Skip to main content
Top
Published in: Virology Journal 1/2016

Open Access 01-12-2016 | Research

Disruption of clathrin-dependent trafficking results in the failure of grass carp reovirus cellular entry

Authors: Hao Wang, Weisha Liu, Fei Yu, Liqun Lu

Published in: Virology Journal | Issue 1/2016

Login to get access

Abstract

Background

Grass carp reovirus (GCRV) is responsible for viral hemorrhagic disease in cultured grass carp (Ctenopharyngon idellus). GCRV is a non-enveloped, double-stranded RNA virus in the genus Aquareovirus, of the family Reoviridae, which encodes seven structural proteins (VP1-VP7) and five nonstructural proteins (NS80, NS38, NS31, NS26, and NS16). To date, the mechanism of GCRV entry into CIK Ctenopharyngon idellus kidney (CIK) cells remains poorly understood.

Results

Here, we present a study of the GCRV internalization mechanism in CIK cells. Our results indicated that GCRV infection was inhibited by chlorpromazine, the specific inhibitor for clathrin-mediated endocytosis. Colocalization of GCRV virions with endogenous clathrin was observed during early infection by confocal microscopy. Moreover, GCRV infection of CIK cells depended on acidification of the endosome. This was indicated by significant inhibition of viral infection following prophylactic treatment with the lysosomotropic drugs chloroquine or ammonium chloride. In addition, the disturbance of dynamin activity blocked GCRV entry, which confirmed the dynamin-dependent nature of clathrin-mediated endocytosis.

