Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01-12-2019 | Review

Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles

Authors: Maria del Carmen Sanchez-Villamañan, Jose Gonzalez-Vargas, Diego Torricelli, Juan C. Moreno, Jose L. Pons

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2019

Login to get access

Abstract

Exoskeleton technology has made significant advances during the last decade, resulting in a considerable variety of solutions for gait assistance and rehabilitation. The mechanical design of these devices is a crucial aspect that affects the efficiency and effectiveness of their interaction with the user. Recent developments have pointed towards compliant mechanisms and structures, due to their promising potential in terms of adaptability, safety, efficiency, and comfort. However, there still remain challenges to be solved before compliant lower limb exoskeletons can be deployed in real scenarios. In this review, we analysed 52 lower limb wearable exoskeletons, focusing on three main aspects of compliance: actuation, structure, and interface attachment components. We highlighted the drawbacks and advantages of the different solutions, and suggested a number of promising research lines. We also created and made available a set of data sheets that contain the technical characteristics of the reviewed devices, with the aim of providing researchers and end-users with an updated overview on the existing solutions.
Appendix
Available only for authorised users
Footnotes
1
Exoskeleton: Mechanical system worn by humans to augment, complement or substitute the function of natural limbs which work in parallel with the human body [49]. The term ‘Wearable robot’ is commonly used interchangeably.
 
2
Structure: Mechanical components that transmit forces from the actuators to the interface attachment components of the exoskeleton. Structure can be composed of rigid and/or non-rigid materials.
 
3
Interface attachment components: Mechanical components that transmit forces between the structure of the exoskeleton and the user [101]. They are usually composed of rigid or semi-rigid braces or cuffs ensured to body segment through belts and/or straps.
 
4
Soft exoskeleton: Exoskeleton composed of non-rigid structure (i.e. textiles, straps, sleeves) to interface with the human body [111]. The term ‘soft exosuit’ is commonly used interchangeably.
 
5
Compliant actuation: Movement of the robotic system in order to perform its function; accomplished by some components with compliant properties (i.e. springs, custom made compliant mechanisms, etc.). The compliant actuator allows deviations from its equilibrium position [112].
 
6
Backdrivable actuator: Actuation system with low impedance behaviour when not powered [15, 24].
 
7
References [114159] include publications related to the 52 lower limb exoskeletons reviewed in this article that are not mentioned within the main body of the manuscript but appear in the figures.
 
8
Dress on: Put in contact. Attach the robot to the user prior to the exoskeleton is turned on.
 
9
Dress off: Interrupt the contact. Disengage the robot of the user after the exoskeleton is turned off.
 
10
Active DoF: DoF that requires a power supply to be moved. The term ‘powered DoF’ is commonly used interchangeably.
 
11
Passive DoF: DoF that does not require power supply to be moved. Commonly used mechanisms include springs, elastic elements and dampers [113].
 
Literature
1.
go back to reference Masood J, Fern J, Mateos LA, Caldwell DG. Mechanical Design and Analysis of Light Weight Hip Joint Parallel Elastic Actuator for Industrial Exoskeleton. In: 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Singapore (Singapore); 2016. p. 631–6. https://doi.org/10.1109/BIOROB.2016.7523696. Masood J, Fern J, Mateos LA, Caldwell DG. Mechanical Design and Analysis of Light Weight Hip Joint Parallel Elastic Actuator for Industrial Exoskeleton. In: 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Singapore (Singapore); 2016. p. 631–6. https://​doi.​org/​10.​1109/​BIOROB.​2016.​7523696.
4.
go back to reference Jayaraman PTA, Rymer WZ. Exoskeletons for Rehabilitation and Personal Mobility: Creating Clinical Evidence. In: Wearable robotics: challenges and trends; proceedings of the 2nd International Symposium on Wearable Robotics (WeRob2016). La Granja (Segovia), Spain; 2016. p. 21–4. Jayaraman PTA, Rymer WZ. Exoskeletons for Rehabilitation and Personal Mobility: Creating Clinical Evidence. In: Wearable robotics: challenges and trends; proceedings of the 2nd International Symposium on Wearable Robotics (WeRob2016). La Granja (Segovia), Spain; 2016. p. 21–4.
5.
go back to reference Pons JL. Rehabilitation exoskeletal robotics. The promise of an emerging field. IEEE Eng Med Biol Mag. 2010;29:57–63.CrossRef Pons JL. Rehabilitation exoskeletal robotics. The promise of an emerging field. IEEE Eng Med Biol Mag. 2010;29:57–63.CrossRef
10.
go back to reference Robinson DW. Design and analysis of series elasticity in closed-loop actuator force control. Cambridge: Massachusetts Institute of Technology; 2000. Robinson DW. Design and analysis of series elasticity in closed-loop actuator force control. Cambridge: Massachusetts Institute of Technology; 2000.
12.
go back to reference Bolívar E, Rezazadeh S, Gregg RD. A general framework for minimizing energy consumption of series elastic actuators with regeneration. In: ASME 2017 Dynamic Systems and Control Conference. Virginia (USA); 2017. Bolívar E, Rezazadeh S, Gregg RD. A general framework for minimizing energy consumption of series elastic actuators with regeneration. In: ASME 2017 Dynamic Systems and Control Conference. Virginia (USA); 2017.
15.
go back to reference Pratt JE, Krupp BT. Series elastic actuators for legged robots. In: Unmanned Ground Vehicle Technology Vi. The International Society for Optical Engineering. 2004. p. 135–44. Pratt JE, Krupp BT. Series elastic actuators for legged robots. In: Unmanned Ground Vehicle Technology Vi. The International Society for Optical Engineering. 2004. p. 135–44.
16.
go back to reference Lagoda C, Schouten AC, Stienen AHA, Hekman EEG, van der Kooij H. Design of an electric series elastic actuated joint for robotic gait rehabilitation training. In: 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). 2010. p. 21–6. doi:https://doi.org/10.1109/BIOROB.2010.5626010. Lagoda C, Schouten AC, Stienen AHA, Hekman EEG, van der Kooij H. Design of an electric series elastic actuated joint for robotic gait rehabilitation training. In: 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). 2010. p. 21–6. doi:https://​doi.​org/​10.​1109/​BIOROB.​2010.​5626010.
17.
22.
go back to reference Bacek T, Moltedo M, Langlois K, Prieto GA, Sanchez-Villamanan MC, Gonzalez-Vargas J, et al. BioMot exoskeleton — Towards a smart wearable robot for symbiotic human-robot interaction. In: 2017 International Conference on Rehabilitation Robotics (ICORR). London (UK); 2017. p. 1666–71. doi:https://doi.org/10.1109/ICORR.2017.8009487. Bacek T, Moltedo M, Langlois K, Prieto GA, Sanchez-Villamanan MC, Gonzalez-Vargas J, et al. BioMot exoskeleton — Towards a smart wearable robot for symbiotic human-robot interaction. In: 2017 International Conference on Rehabilitation Robotics (ICORR). London (UK); 2017. p. 1666–71. doi:https://​doi.​org/​10.​1109/​ICORR.​2017.​8009487.
23.
go back to reference Grioli G, Wolf S, Garabini M, Catalano M, Burdet E, Caldwell D, et al. Variable stiffness actuators: the user’ s point of view. Int J Robot Res. 2013;34:727–43.CrossRef Grioli G, Wolf S, Garabini M, Catalano M, Burdet E, Caldwell D, et al. Variable stiffness actuators: the user’ s point of view. Int J Robot Res. 2013;34:727–43.CrossRef
28.
go back to reference Ekkelenkamp R, Veneman J, Van Der Kooij H. LOPES : a lower extremity powered exoskeleton. In: 2007 IEEE International Conference on Robotics and Automation (ICRA). Roma (Italy); 2007. p. 3132–3. Ekkelenkamp R, Veneman J, Van Der Kooij H. LOPES : a lower extremity powered exoskeleton. In: 2007 IEEE International Conference on Robotics and Automation (ICRA). Roma (Italy); 2007. p. 3132–3.
33.
go back to reference Bacek T, Unal R, Moltedo M, Junius K, Cuypers H, Vanderborght B, et al. Conceptual Design of a Novel Variable Stiffness Actuator for Use in Lower Limb Exoskeletons. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR). Singapore (Singapore); 2015. doi:https://doi.org/10.1109/ICORR.2015.7281263. Bacek T, Unal R, Moltedo M, Junius K, Cuypers H, Vanderborght B, et al. Conceptual Design of a Novel Variable Stiffness Actuator for Use in Lower Limb Exoskeletons. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR). Singapore (Singapore); 2015. doi:https://​doi.​org/​10.​1109/​ICORR.​2015.​7281263.
34.
go back to reference Junius K, Brackx B, Grosu V, Cuypers H, Geeroms J, Moltedo M, et al. Mechatronic Design of a Sit-to-Stance Exoskeleton. In: 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Sao Paulo (Brazil); 2014. p. 945–50. doi:https://doi.org/10.1109/BIOROB.2014.6913902. Junius K, Brackx B, Grosu V, Cuypers H, Geeroms J, Moltedo M, et al. Mechatronic Design of a Sit-to-Stance Exoskeleton. In: 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Sao Paulo (Brazil); 2014. p. 945–50. doi:https://​doi.​org/​10.​1109/​BIOROB.​2014.​6913902.
35.
go back to reference Karavas NC, Tsagarakis NG, Caldwell DG. