon F, Kruse P, Korting W. The sequential pathology of Pancreas disease in Atlantic salmon farms in Ireland. J Fish Dis. 1992;15:401–8.CrossRef Murphy TM, Rodger HD, Drinan EM, Gannon F, Kruse P, Korting W. The sequential pathology of Pancreas disease in Atlantic salmon farms in Ireland. J Fish Dis. 1992;15:401–8.CrossRef
5.
go back to reference Raynard RS, Houghton G, Munro ALS: Pancreas disease of Atlantic salmon: proceedings of a European Commission Workshop. In Scottish Office Aquaculture Report, The Scottish Office Agriculture and Fisheries Department, Aberdeen, No. 1, p 2-4; 1992 Raynard RS, Houghton G, Munro ALS: Pancreas disease of Atlantic salmon: proceedings of a European Commission Workshop. In Scottish Office Aquaculture Report, The Scottish Office Agriculture and Fisheries Department, Aberdeen, No. 1, p 2-4; 1992
6.
go back to reference Hodneland K, Bratland A, Christie KE, Endresen C, Nylund A. New subtype of salmonid alphavirus (SAV), Togaviridae, from Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss in Norway. Dis Aquat Organ. 2005;66:113–20.CrossRefPubMed Hodneland K, Bratland A, Christie KE, Endresen C, Nylund A. New subtype of salmonid alphavirus (SAV), Togaviridae, from Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss in Norway. Dis Aquat Organ. 2005;66:113–20.CrossRefPubMed
7.
go back to reference Weston JH, Welsh MD, McLoughlin MF, Todd D. Salmon pancreas disease virus, an alphavirus infecting farmed Atlantic salmon, Salmo salar L. Virology. 1999;256:188–95.CrossRefPubMed Weston JH, Welsh MD, McLoughlin MF, Todd D. Salmon pancreas disease virus, an alphavirus infecting farmed Atlantic salmon, Salmo salar L. Virology. 1999;256:188–95.CrossRefPubMed
8.
go back to reference Fringuelli E, Rowley HM, Wilson JC, Hunter R, Rodger H, Graham DA. Phylogenetic analyses and molecular epidemiology of European salmonid alphaviruses (SAV) based on partial E2 and nsP3 gene nucleotide sequences. J Fish Dis. 2008;31:811–23.CrossRefPubMed Fringuelli E, Rowley HM, Wilson JC, Hunter R, Rodger H, Graham DA. Phylogenetic analyses and molecular epidemiology of European salmonid alphaviruses (SAV) based on partial E2 and nsP3 gene nucleotide sequences. J Fish Dis. 2008;31:811–23.CrossRefPubMed
9.
go back to reference Jansen MD, Taksdal T, Wasmuth MA, Gjerset B, Brun E, Olsen AB, Breck O, Sandberg M. Salmonid alphavirus (SAV) and pancreas disease (PD) in Atlantic salmon, Salmo salar L., in freshwater and seawater sites in Norway from 2006 to 2008. J Fish Dis. 2010;33:391–402.CrossRefPubMed Jansen MD, Taksdal T, Wasmuth MA, Gjerset B, Brun E, Olsen AB, Breck O, Sandberg M. Salmonid alphavirus (SAV) and pancreas disease (PD) in Atlantic salmon, Salmo salar L., in freshwater and seawater sites in Norway from 2006 to 2008. J Fish Dis. 2010;33:391–402.CrossRefPubMed
10.
go back to reference Hjortaas MJ, Skjelstad HR, Taksdal T, Olsen AB, Johansen R, Bang-Jensen B, Orpetveit I, Sindre H. The first detections of subtype 2-related salmonid alphavirus (SAV2) in Atlantic salmon, Salmo salar L., in Norway. J Fish Dis. 2013;36:71–4.CrossRefPubMed Hjortaas MJ, Skjelstad HR, Taksdal T, Olsen AB, Johansen R, Bang-Jensen B, Orpetveit I, Sindre H. The first detections of subtype 2-related salmonid alphavirus (SAV2) in Atlantic salmon, Salmo salar L., in Norway. J Fish Dis. 2013;36:71–4.CrossRefPubMed
11.