Conclusion

Our findings suggest that GCRV might enter CIK cells via clathrin-mediated endocytosis in a pH-dependent manner. Additionally, dynamin is critical for efficient viral entry.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wang Q, Cheng L, Liu J, Li Z, Xie S, De Silva SS. Freshwater aquaculture in PR China: trends and prospects. Rev Aquacult. 2015;7(4):283–302. Wang Q, Cheng L, Liu J, Li Z, Xie S, De Silva SS. Freshwater aquaculture in PR China: trends and prospects. Rev Aquacult. 2015;7(4):283–302.
2.
go back to reference Xie B, Qin J, Yang H, Wang X, Wang Y-H, Li T-Y. Organic aquaculture in China: A review from a global perspective. Aquaculture. 2013;414:243–53.CrossRef Xie B, Qin J, Yang H, Wang X, Wang Y-H, Li T-Y. Organic aquaculture in China: A review from a global perspective. Aquaculture. 2013;414:243–53.CrossRef
3.
go back to reference Jiang Y. Hemorrhagic disease of grass carp: status of outbreaks, diagnosis, surveillance, and research. Bamidgeh. 2009;61:188–197. Jiang Y. Hemorrhagic disease of grass carp: status of outbreaks, diagnosis, surveillance, and research. Bamidgeh. 2009;61:188–197.
4.
go back to reference Qiu T, Lu R-H, Zhang J, Zhu Z-Y. Complete nucleotide sequence of the S10 genome segment of grass carp reovirus (GCRV). Dis Aquat Organ. 2001;44:69–74.CrossRefPubMed Qiu T, Lu R-H, Zhang J, Zhu Z-Y. Complete nucleotide sequence of the S10 genome segment of grass carp reovirus (GCRV). Dis Aquat Organ. 2001;44:69–74.CrossRefPubMed
5.
go back to reference Kim J, Tao Y, Reinisch KM, Harrison SC, Nibert ML. Orthoreovirus and Aquareovirus core proteins: conserved enzymatic surfaces, but not protein–protein interfaces. Virus Res. 2004;101:15–28.CrossRefPubMed Kim J, Tao Y, Reinisch KM, Harrison SC, Nibert ML. Orthoreovirus and Aquareovirus core proteins: conserved enzymatic surfaces, but not protein–protein interfaces. Virus Res. 2004;101:15–28.CrossRefPubMed
6.
go back to reference Mohd Jaafar F, Goodwin AE, Belhouchet M, Merry G, Fang Q, Cantaloube J-F, et al. Complete characterisation of the American grass carp reovirus genome (genus Aquareovirus: family Reoviridae) reveals an evolutionary link between aquareoviruses and coltiviruses. Virology. 2008;373:310–21.CrossRefPubMed Mohd Jaafar F, Goodwin AE, Belhouchet M, Merry G, Fang Q, Cantaloube J-F, et al. Complete characterisation of the American grass carp reovirus genome (genus Aquareovirus: family Reoviridae) reveals an evolutionary link between aquareoviruses and coltiviruses. Virology. 2008;373:310–21.CrossRefPubMed
7.
go back to reference Attoui H, Fang Q, Jaafar FM, Cantaloube J-F, Biagini P, de Micco P, et al. Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and golden ide reovirus (genus Aquareovirus, family Reoviridae). J Gen Virol. 2002;83:1941–51.CrossRefPubMed Attoui H, Fang Q, Jaafar FM, Cantaloube J-F, Biagini P, de Micco P, et al. Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and golden ide reovirus (genus Aquareovirus, family Reoviridae). J Gen Virol. 2002;83:1941–51.CrossRefPubMed
8.
go back to reference Zhang Q, Gui J-F. Virus genomes and virus-host interactions in aquaculture animals. Sci China Life Sci. 2015;58:156–69.CrossRefPubMed Zhang Q, Gui J-F. Virus genomes and virus-host interactions in aquaculture animals. Sci China Life Sci. 2015;58:156–69.CrossRefPubMed
9.
go back to reference Cheng L, Fang Q, Shah S, Atanasov IC, Zhou ZH. Subnanometer-resolution structures of the grass carp reovirus core and virion. J Mol Biol. 2008;382:213–22.PubMedCentralCrossRefPubMed Cheng L, Fang Q, Shah S, Atanasov IC, Zhou ZH. Subnanometer-resolution structures of the grass carp reovirus core and virion. J Mol Biol. 2008;382:213–22.PubMedCentralCrossRefPubMed
10.
go back to reference Fan C, Shao L, Fang Q. Characterization of the nonstructural protein NS80 of grass carp reovirus. Arch Virol. 2010;155:1755–63.CrossRefPubMed Fan C, Shao L, Fang Q. Characterization of the nonstructural protein NS80 of grass carp reovirus. Arch Virol. 2010;155:1755–63.CrossRefPubMed
11.
go back to reference Shao L, Guo H, Yan L-M, Liu H, Fang Q. Aquareovirus NS80 recruits viral proteins to its inclusions, and its C-terminal domain is the primary driving force for viral inclusion formation. PLoS One. 2013;8:e55334.PubMedCentralCrossRefPubMed Shao L, Guo H, Yan L-M, Liu H, Fang Q. Aquareovirus NS80 recruits viral proteins to its inclusions, and its C-terminal domain is the primary driving force for viral inclusion formation. PLoS One. 2013;8:e55334.PubMedCentralCrossRefPubMed
12.
