Skip to main content
Top
Published in: Virology Journal 1/2015

Open Access 01-12-2015 | Review

Viruses and cells intertwined since the dawn of evolution

Authors: Julia Durzyńska, Anna Goździcka-Józefiak

Published in: Virology Journal | Issue 1/2015

Login to get access

Abstract

Many attempts have been made to define nature of viruses and to uncover their origin. Our aim within this work was to show that there are different perceptions of viruses and many concepts to explain their emergence: the virus-first concept (also called co-evolution), the escape and the reduction theories. Moreover, a relatively new concept of polyphyletic virus origin called “three RNA cells, three DNA viruses” proposed by Forterre is described herein. In this paper, not only is each thesis supported by a body of evidence but also counter-argued in the light of various findings to give more insightful considerations to the readers. As the origin of viruses and that of living cells are most probably interdependent, we decided to reveal ideas concerning nature of cellular last universal common ancestor (LUCA). Furthermore, we discuss monophyletic ancestry of cellular domains and their relationships at the molecular level of membrane lipids and replication strategies of these three types of cells. In this review, we also present the emergence of DNA viruses requiring an evolutionary transition from RNA to DNA and recently discovered giant DNA viruses possibly involved in eukaryogenesis. In the course of evolution viruses emerged many times. They have always played a key role through horizontal gene transfer in evolutionary events and in formation of the tree of life or netlike routes of evolution providing a great deal of genetic diversity. In our opinion, future findings are crucial to better understand past relations between viruses and cells and the origin of both.
Literature
1.
go back to reference Benson SD, Bamford JK, Bamford DH, Burnett RM. Does common architecture reveal a viral lineage spanning all three domains of life? Mol Cell. 2004;3(16):673–85.CrossRef Benson SD, Bamford JK, Bamford DH, Burnett RM. Does common architecture reveal a viral lineage spanning all three domains of life? Mol Cell. 2004;3(16):673–85.CrossRef
3.
go back to reference Abrescia NG, Bamford DH, Grimes JM, Stuart DI. Structure unifies the viral universe. Annu Rev Biochem. 2012;81:795–822.CrossRefPubMed Abrescia NG, Bamford DH, Grimes JM, Stuart DI. Structure unifies the viral universe. Annu Rev Biochem. 2012;81:795–822.CrossRefPubMed
5.
6.
go back to reference Forterre P, Krupovic M, Prangishvili D. Cellular domains and viral lineages. Trends Microbiol. 2014;22:554–8.CrossRefPubMed Forterre P, Krupovic M, Prangishvili D. Cellular domains and viral lineages. Trends Microbiol. 2014;22:554–8.CrossRefPubMed
7.
8.
go back to reference Raoult D, Forterre P. Redefining viruses: lessons from Mimivirus. Nat Rev Microbiol. 2008;6:315–9.CrossRefPubMed Raoult D, Forterre P. Redefining viruses: lessons from Mimivirus. Nat Rev Microbiol. 2008;6:315–9.CrossRefPubMed
9.
go back to reference Moreira D, López-García P. Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol. 2009;7:306–11.PubMed Moreira D, López-García P. Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol. 2009;7:306–11.PubMed
10.
go back to reference La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X, Drancourt M, et al. A giant virus in amoebae. Science. 2003;299:2033.CrossRefPubMed La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X, Drancourt M, et al. A giant virus in amoebae. Science. 2003;299:2033.CrossRefPubMed
11.
go back to reference Flores R, Ruiz-Ruiz S, Serra P. Viroids and hepatitis delta virus. Semin Liver Dis. 2012;32:201–10.CrossRefPubMed Flores R, Ruiz-Ruiz S, Serra P. Viroids and hepatitis delta virus. Semin Liver Dis. 2012;32:201–10.CrossRefPubMed
12.
go back to reference Fallot G, Neuveut C, Buendia MA. Diverse roles of hepatitis B virus in liver cancer. Curr Opin Virol. 2012;2:467–73.CrossRefPubMed Fallot G, Neuveut C, Buendia MA. Diverse roles of hepatitis B virus in liver cancer. Curr Opin Virol. 2012;2:467–73.CrossRefPubMed
13.
