Skip to main content
Top
Published in: Virology Journal 1/2015

Open Access 01-12-2015 | Research

Development and application of SYBR Green I real-time PCR assay for the separate detection of subgroup J Avian leukosis virus and multiplex detection of avian leukosis virus subgroups A and B

Authors: Manman Dai, Min Feng, Di Liu, Weisheng Cao, Ming Liao

Published in: Virology Journal | Issue 1/2015

Login to get access

Abstract

Background

Subgroup A, B, and J ALVs are the most prevalent avian leukosis virus (ALV). Our study attempted to develop two SYBR Green I-based real-time PCR (RT-PCR) assays for specific detection of ALV subgroup J (ALV-J) and multiplex detection of ALV subgroups A and B (ALV-A/B), respectively.

Results

The two assays showed high specificity for ALV-J and ALV-A/B and the sensitivity of the two assays was at least 100 times higher than that of the routine PCR assay. The minimum virus detection limit of virus culture, routine PCR and real-time PCR for detection of ALV-A strain was 103 TCID50 units, 102 TCID50 units and fewer than 10 TCID50 units, respectively. In addition, the coefficients of variation for intra- and inter-assay were both less than 5%. Forty clinical plasma samples were evaluated by real-time PCR, routine PCR, and virus culture with positive rates of 80% (32/40), 72.5% (29/40) and 62.5% (25/40), respectively. When the assay for detection of ALV-J was used to quantify the viral load of various organ tissues in chicken inoculated by ALV-J strains CHN06 and NX0101, the results exhibited that ALV-J genes could be detected in all organ tissues examined and the highest copies of ALV-J were mainly in heart and kidney samples at 30 weeks post-infection. Except in lung, the virus copies of CHN06 group were higher than that of NX0101 group in various organ tissues.