go back to reference Taksdal T, Bang Jensen B, Böckerman I, McLoughlin MF, Hjortaas MJ, Ramstad A, Sindre H: Mortality and weight loss of Atlantic salmon, Salmon salar L., experimentally infected with salmonid alphavirus subtype 2 and subtype 3 isolates from Norway. J Fish Dis. 2015;38:1047-61. Taksdal T, Bang Jensen B, Böckerman I, McLoughlin MF, Hjortaas MJ, Ramstad A, Sindre H: Mortality and weight loss of Atlantic salmon, Salmon salar L., experimentally infected with salmonid alphavirus subtype 2 and subtype 3 isolates from Norway. J Fish Dis. 2015;38:1047-61.
12.
go back to reference Jansen MD, Jensen BB, Brun E. Clinical manifestations of pancreas disease outbreaks in Norwegian marine salmon farming – variations due to salmonid alphavirus subtype. J Fish Dis. 2015;38:343–53.CrossRefPubMed Jansen MD, Jensen BB, Brun E. Clinical manifestations of pancreas disease outbreaks in Norwegian marine salmon farming – variations due to salmonid alphavirus subtype. J Fish Dis. 2015;38:343–53.CrossRefPubMed
13.
go back to reference Hoar WS. The physiology of smolting salmonids. In: Hoar XIB, WSR DJ, editors. Fish Physiology. New York: Academic; 1988. p. 275–343. Hoar WS. The physiology of smolting salmonids. In: Hoar XIB, WSR DJ, editors. Fish Physiology. New York: Academic; 1988. p. 275–343.
14.
go back to reference McCormick SD, Sheehan TF, Björnsson BT, Lipsky C, Kocik JF, Regish AM, O'Dea MF. Physiological and endocrine changes in Atlantic salmon smolts during hatchery rearing, downstream migration, and ocean entry. Can J Fish Aquat Sci. 2013;70:105–18.CrossRef McCormick SD, Sheehan TF, Björnsson BT, Lipsky C, Kocik JF, Regish AM, O'Dea MF. Physiological and endocrine changes in Atlantic salmon smolts during hatchery rearing, downstream migration, and ocean entry. Can J Fish Aquat Sci. 2013;70:105–18.CrossRef
15.
go back to reference McCormick SD. Methods for nonlethal gill biopsy and measurement of Na+, K+ -ATPase activity. Can J Fish Aquat Sci. 1993;50:656–8.CrossRef McCormick SD. Methods for nonlethal gill biopsy and measurement of Na+, K+ -ATPase activity. Can J Fish Aquat Sci. 1993;50:656–8.CrossRef
16.
go back to reference Haney DC, Hursh DA, Mix MC, Winton JR. Physiological and hematological changes in Chum salmon artificially infected with erythrocytic necrosis virus. J Aquat Anim Health. 1992;4:48–57.CrossRef Haney DC, Hursh DA, Mix MC, Winton JR. Physiological and hematological changes in Chum salmon artificially infected with erythrocytic necrosis virus. J Aquat Anim Health. 1992;4:48–57.CrossRef
17.
go back to reference Pettersen EF, Ulvenes M, Melingen GO, Wergeland HI. Peripheral blood and head kidney leucocyte populations during out-of-season (0+) parr-smolt transformation and seawater transfer of Atlantic salmon (Salmo salar L.). Fish Shellfish Immun. 2003;15:373–85.CrossRef Pettersen EF, Ulvenes M, Melingen GO, Wergeland HI. Peripheral blood and head kidney leucocyte populations during out-of-season (0+) parr-smolt transformation and seawater transfer of Atlantic salmon (Salmo salar L.). Fish Shellfish Immun. 2003;15:373–85.CrossRef
18.
go back to reference Melingen GO, Stefansson SO, Berg A, Wergeland HI. Changes in serum protein and IgM concentration during smolting and early post-smolt period in vaccinated and unvaccinated Atlantic salmon (Salmo salar L). Fish Shellfish Immun. 1995;5:211–21.CrossRef Melingen GO, Stefansson SO, Berg A, Wergeland HI. Changes in serum protein and IgM concentration during smolting and early post-smolt period in vaccinated and unvaccinated Atlantic salmon (Salmo salar L). Fish Shellfish Immun. 1995;5:211–21.CrossRef
19.
go back to reference Andersen L, Bratland A, Hodneland K, Nylund A. Tissue tropism of salmonid alphaviruses (subtypes SAV1 and SAV3) in experimentally challenged Atlantic salmon (Salmo salar L.). Arch Virol. 2007;152:1871–83.CrossRefPubMed Andersen L, Bratland A, Hodneland K, Nylund A. Tissue tropism of salmonid alphaviruses (subtypes SAV1 and SAV3) in experimentally challenged Atlantic salmon (Salmo salar L.). Arch Virol. 2007;152:1871–83.CrossRefPubMed
20.
go back to reference Andersen L, Hodneland K, Nylund A. No influence of oxygen levels on pathogenesis and virus shedding in Salmonid alphavirus (SAV)-challenged Atlantic salmon (Salmo salar L.). Virol J. 2010;7:198.CrossRefPubMedPubMedCentral Andersen L, Hodneland K, Nylund A. No influence of oxygen levels on pathogenesis and virus shedding in Salmonid alphavirus (SAV)-challenged Atlantic salmon (Salmo salar L.). Virol J. 2010;7:198.CrossRefPubMedPubMedCentral
21.
go back to reference Christie KE, Graham DA, McLoughlin MF, Villoing S, Todd D, Knappskog D. Experimental infection of Atlantic salmon Salmo salar pre-smolts by i.p. injection with new Irish and Norwegian salmonid alphavirus (SAV) isolates: a comparative study. Dis Aquat Organ. 2007;75:13–22.CrossRefPubMed Christie KE, Graham DA, McLoughlin MF, Villoing S, Todd D, Knappskog D. Experimental infection of Atlantic salmon Salmo salar pre-smolts by i.p. injection with new Irish and Norwegian salmonid alphavirus (SAV) isolates: a comparative study. Dis Aquat Organ. 2007;75:13–22.CrossRefPubMed
22.
go back to reference Xu C, Mutoloki S, Evensen O. Superior protection conferred by inactivated whole virus vaccine over subunit and DNA vaccines against salmonid alphavirus infection in Atlantic salmon (Salmo salar L.). Vaccine. 2012;30:3918–28.CrossRefPubMed Xu C, Mutoloki S, Evensen O. Superior protection conferred by inactivated whole virus vaccine over subunit and DNA vaccines against salmonid alphavirus infection in Atlantic salmon (Salmo salar L.). Vaccine. 2012;30:3918–28.CrossRefPubMed
23.
go back to reference Graham DA, Frost P, McLaughlin K, Rowley HM, Gabestad I, Gordon A, McLoughlin MF. A comparative study of marine salmonid alphavirus subtypes 1-6 using an experimental cohabitation challenge model. J Fish Dis. 2011;34:273–86.CrossRefPubMed Graham DA, Frost P, McLaughlin K, Rowley HM, Gabestad I, Gordon A, McLoughlin MF. A comparative study of marine salmonid alphavirus subtypes 1-6 using an experimental cohabitation challenge model. J Fish Dis. 2011;34:273–86.CrossRefPubMed
24.