go back to reference Maumus F, Epert A, Nogué F, Blanc G. Plant genomes enclose footprints of past infections by giant virus relatives. Nat Commun. 2014;5:4268.PubMedCentralPubMed Maumus F, Epert A, Nogué F, Blanc G. Plant genomes enclose footprints of past infections by giant virus relatives. Nat Commun. 2014;5:4268.PubMedCentralPubMed
16.
go back to reference Xiong Y, Eickbush TH. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990;9:3353–62.PubMedCentralPubMed Xiong Y, Eickbush TH. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990;9:3353–62.PubMedCentralPubMed
17.
go back to reference Jones SA, Hu J. Hepatitis B virus reverse transcriptase: diverse functions as classical and emerging targets for antiviral intervention. Emerg Microbes Infect. 2013;2, e56.PubMedCentralCrossRefPubMed Jones SA, Hu J. Hepatitis B virus reverse transcriptase: diverse functions as classical and emerging targets for antiviral intervention. Emerg Microbes Infect. 2013;2, e56.PubMedCentralCrossRefPubMed
18.
19.
go back to reference Witzany G. The viral origins of telomeres and telomerases and their important role in eukaryogenesis and genome maintenance. Biosemiotics. 2008;2:191–206.CrossRef Witzany G. The viral origins of telomeres and telomerases and their important role in eukaryogenesis and genome maintenance. Biosemiotics. 2008;2:191–206.CrossRef
20.
21.
22.
go back to reference Forterre P. The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol. 2002;5:525–32.CrossRefPubMed Forterre P. The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol. 2002;5:525–32.CrossRefPubMed
23.
go back to reference Jalasvuori M, Bamford JK. Structural co-evolution of viruses and cells in the primordial world. Orig Life Evol Biosph. 2008;38:165–81.CrossRefPubMed Jalasvuori M, Bamford JK. Structural co-evolution of viruses and cells in the primordial world. Orig Life Evol Biosph. 2008;38:165–81.CrossRefPubMed
24.
go back to reference Brüssow H. Bacteria between protists and phages: from antipredation strategies to the evolution of pathogenicity. Mol Microbiol. 2007;65:583–9.CrossRefPubMed Brüssow H. Bacteria between protists and phages: from antipredation strategies to the evolution of pathogenicity. Mol Microbiol. 2007;65:583–9.CrossRefPubMed
25.
go back to reference Shackelton LA, Holmes EC. The role of alternative genetic codes in viral evolution and emergence. J Theor Biol. 2008;254:128–34.CrossRefPubMed Shackelton LA, Holmes EC. The role of alternative genetic codes in viral evolution and emergence. J Theor Biol. 2008;254:128–34.CrossRefPubMed
26.
go back to reference Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87:4576–9.PubMedCentralCrossRefPubMed Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87:4576–9.PubMedCentralCrossRefPubMed
27.
go back to reference Takemura M. Poxviruses and the origin of the eukaryotic nucleus. J Mol Evol. 2001;52:419–25.PubMed Takemura M. Poxviruses and the origin of the eukaryotic nucleus. J Mol Evol. 2001;52:419–25.PubMed
31.
go back to reference Mau M, Lovell JT, Corral JM, Kiefer C, Koch MA, Aliyu OM, et al. Hybrid apomicts trapped in the ecological niches of their sexual ancestors. Proc Natl Acad Sci U S A. 2015;112:E2357–65.PubMedCentralCrossRefPubMed Mau M, Lovell JT, Corral JM, Kiefer C, Koch MA, Aliyu OM, et al. Hybrid apomicts trapped in the ecological niches of their sexual ancestors. Proc Natl Acad Sci U S A. 2015;112:E2357–65.PubMedCentralCrossRefPubMed
32.
go back to reference Gogarten JP, Townsend JP. Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol. 2005;3:679–68.CrossRefPubMed Gogarten JP, Townsend JP. Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol. 2005;3:679–68.CrossRefPubMed
34.
go back to reference Campbell, A, Botstein, D. Evolution of the lambdoid phages. In Lambda II. Edited by Hendrix, R. et al. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1983. p. 365–380. Campbell, A, Botstein, D. Evolution of the lambdoid phages. In Lambda II. Edited by Hendrix, R. et al. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1983. p. 365–380.
35.
36.
go back to reference Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A. 2005;102:13950–5.PubMedCentralCrossRefPubMed Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A. 2005;102:13950–5.PubMedCentralCrossRefPubMed
37.
go back to reference Rosario K, Breitbart M. Exploring the viral world through metagenomics. Curr Opin Virol. 2011;1:289–97.CrossRefPubMed Rosario K, Breitbart M. Exploring the viral world through metagenomics. Curr Opin Virol. 2011;1:289–97.CrossRefPubMed
38.
go back to reference Abroi A, Gough J. Are viruses a source of new protein folds for organisms? Virosphere structure space and evolution. Bioessays. 2011;33:626–35.CrossRefPubMed Abroi A, Gough J. Are viruses a source of new protein folds for organisms? Virosphere structure space and evolution. Bioessays. 2011;33:626–35.CrossRefPubMed
39.
go back to reference Rohwer F, Youle M, Maughan H, Hisakaw N. Life in our phage world. Edited by Wholon: San Diego California; 2014. Rohwer F, Youle M, Maughan H, Hisakaw N. Life in our phage world. Edited by Wholon: San Diego California; 2014.
40.
go back to reference Campbell A. Phage integration and chromosome structure. A personal history. Annu Rev Genet. 2007;41:1–11.CrossRefPubMed Campbell A. Phage integration and chromosome structure. A personal history. Annu Rev Genet. 2007;41:1–11.CrossRefPubMed
41.
42.
43.
go back to reference Kristensen DM, Cai X, Mushegian A. Evolutionarily conserved orthologous families in phages are relatively rare in their prokaryotic hosts. J Bacteriol. 2011;193:1806–14.PubMedCentralCrossRefPubMed Kristensen DM, Cai X, Mushegian A. Evolutionarily conserved orthologous families in phages are relatively rare in their prokaryotic hosts. J Bacteriol. 2011;193:1806–14.PubMedCentralCrossRefPubMed
45.
go back to reference D’Herelle F. The bacteriophage; its role in immunity. Williams and Willkins: Baltimore; 1922. D’Herelle F. The bacteriophage; its role in immunity. Williams and Willkins: Baltimore; 1922.
46.
go back to reference Prangishvili D, Stedman K, Zillig W. Viruses of the extremely thermophilic archaeon Sulfolobus. Trends Microbiol. 2001;9:39–43.CrossRefPubMed Prangishvili D, Stedman K, Zillig W. Viruses of the extremely thermophilic archaeon Sulfolobus. Trends Microbiol. 2001;9:39–43.CrossRefPubMed
47.
go back to reference Kovalskaya N, Hammond RW. Molecular biology of viroid-host interactions and disease control strategies. Plant Sci. 2014;228:48–60.CrossRefPubMed Kovalskaya N, Hammond RW. Molecular biology of viroid-host interactions and disease control strategies. Plant Sci. 2014;228:48–60.CrossRefPubMed
49.
go back to reference Flores R, Gago-Zachert S, Serra P, Sanjuán R, Elena SF. Viroids: survivors from the RNA world? Annu Rev Microbiol. 2014;68:395–414.CrossRefPubMed Flores R, Gago-Zachert S, Serra P, Sanjuán R, Elena SF. Viroids: survivors from the RNA world? Annu Rev Microbiol. 2014;68:395–414.CrossRefPubMed
51.
go back to reference Forterre P. The origin of viruses and their possible roles in major evolutionary transitions. Virus Res. 2006;117:5–16.CrossRefPubMed Forterre P. The origin of viruses and their possible roles in major evolutionary transitions. Virus Res. 2006;117:5–16.CrossRefPubMed
53.
go back to reference Piñeiro D, Martinez-Salas E. RNA structural elements of hepatitis C virus controlling viral RNA translation and the implications for viral pathogenesis. Viruses. 2012;4:2233–50.PubMedCentralCrossRefPubMed Piñeiro D, Martinez-Salas E. RNA structural elements of hepatitis C virus controlling viral RNA translation and the implications for viral pathogenesis. Viruses. 2012;4:2233–50.PubMedCentralCrossRefPubMed
55.
go back to reference Khayat R, Tang L, Larson ET, Lawrence CM, Young M, Johnson JE. Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses. Proc Natl Acad Sci U S A. 2005;102:18944–9.PubMedCentralCrossRefPubMed Khayat R, Tang L, Larson ET, Lawrence CM, Young M, Johnson JE. Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses. Proc Natl Acad Sci U S A. 2005;102:18944–9.PubMedCentralCrossRefPubMed
56.
go back to reference Bamford DH, Grimes JM, Stuart DI. What does structure tell us about virus evolution? Curr Opin Struct Biol. 2005;15:655–63.CrossRefPubMed Bamford DH, Grimes JM, Stuart DI. What does structure tell us about virus evolution? Curr Opin Struct Biol. 2005;15:655–63.CrossRefPubMed
58.
59.
go back to reference Hendrix RW, Lawrence JG, Hatfull GF, Casjens S. The origins and ongoing evolution of viruses. Trends Microbiol. 2000;8:504–8.CrossRefPubMed Hendrix RW, Lawrence JG, Hatfull GF, Casjens S. The origins and ongoing evolution of viruses. Trends Microbiol. 2000;8:504–8.CrossRefPubMed
60.
go back to reference Forterre P. The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. Biochimie. 2005;87:793–803.CrossRefPubMed Forterre P. The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. Biochimie. 2005;87:793–803.CrossRefPubMed
61.
go back to reference Forterre P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc Natl Acad Sci U S A. 2006;103:3669–74.PubMedCentralCrossRefPubMed Forterre P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc Natl Acad Sci U S A. 2006;103:3669–74.PubMedCentralCrossRefPubMed
62.
go back to reference Lipps G, Röther S, Hart C, Krauss G. A novel type of replicative enzyme harbouring ATPase, primase and DNA polymerase activity. EMBO J. 2003;22:2516–25.PubMedCentralCrossRefPubMed Lipps G, Röther S, Hart C, Krauss G. A novel type of replicative enzyme harbouring ATPase, primase and DNA polymerase activity. EMBO J. 2003;22:2516–25.PubMedCentralCrossRefPubMed
64.
go back to reference Prangishvili D, Garrett RA. Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem Soc Trans. 2004;32:204–8.CrossRefPubMed Prangishvili D, Garrett RA. Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem Soc Trans. 2004;32:204–8.CrossRefPubMed
65.
go back to reference Salehi-Ashtiani K, Lupták A, Litovchick A, Szostak JW. A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science. 2006;313:1788–92.CrossRefPubMed Salehi-Ashtiani K, Lupták A, Litovchick A, Szostak JW. A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science. 2006;313:1788–92.CrossRefPubMed
66.
go back to reference Filée J, Forterre P, Sen-Lin T, Laurent J. Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins. J Mol Evol. 2002;54:763–73.CrossRefPubMed Filée J, Forterre P, Sen-Lin T, Laurent J. Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins. J Mol Evol. 2002;54:763–73.CrossRefPubMed
67.
go back to reference Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, et al. The 1.2-megabase genome sequence of Mimivirus. Science. 2004;306:1344–50.CrossRefPubMed Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, et al. The 1.2-megabase genome sequence of Mimivirus. Science. 2004;306:1344–50.CrossRefPubMed
68.
go back to reference Chelikani V, Ranjan T, Zade A, Shukla A, Kondabagil K. Genome segregation and packaging machinery in Acanthamoeba polyphaga mimivirus is reminiscent of bacterial apparatus. J Virol. 2014;88:6069–75.PubMedCentralCrossRefPubMed Chelikani V, Ranjan T, Zade A, Shukla A, Kondabagil K. Genome segregation and packaging machinery in Acanthamoeba polyphaga mimivirus is reminiscent of bacterial apparatus. J Virol. 2014;88:6069–75.PubMedCentralCrossRefPubMed
69.
go back to reference Arslan D, Legendre M, Seltzer V, Abergel C, Claverie JM. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci U S A. 2011;108:17486–91.PubMedCentralCrossRefPubMed Arslan D, Legendre M, Seltzer V, Abergel C, Claverie JM. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci U S A. 2011;108:17486–91.PubMedCentralCrossRefPubMed
70.
go back to reference Philippe N, Legendre M, Doutre G, Couté Y, Poirot O, Lescot M, et al. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science. 2013;341:281–6.CrossRefPubMed Philippe N, Legendre M, Doutre G, Couté Y, Poirot O, Lescot M, et al. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science. 2013;341:281–6.CrossRefPubMed
71.
72.
go back to reference Ludmir EB, Enquist LW. Viral genomes are part of the phylogenetic tree of life. Nat Rev Microbiol. 2009;7:615. author reply 615.CrossRefPubMed Ludmir EB, Enquist LW. Viral genomes are part of the phylogenetic tree of life. Nat Rev Microbiol. 2009;7:615. author reply 615.CrossRefPubMed
73.
go back to reference Claverie JM, Ogata H. Ten good reasons not to exclude giruses from the evolutionary picture. Nat Rev Microbiol. 2009;7:615.CrossRefPubMed Claverie JM, Ogata H. Ten good reasons not to exclude giruses from the evolutionary picture. Nat Rev Microbiol. 2009;7:615.CrossRefPubMed
74.
go back to reference Nasir A, Kim KM, Caetano-Anolles G. Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evol Biol. 2012;12:156.PubMedCentralCrossRefPubMed Nasir A, Kim KM, Caetano-Anolles G. Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evol Biol. 2012;12:156.PubMedCentralCrossRefPubMed
75.
76.
go back to reference La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, et al. The virophage as a unique parasite of the giant mimivirus. Nature. 2008;455:100–4.CrossRefPubMed La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, et al. The virophage as a unique parasite of the giant mimivirus. Nature. 2008;455:100–4.CrossRefPubMed
77.
go back to reference Koonin EV, Krupovic M, Yutin N. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses. Ann N Y Acad Sci. 2015;1341:10–24.PubMedCentralCrossRefPubMed Koonin EV, Krupovic M, Yutin N. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses. Ann N Y Acad Sci. 2015;1341:10–24.PubMedCentralCrossRefPubMed
78.
go back to reference Durzyńska J. Giant viruses - enfants terribles in the microbal Word. Future Virol 2015; doi:10.2217/FVL.15.27. Durzyńska J. Giant viruses - enfants terribles in the microbal Word. Future Virol 2015; doi:10.2217/FVL.15.27.
79.
go back to reference Forterre P, Prangishvili D. The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties. Ann N Y Acad Sci. 2009;1178:65–77.CrossRefPubMed Forterre P, Prangishvili D. The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties. Ann N Y Acad Sci. 2009;1178:65–77.CrossRefPubMed
80.
go back to reference Glansdorff N, Xu Y, Labedan B. The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct. 2008;3:29.PubMedCentralCrossRefPubMed Glansdorff N, Xu Y, Labedan B. The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct. 2008;3:29.PubMedCentralCrossRefPubMed
81.
go back to reference Koonin EV, Martin W. On the origin of genomes and cells within inorganic compartments. Trends Genet. 2005;21:647–54.CrossRefPubMed Koonin EV, Martin W. On the origin of genomes and cells within inorganic compartments. Trends Genet. 2005;21:647–54.CrossRefPubMed
82.
go back to reference Martin W, Russell MJ. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci. 2003;358:59–83. discussion 83–85.PubMedCentralCrossRefPubMed Martin W, Russell MJ. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci. 2003;358:59–83. discussion 83–85.PubMedCentralCrossRefPubMed
83.
go back to reference Lane N, Allen JF, Martin W. How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays. 2010;32:271–80.CrossRefPubMed Lane N, Allen JF, Martin W. How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays. 2010;32:271–80.CrossRefPubMed
85.
go back to reference Peretó J, López-García P, Moreira D. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci. 2004;29:469–77.CrossRefPubMed Peretó J, López-García P, Moreira D. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci. 2004;29:469–77.CrossRefPubMed
86.
go back to reference Lombard J, López-García P, Moreira D. The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol. 2012;10:507–15.PubMed Lombard J, López-García P, Moreira D. The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol. 2012;10:507–15.PubMed
89.
go back to reference Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H, Risco C. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol Cell. 2005;97:147–72.CrossRefPubMed Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H, Risco C. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol Cell. 2005;97:147–72.CrossRefPubMed
90.
go back to reference Bell PJ. The viral eukaryogenesis hypothesis: a key role for viruses in the emergence of eukaryotes from a prokaryotic world environment. Ann N Y Acad Sci. 2009;1178:91–105.CrossRefPubMed Bell PJ. The viral eukaryogenesis hypothesis: a key role for viruses in the emergence of eukaryotes from a prokaryotic world environment. Ann N Y Acad Sci. 2009;1178:91–105.CrossRefPubMed
91.
go back to reference Brochier-Armanet C, Forterre P, Gribaldo S. Phylogeny and evolution of the Archaea: one hundred genomes later. Curr Opin Microbiol. 2011;14:274–81.CrossRefPubMed Brochier-Armanet C, Forterre P, Gribaldo S. Phylogeny and evolution of the Archaea: one hundred genomes later. Curr Opin Microbiol. 2011;14:274–81.CrossRefPubMed
92.
go back to reference Zhao S, Burki F, Bråte J, Keeling PJ, Klaveness D, Shalchian-Tabrizi K. Collodictyon-an ancient lineage in the tree of eukaryotes. Mol Biol Evol. 2012;29:1557–68.PubMedCentralCrossRefPubMed Zhao S, Burki F, Bråte J, Keeling PJ, Klaveness D, Shalchian-Tabrizi K. Collodictyon-an ancient lineage in the tree of eukaryotes. Mol Biol Evol. 2012;29:1557–68.PubMedCentralCrossRefPubMed
93.
go back to reference Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol. 2014;64:316–24.CrossRefPubMed Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol. 2014;64:316–24.CrossRefPubMed
94.
go back to reference Leu K, Obermayer B, Rajamani S, Gerland U, Chen IA. The prebiotic evolutionary advantage of transferring genetic information from RNA to DNA. Nucleic Acids Res. 2011;39:8135–47.PubMedCentralCrossRefPubMed Leu K, Obermayer B, Rajamani S, Gerland U, Chen IA. The prebiotic evolutionary advantage of transferring genetic information from RNA to DNA. Nucleic Acids Res. 2011;39:8135–47.PubMedCentralCrossRefPubMed
95.
go back to reference Takahashi I, Marmur J. Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of a transducing phage for Bacillus subtilis. Nature. 1963;197:794–5.CrossRefPubMed Takahashi I, Marmur J. Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of a transducing phage for Bacillus subtilis. Nature. 1963;197:794–5.CrossRefPubMed
96.
go back to reference Villarreal LP, Witzany G. Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol. 2010;262:698–710.CrossRefPubMed Villarreal LP, Witzany G. Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol. 2010;262:698–710.CrossRefPubMed
97.
go back to reference Koonin EV. The two empires and three domains of life in the postgenomic age. Nat Educ. 2010;3:27. Koonin EV. The two empires and three domains of life in the postgenomic age. Nat Educ. 2010;3:27.
98.
go back to reference Yutin N, Wolf YI, Koonin EV. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology. 2014;466–467:38–52.CrossRefPubMed Yutin N, Wolf YI, Koonin EV. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology. 2014;466–467:38–52.CrossRefPubMed
99.
go back to reference Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, et al. Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A. 2006;103:425–30.PubMedCentralCrossRefPubMed Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, et al. Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A. 2006;103:425–30.PubMedCentralCrossRefPubMed
100.
go back to reference Boyer M, Yutin N, Pagnier I, Barrassi L, Fournous G, Espinosa L, et al. Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc Natl Acad Sci U S A. 2009;106:21848–53.PubMedCentralCrossRefPubMed Boyer M, Yutin N, Pagnier I, Barrassi L, Fournous G, Espinosa L, et al. Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc Natl Acad Sci U S A. 2009;106:21848–53.PubMedCentralCrossRefPubMed
101.
Metadata
Title
Viruses and cells intertwined since the dawn of evolution
Authors
Julia Durzyńska
Anna Goździcka-Józefiak
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2015
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-015-0400-7

Other articles of this Issue 1/2015

Virology Journal 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.