Conclusions

The SYBR Green I-based real-time RT-PCR assay provides a powerful tool for the detection of ALV and study of virus replication and infection.
Literature
1.
go back to reference Bai J, Payne LN, Skinner MA. HPRS-103 (exogenous avian leukosis virus, subgroup J) has an env gene related to those of endogenous elements EAV-0 and E51 and an E element found previously only in sarcoma viruses. J Virol. 1995;69:779–84.PubMedCentralPubMed Bai J, Payne LN, Skinner MA. HPRS-103 (exogenous avian leukosis virus, subgroup J) has an env gene related to those of endogenous elements EAV-0 and E51 and an E element found previously only in sarcoma viruses. J Virol. 1995;69:779–84.PubMedCentralPubMed
2.
go back to reference Chesters PM, Howes K, Petherbridge L, Evans S, Payne LN, Venugopal K. The viral envelope is a major determinant for the induction of lymphoid and myeloid tumours by avian leukosis virus subgroups A and J, respectively. J Gen Virol. 2002;83:2553–61.PubMed Chesters PM, Howes K, Petherbridge L, Evans S, Payne LN, Venugopal K. The viral envelope is a major determinant for the induction of lymphoid and myeloid tumours by avian leukosis virus subgroups A and J, respectively. J Gen Virol. 2002;83:2553–61.PubMed
3.
go back to reference Wang X, Zhao P, Cui ZZ. Identification of a new subgroup of avian leukosis virus isolated from Chinese indigenous chicken breeds. Bing Du Xue Bao. 2012;28:609–14.PubMed Wang X, Zhao P, Cui ZZ. Identification of a new subgroup of avian leukosis virus isolated from Chinese indigenous chicken breeds. Bing Du Xue Bao. 2012;28:609–14.PubMed
4.
go back to reference Payne LN, Brown SR, Bumstead N, Howes K, Frazier JA, Thouless ME. A novel subgroup of exogenous avian leukosis virus in chickens. J Gen Virol. 1991;72(Pt 4):801–7.CrossRefPubMed Payne LN, Brown SR, Bumstead N, Howes K, Frazier JA, Thouless ME. A novel subgroup of exogenous avian leukosis virus in chickens. J Gen Virol. 1991;72(Pt 4):801–7.CrossRefPubMed
5.
go back to reference Stedman NL, Brown TP. Body weight suppression in broilers naturally infected with avian leukosis virus subgroup. J Avian Dis. 1999;43:604–10.CrossRef Stedman NL, Brown TP. Body weight suppression in broilers naturally infected with avian leukosis virus subgroup. J Avian Dis. 1999;43:604–10.CrossRef
6.
go back to reference Venugopal K. Avian leukosis virus subgroup J: a rapidly evolving group of oncogenic retroviruses. Res Vet Sci. 1999;67:113–9.CrossRefPubMed Venugopal K. Avian leukosis virus subgroup J: a rapidly evolving group of oncogenic retroviruses. Res Vet Sci. 1999;67:113–9.CrossRefPubMed
7.
go back to reference Gavora JS, Spencer JL, Gowe RS, Harris DL. Lymphoid leukosis virus infection: effects on production and mortality and consequences in selection for high egg production. Poult Sci. 1980;59:2165–78.CrossRefPubMed Gavora JS, Spencer JL, Gowe RS, Harris DL. Lymphoid leukosis virus infection: effects on production and mortality and consequences in selection for high egg production. Poult Sci. 1980;59:2165–78.CrossRefPubMed
8.
go back to reference Payne LN. Developments in avian leukosis research. Leukemia. 1992;6 Suppl 3:150S–2.PubMed Payne LN. Developments in avian leukosis research. Leukemia. 1992;6 Suppl 3:150S–2.PubMed
9.
go back to reference Tam W, Hughes SH, Hayward WS, Besmer P. Avian bic, a gene isolated from a common retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding RNA, cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J Virol. 2002;76:4275–86.CrossRefPubMedCentralPubMed Tam W, Hughes SH, Hayward WS, Besmer P. Avian bic, a gene isolated from a common retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding RNA, cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J Virol. 2002;76:4275–86.CrossRefPubMedCentralPubMed
10.
go back to reference Kim Y, Brown TP. Development of quantitative competitive-reverse transcriptase-polymerase chain reaction for detection and quantitation of avian leukosis virus subgroup J. J Vet Diagn Invest. 2004;16:191–6.CrossRefPubMed Kim Y, Brown TP. Development of quantitative competitive-reverse transcriptase-polymerase chain reaction for detection and quantitation of avian leukosis virus subgroup J. J Vet Diagn Invest. 2004;16:191–6.CrossRefPubMed
11.
go back to reference Payne LN, Gillespie AM, Howes K. Unsuitability of chicken sera for detection of exogenous ALV by the group-specific antigen ELISA. Vet Rec. 1993;132:555–7.CrossRefPubMed Payne LN, Gillespie AM, Howes K. Unsuitability of chicken sera for detection of exogenous ALV by the group-specific antigen ELISA. Vet Rec. 1993;132:555–7.CrossRefPubMed
12.
go back to reference Spencer JL, Gilka F. Lymphoid leukosis: detection of group specific viral antigen in chicken spleens by immunofluorescence and complement fixation. Can J Comp Med. 1982;46:370–5.PubMedCentralPubMed Spencer JL, Gilka F. Lymphoid leukosis: detection of group specific viral antigen in chicken spleens by immunofluorescence and complement fixation. Can J Comp Med. 1982;46:370–5.PubMedCentralPubMed
13.
go back to reference Zhang X, Liao M, Jiao P, Luo K, Zhang H, Ren T, et al. Development of a loop-mediated isothermal amplification assay for rapid detection of subgroup J avian leukosis virus. J Clin Microbiol. 2010;48:2116–21.CrossRefPubMedCentralPubMed Zhang X, Liao M, Jiao P, Luo K, Zhang H, Ren T, et al. Development of a loop-mediated isothermal amplification assay for rapid detection of subgroup J avian leukosis virus. J Clin Microbiol. 2010;48:2116–21.CrossRefPubMedCentralPubMed
14.
go back to reference Qin L, Gao Y, Ni W, Sun M, Wang Y, Yin C, et al. Development and application of real-time PCR for detection of subgroup J avian leukosis virus. J Clin Microbiol. 2013;51:149–54.CrossRefPubMedCentralPubMed Qin L, Gao Y, Ni W, Sun M, Wang Y, Yin C, et al. Development and application of real-time PCR for detection of subgroup J avian leukosis virus. J Clin Microbiol. 2013;51:149–54.CrossRefPubMedCentralPubMed