go back to reference Grove S, Austbo L, Hodneland K, Frost P, Lovoll M, McLoughlin M, Thim HL, Braaen S, Konig M, Syed M, et al. Immune parameters correlating with reduced susceptibility to pancreas disease in experimentally challenged Atlantic salmon (Salmo salar). Fish Shellfish Immun. 2013;34:789–98.CrossRef Grove S, Austbo L, Hodneland K, Frost P, Lovoll M, McLoughlin M, Thim HL, Braaen S, Konig M, Syed M, et al. Immune parameters correlating with reduced susceptibility to pancreas disease in experimentally challenged Atlantic salmon (Salmo salar). Fish Shellfish Immun. 2013;34:789–98.CrossRef
25.
go back to reference Björnsson BT, Hemre G-I, Bjørnevik M, Hansen T. Photoperiod regulation of plasma growth hormone levels during induced smoltification of underyearling Atlantic Salmon. Gen Comp Endocr. 2000;119:17–25.CrossRefPubMed Björnsson BT, Hemre G-I, Bjørnevik M, Hansen T. Photoperiod regulation of plasma growth hormone levels during induced smoltification of underyearling Atlantic Salmon. Gen Comp Endocr. 2000;119:17–25.CrossRefPubMed
26.
go back to reference Handeland SO, Stefansson SO. Effects of salinity acclimation on pre-smolt growth, smolting and post-smolt performance in off-season Atlantic salmon smolts (Salmo salar L.). Aquaculture. 2002;209:125–37.CrossRef Handeland SO, Stefansson SO. Effects of salinity acclimation on pre-smolt growth, smolting and post-smolt performance in off-season Atlantic salmon smolts (Salmo salar L.). Aquaculture. 2002;209:125–37.CrossRef
27.
go back to reference Xu C, Guo T-C, Mutoloki S, Haugland Ø, Marjara IS, Evensen Ø. Alpha interferon and not gamma interferon inhibits salmonid alphavirus subtype 3 replication in vitro. J Virol. 2010;84:8903–12.CrossRefPubMedPubMedCentral Xu C, Guo T-C, Mutoloki S, Haugland Ø, Marjara IS, Evensen Ø. Alpha interferon and not gamma interferon inhibits salmonid alphavirus subtype 3 replication in vitro. J Virol. 2010;84:8903–12.CrossRefPubMedPubMedCentral
28.
go back to reference Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938;27:493–7. Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938;27:493–7.
29.
go back to reference McBeath AJA, Snow M, Secombes CJ, Ellis AE, Collet B. Expression kinetics of interferon and interferon-induced genes in Atlantic salmon (Salmo salar) following infection with infectious pancreatic necrosis virus and infectious salmon anaemia virus. Fish Shellfish Immun. 2007;22:230–41.CrossRef McBeath AJA, Snow M, Secombes CJ, Ellis AE, Collet B. Expression kinetics of interferon and interferon-induced genes in Atlantic salmon (Salmo salar) following infection with infectious pancreatic necrosis virus and infectious salmon anaemia virus. Fish Shellfish Immun. 2007;22:230–41.CrossRef
30.
go back to reference Goyal SM, Gerba CP. Viradel method for detection of rotavirus from seawater. J Virol Methods. 1983;7:279–85.CrossRefPubMed Goyal SM, Gerba CP. Viradel method for detection of rotavirus from seawater. J Virol Methods. 1983;7:279–85.CrossRefPubMed
31.
32.
go back to reference Polaczyk AL, Roberts JM, Hill VR. Evaluation of 1MDS electropositive microfilters for simultaneous recovery of multiple microbe classes from tap water. J Microbiol Meth. 2007;68:260–6.CrossRef Polaczyk AL, Roberts JM, Hill VR. Evaluation of 1MDS electropositive microfilters for simultaneous recovery of multiple microbe classes from tap water. J Microbiol Meth. 2007;68:260–6.CrossRef
33.
go back to reference Sobsey MD, Glass JS. Poliovirus concentration from tap water with electropositive adsorbent filters. Appl Environ Microb. 1980;40:201–10. Sobsey MD, Glass JS. Poliovirus concentration from tap water with electropositive adsorbent filters. Appl Environ Microb. 1980;40:201–10.