go back to reference Huang J, Li F, Wu J, Yang F. White spot syndrome virus enters crayfish hematopoietic tissue cells via clathrin-mediated endocytosis. Virology. 2015;486:35–43.CrossRefPubMed Huang J, Li F, Wu J, Yang F. White spot syndrome virus enters crayfish hematopoietic tissue cells via clathrin-mediated endocytosis. Virology. 2015;486:35–43.CrossRefPubMed
13.
go back to reference Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lescar J, et al. Structure of a flavivirus envelope glycoprotein in its low‐pH‐induced membrane fusion conformation. EMBO J. 2004;23:728–38.PubMedCentralCrossRefPubMed Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lescar J, et al. Structure of a flavivirus envelope glycoprotein in its low‐pH‐induced membrane fusion conformation. EMBO J. 2004;23:728–38.PubMedCentralCrossRefPubMed
14.
go back to reference Han X, Bushweller JH, Cafiso DS, Tamm LK. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat Struct Mol Biol. 2001;8:715–20.CrossRef Han X, Bushweller JH, Cafiso DS, Tamm LK. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat Struct Mol Biol. 2001;8:715–20.CrossRef
15.
go back to reference Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000;69:531–69.CrossRefPubMed Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000;69:531–69.CrossRefPubMed
16.
go back to reference Corcoran JA, Duncan R. Reptilian reovirus utilizes a small type III protein with an external myristylated amino terminus to mediate cell-cell fusion. J Virol. 2004;78:4342–51.PubMedCentralCrossRefPubMed Corcoran JA, Duncan R. Reptilian reovirus utilizes a small type III protein with an external myristylated amino terminus to mediate cell-cell fusion. J Virol. 2004;78:4342–51.PubMedCentralCrossRefPubMed
18.
go back to reference Kumari S, Swetha M, Mayor S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res. 2010;20:256–75.CrossRefPubMed Kumari S, Swetha M, Mayor S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res. 2010;20:256–75.CrossRefPubMed
19.
go back to reference Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol. 2007;8:603–12.CrossRefPubMed Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol. 2007;8:603–12.CrossRefPubMed
20.
go back to reference van den Berg LM, Ribeiro CM, Zijlstra-Willems EM, de Witte L, Fluitsma D, Tigchelaar W, et al. Caveolin-1 mediated uptake via langerin restricts HIV-1 infection in human Langerhans cells. Retrovirology. 2014;11:3903. van den Berg LM, Ribeiro CM, Zijlstra-Willems EM, de Witte L, Fluitsma D, Tigchelaar W, et al. Caveolin-1 mediated uptake via langerin restricts HIV-1 infection in human Langerhans cells. Retrovirology. 2014;11:3903.
23.
go back to reference Quirin K, Eschli B, Scheu I, Poort L, Kartenbeck J, Helenius A. Lymphocytic choriomeningitis virus uses a novel endocytic pathway for infectious entry via late endosomes. Virology. 2008;378:21–33.CrossRefPubMed Quirin K, Eschli B, Scheu I, Poort L, Kartenbeck J, Helenius A. Lymphocytic choriomeningitis virus uses a novel endocytic pathway for infectious entry via late endosomes. Virology. 2008;378:21–33.CrossRefPubMed
25.
go back to reference Zuo W, Qian H, Xu Y, Du S, Yang X. A cell line derived from the kidney of grass carp. J Fish China. 1986;10:11–7. Zuo W, Qian H, Xu Y, Du S, Yang X. A cell line derived from the kidney of grass carp. J Fish China. 1986;10:11–7.
26.
go back to reference Wang T, Li J, Lu L. Quantitative in vivo and in vitro characterization of co-infection by two genetically distant grass carp reoviruses. J Gen Virol. 2013;94:1301–9.CrossRefPubMed Wang T, Li J, Lu L. Quantitative in vivo and in vitro characterization of co-infection by two genetically distant grass carp reoviruses. J Gen Virol. 2013;94:1301–9.CrossRefPubMed
27.
go back to reference Fang Q, Seng E, Ding Q, Zhang L. Characterization of infectious particles of grass carp reovirus by treatment with proteases. Arch Virol. 2008;153:675–82.CrossRefPubMed Fang Q, Seng E, Ding Q, Zhang L. Characterization of infectious particles of grass carp reovirus by treatment with proteases. Arch Virol. 2008;153:675–82.CrossRefPubMed
28.
go back to reference Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T. Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell. 2006;10:839–50.CrossRefPubMed Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T. Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell. 2006;10:839–50.CrossRefPubMed
29.