15.
go back to reference Zhou G, Cai W, Liu X, Niu C, Gao C, Si C, et al. A duplex real-time reverse transcription polymerase chain reaction for the detection and quantitation of avian leukosis virus subgroups A and B. J Virol Methods. 2011;173:275–9.CrossRefPubMed Zhou G, Cai W, Liu X, Niu C, Gao C, Si C, et al. A duplex real-time reverse transcription polymerase chain reaction for the detection and quantitation of avian leukosis virus subgroups A and B. J Virol Methods. 2011;173:275–9.CrossRefPubMed
16.
go back to reference Zhao DM, Zhang QC, Cui ZZ. Isolation and identification of a subgroup B avian leukosis virus from chickens of Chinese native breed Luhua. Bing Du Xue Bao. 2010;26:53–7.PubMed Zhao DM, Zhang QC, Cui ZZ. Isolation and identification of a subgroup B avian leukosis virus from chickens of Chinese native breed Luhua. Bing Du Xue Bao. 2010;26:53–7.PubMed
17.
go back to reference Zhang QC, Zhao DM, Guo HJ, Cui ZZ. Isolation and identification of a subgroup A avian leukosis virus from imported meat-type grand-parent chickens. Virol Sin. 2010;25:130–6.CrossRefPubMed Zhang QC, Zhao DM, Guo HJ, Cui ZZ. Isolation and identification of a subgroup A avian leukosis virus from imported meat-type grand-parent chickens. Virol Sin. 2010;25:130–6.CrossRefPubMed
18.
go back to reference Li D, Qin L, Gao H, Yang B, Liu W, Qi X, et al. Avian leukosis virus subgroup A and B infection in wild birds of Northeast China. Vet Microbiol. 2013;163:257–63.CrossRefPubMed Li D, Qin L, Gao H, Yang B, Liu W, Qi X, et al. Avian leukosis virus subgroup A and B infection in wild birds of Northeast China. Vet Microbiol. 2013;163:257–63.CrossRefPubMed
19.
go back to reference Cui Z, Du Y, Zhang Z, Silva RF. Comparison of Chinese field strains of avian leukosis subgroup J viruses with prototype strain HPRS-103 and United States strains. Avian Dis. 2003;47:1321–30.CrossRefPubMed Cui Z, Du Y, Zhang Z, Silva RF. Comparison of Chinese field strains of avian leukosis subgroup J viruses with prototype strain HPRS-103 and United States strains. Avian Dis. 2003;47:1321–30.CrossRefPubMed
20.
go back to reference Brown DW, Robinson HL. Influence of env and long terminal repeat sequences on the tissue tropism of avian leukosis viruses. J Virol. 1988;62:4828–31.PubMedCentralPubMed Brown DW, Robinson HL. Influence of env and long terminal repeat sequences on the tissue tropism of avian leukosis viruses. J Virol. 1988;62:4828–31.PubMedCentralPubMed
21.
go back to reference Ruddell A. Transcription regulatory elements of the avian retroviral long terminal repeat. Virology. 1995;206:1–7.CrossRefPubMed Ruddell A. Transcription regulatory elements of the avian retroviral long terminal repeat. Virology. 1995;206:1–7.CrossRefPubMed
22.
go back to reference Maas R, van Zoelen D, Oei H, Claassen I. Replacement of primary chicken embryonic fibroblasts (CEF) by the DF-1 cell line for detection of avian leukosis viruses. Biologicals. 2006;34:177–81.CrossRefPubMed Maas R, van Zoelen D, Oei H, Claassen I. Replacement of primary chicken embryonic fibroblasts (CEF) by the DF-1 cell line for detection of avian leukosis viruses. Biologicals. 2006;34:177–81.CrossRefPubMed
23.
go back to reference Feng M, Tian L, Dai M, Hao J, Qin J, Huang X, et al. Etiology survey and Phylogenetic analysis of avian leukosis virus subgroup A isolated from breeder chickens farm. J South China Agric Univ. 2014;35:11–5 (in Chinese). Feng M, Tian L, Dai M, Hao J, Qin J, Huang X, et al. Etiology survey and Phylogenetic analysis of avian leukosis virus subgroup A isolated from breeder chickens farm. J South China Agric Univ. 2014;35:11–5 (in Chinese).
24.
go back to reference Lamien CE, Lelenta M, Goger W, Silber R, Tuppurainen E, Matijevic M, et al. Real time PCR method for simultaneous detection, quantitation and differentiation of capripoxviruses. J Virol Methods. 2011;171:134–40.CrossRefPubMed Lamien CE, Lelenta M, Goger W, Silber R, Tuppurainen E, Matijevic M, et al. Real time PCR method for simultaneous detection, quantitation and differentiation of capripoxviruses. J Virol Methods. 2011;171:134–40.CrossRefPubMed
26.
go back to reference Silva RF, Fadly AM, Taylor SP. Development of a polymerase chain reaction to differentiate avian leukosis virus (ALV) subgroups: detection of an ALV contaminant in commercial Marek's disease vaccines. Avian Dis. 2007;51:663–7.CrossRefPubMed Silva RF, Fadly AM, Taylor SP. Development of a polymerase chain reaction to differentiate avian leukosis virus (ALV) subgroups: detection of an ALV contaminant in commercial Marek's disease vaccines. Avian Dis. 2007;51:663–7.CrossRefPubMed
27.
go back to reference Smith LM, Brown SR, Howes K, McLeod S, Arshad SS, Barron GS, et al. Development and application of polymerase chain reaction (PCR) tests for the detection of subgroup J avian leukosis virus. Virus Res. 1998;54:87–98.CrossRefPubMed Smith LM, Brown SR, Howes K, McLeod S, Arshad SS, Barron GS, et al. Development and application of polymerase chain reaction (PCR) tests for the detection of subgroup J avian leukosis virus. Virus Res. 1998;54:87–98.CrossRefPubMed
Metadata
Title
Development and application of SYBR Green I real-time PCR assay for the separate detection of subgroup J Avian leukosis virus and multiplex detection of avian leukosis virus subgroups A and B
Authors
Manman Dai
Min Feng
Di Liu
Weisheng Cao
Ming Liao
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2015
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-015-0291-7

Other articles of this Issue 1/2015

Virology Journal 1/2015 Go to the issue