34.
go back to reference Hodneland K, Endresen C. Sensitive and specific detection of Salmonid alphavirus using real-time PCR (TaqMan (R)). J Virol Methods. 2006;131:184–92.CrossRefPubMed Hodneland K, Endresen C. Sensitive and specific detection of Salmonid alphavirus using real-time PCR (TaqMan (R)). J Virol Methods. 2006;131:184–92.CrossRefPubMed
35.
go back to reference Olsvik P, Lie K, Jordal A-E, Nilsen T, Hordvik I. Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol. 2005;6:21.CrossRefPubMedPubMedCentral Olsvik P, Lie K, Jordal A-E, Nilsen T, Hordvik I. Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol. 2005;6:21.CrossRefPubMedPubMedCentral
36.
go back to reference Stefansson SO, Björnsson BT, Sundell K, Nyhammer G, McCormick SD. Physiological characteristics of wild Atlantic salmon post-smolts during estuarine and coastal migration. J Fish Biol. 2003;63:942–55.CrossRef Stefansson SO, Björnsson BT, Sundell K, Nyhammer G, McCormick SD. Physiological characteristics of wild Atlantic salmon post-smolts during estuarine and coastal migration. J Fish Biol. 2003;63:942–55.CrossRef
37.
go back to reference Graham DA, Brown A, Savage P, Frost P. Detection of salmon pancreas disease virus in the faeces and mucus of Atlantic salmon, Salmo salar L., by real-time RT-PCR and cell culture following experimental challenge. J Fish Dis. 2012;35:949–51.CrossRefPubMed Graham DA, Brown A, Savage P, Frost P. Detection of salmon pancreas disease virus in the faeces and mucus of Atlantic salmon, Salmo salar L., by real-time RT-PCR and cell culture following experimental challenge. J Fish Dis. 2012;35:949–51.CrossRefPubMed
38.
go back to reference McLoughlin MF, Graham DA, Norris A, Matthews D, Foyle L, Rowley HM, Jewhurst H, MacPhee J, Todd D. Virological, serological and histopathological evaluation of fish strain susceptibility to experimental infection with salmonid alphavirus. Dis Aquat Organ. 2006;72:125–33.CrossRefPubMed McLoughlin MF, Graham DA, Norris A, Matthews D, Foyle L, Rowley HM, Jewhurst H, MacPhee J, Todd D. Virological, serological and histopathological evaluation of fish strain susceptibility to experimental infection with salmonid alphavirus. Dis Aquat Organ. 2006;72:125–33.CrossRefPubMed
39.
go back to reference Xu C, Guo TC, Mutoloki S, Haugland O, Evensen O. Gene expression studies of host response to Salmonid alphavirus subtype 3 experimental infections in Atlantic salmon. Vet Res. 2012;43:10.CrossRef Xu C, Guo TC, Mutoloki S, Haugland O, Evensen O. Gene expression studies of host response to Salmonid alphavirus subtype 3 experimental infections in Atlantic salmon. Vet Res. 2012;43:10.CrossRef
40.
go back to reference Taksdal T, Olsen AB, Bjerkås I, Hjortaas MJ, Dannevig BH, Graham DA, McLoughlin MF. Pancreas disease in farmed Atlantic salmon, Salmo salar L., and rainbow trout, Oncorhynchus mykiss (Walbaum), in Norway. J Fish Dis. 2007;30:545–58.CrossRefPubMed Taksdal T, Olsen AB, Bjerkås I, Hjortaas MJ, Dannevig BH, Graham DA, McLoughlin MF. Pancreas disease in farmed Atlantic salmon, Salmo salar L., and rainbow trout, Oncorhynchus mykiss (Walbaum), in Norway. J Fish Dis. 2007;30:545–58.CrossRefPubMed
41.