go back to reference Nawa M, Takasaki T, Yamada K-I, Kurane I, Akatsuka T. Interference in Japanese encephalitis virus infection of Vero cells by a cationic amphiphilic drug, chlorpromazine. J Gen Virol. 2003;84:1737–41.CrossRefPubMed Nawa M, Takasaki T, Yamada K-I, Kurane I, Akatsuka T. Interference in Japanese encephalitis virus infection of Vero cells by a cationic amphiphilic drug, chlorpromazine. J Gen Virol. 2003;84:1737–41.CrossRefPubMed
30.
go back to reference Wang L-H, Rothberg KG, Anderson R. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol. 1993;123:1107–17.CrossRefPubMed Wang L-H, Rothberg KG, Anderson R. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol. 1993;123:1107–17.CrossRefPubMed
31.
go back to reference Schnitzer JE, Oh P, Pinney E, Allard J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol. 1994;127:1217–32.CrossRefPubMed Schnitzer JE, Oh P, Pinney E, Allard J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol. 1994;127:1217–32.CrossRefPubMed
32.
go back to reference He Y, Xu H, Yang Q, Xu D, Lu L. The use of an in vitro microneutralization assay to evaluate the potential of recombinant VP5 protein as an antigen for vaccinating against Grass carp reovirus. Virol J. 2011;8:132–8.PubMedCentralCrossRefPubMed He Y, Xu H, Yang Q, Xu D, Lu L. The use of an in vitro microneutralization assay to evaluate the potential of recombinant VP5 protein as an antigen for vaccinating against Grass carp reovirus. Virol J. 2011;8:132–8.PubMedCentralCrossRefPubMed
33.
35.
go back to reference Pickles RJ, McCarty D, Matsui H, Hart PJ, Randell SH, Boucher RC. Limited entry of adenovirus vectors into well-differentiated airway epithelium is responsible for inefficient gene transfer. J Virol. 1998;72:6014–23.PubMedCentralPubMed Pickles RJ, McCarty D, Matsui H, Hart PJ, Randell SH, Boucher RC. Limited entry of adenovirus vectors into well-differentiated airway epithelium is responsible for inefficient gene transfer. J Virol. 1998;72:6014–23.PubMedCentralPubMed
36.
go back to reference Pati S, Cavrois M, Guo H-G, Foulke JS, Kim J, Feldman RA, et al. Activation of NF-κB by the human herpesvirus 8 chemokine receptor ORF74: evidence for a paracrine model of Kaposi’s sarcoma pathogenesis. J Virol. 2001;75:8660–73.PubMedCentralCrossRefPubMed Pati S, Cavrois M, Guo H-G, Foulke JS, Kim J, Feldman RA, et al. Activation of NF-κB by the human herpesvirus 8 chemokine receptor ORF74: evidence for a paracrine model of Kaposi’s sarcoma pathogenesis. J Virol. 2001;75:8660–73.PubMedCentralCrossRefPubMed
38.
go back to reference Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases. Lancet Infect Dis. 2003;3:722–7.CrossRefPubMed Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases. Lancet Infect Dis. 2003;3:722–7.CrossRefPubMed
39.
go back to reference Cassell S, Edwards J, Brown DT. Effects of lysosomotropic weak bases on infection of BHK-21 cells by Sindbis virus. J Virol. 1984;52:857–64.PubMedCentralPubMed Cassell S, Edwards J, Brown DT. Effects of lysosomotropic weak bases on infection of BHK-21 cells by Sindbis virus. J Virol. 1984;52:857–64.PubMedCentralPubMed
40.
go back to reference Sever S, Damke H, Schmid SL. Dynamin: GTP controls the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J Cell Biol. 2000;150:1137–48.PubMedCentralCrossRefPubMed Sever S, Damke H, Schmid SL. Dynamin: GTP controls the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J Cell Biol. 2000;150:1137–48.PubMedCentralCrossRefPubMed
41.
go back to reference Sun X, Yau VK, Briggs BJ, Whittaker GR. Role of clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells. Virology. 2005;338:53–60.CrossRefPubMed Sun X, Yau VK, Briggs BJ, Whittaker GR. Role of clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells. Virology. 2005;338:53–60.CrossRefPubMed
42.
go back to reference Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C, et al. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol. 2006;80:6964–72.PubMedCentralCrossRefPubMed Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C, et al. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol. 2006;80:6964–72.PubMedCentralCrossRefPubMed
43.
45.
46.
go back to reference Zou G, Fang Q. Study on replication and morphogenesis of the Grass Carp Reovirus (GCRV) in CIK cells. Virol Sin. 1999;15:188–92. Zou G, Fang Q. Study on replication and morphogenesis of the Grass Carp Reovirus (GCRV) in CIK cells. Virol Sin. 1999;15:188–92.
Metadata
Title
Disruption of clathrin-dependent trafficking results in the failure of grass carp reovirus cellular entry
Authors
Hao Wang
Weisha Liu
Fei Yu
Liqun Lu
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2016
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-016-0485-7

Other articles of this Issue 1/2016

Virology Journal 1/2016 Go to the issue