go back to reference LaPatra SE. Factors affecting pathogenicity of infectious hematopoietic necrosis virus (IHNV) for salmonid fish. J Aquat Anim Health. 1998;10:121–31.CrossRef LaPatra SE. Factors affecting pathogenicity of infectious hematopoietic necrosis virus (IHNV) for salmonid fish. J Aquat Anim Health. 1998;10:121–31.CrossRef
42.
go back to reference Glover KA, Skår C, Christie KE, Glette J, Rudra H, Skaala Ø. Size-dependent susceptibility to infectious salmon anemia virus (ISAV) in Atlantic salmon (Salmo salar L.) of farm, hybrid and wild parentage. Aquaculture. 2006;254:82–91.CrossRef Glover KA, Skår C, Christie KE, Glette J, Rudra H, Skaala Ø. Size-dependent susceptibility to infectious salmon anemia virus (ISAV) in Atlantic salmon (Salmo salar L.) of farm, hybrid and wild parentage. Aquaculture. 2006;254:82–91.CrossRef
43.
go back to reference Fridell F, Gadan K, Sundh H, Taranger GL, Glette J, Olsen RE, Sundell K, Evensen O. Effect of hyperoxygenation and low water flow on the primary stress response and susceptibility of Atlantic salmo Salmo salar L. to experimental challenge with IPN virus. Aquaculture. 2007;270:23–35.CrossRef Fridell F, Gadan K, Sundh H, Taranger GL, Glette J, Olsen RE, Sundell K, Evensen O. Effect of hyperoxygenation and low water flow on the primary stress response and susceptibility of Atlantic salmo Salmo salar L. to experimental challenge with IPN virus. Aquaculture. 2007;270:23–35.CrossRef
44.
go back to reference Nilsen TO, Ebbesson LOE, Kiilerich P, Björnsson BT, Madsen SS, McCormick SD, Stefansson SO. Endocrine systems in juvenile anadromous and landlocked Atlantic salmon (Salmo salar): Seasonal development and seawater acclimation. Gen Comp Endocr. 2008;155:762–72.CrossRefPubMed Nilsen TO, Ebbesson LOE, Kiilerich P, Björnsson BT, Madsen SS, McCormick SD, Stefansson SO. Endocrine systems in juvenile anadromous and landlocked Atlantic salmon (Salmo salar): Seasonal development and seawater acclimation. Gen Comp Endocr. 2008;155:762–72.CrossRefPubMed
45.
go back to reference Heidari Z, Tinsley J, Bickerdike R, McLoughlin ME, Zou J, Martin SAM. Antiviral and metabolic gene expression responses to viral infection in Atlantic salmon (Salmo salar). Fish Shellfish Immun. 2015;42:297–305.CrossRef Heidari Z, Tinsley J, Bickerdike R, McLoughlin ME, Zou J, Martin SAM. Antiviral and metabolic gene expression responses to viral infection in Atlantic salmon (Salmo salar). Fish Shellfish Immun. 2015;42:297–305.CrossRef
46.
go back to reference Specker JL, Portesi DM, Cornell SC, Veillette PA. Methodology for implanting cortisol in Atlantic salmon and effects of chronically elevated cortisol on osmoregulatory physiology. Aquaculture. 1994;121:181–93.CrossRef Specker JL, Portesi DM, Cornell SC, Veillette PA. Methodology for implanting cortisol in Atlantic salmon and effects of chronically elevated cortisol on osmoregulatory physiology. Aquaculture. 1994;121:181–93.CrossRef
Metadata
Title
Atlantic salmon (Salmo salar L.) post-smolts challenged two or nine weeks after seawater-transfer show differences in their susceptibility to salmonid alphavirus subtype 3 (SAV3)
Authors
J. Jarungsriapisit
L. J. Moore
G. L. Taranger
T. O. Nilsen
H. C. Morton
I. U. Fiksdal
S. Stefansson
P. G. Fjelldal
Ø. Evensen
S. Patel
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2016
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-016-0520-8

Other articles of this Issue 1/2016

Virology Journal 1/2016 Go to the issue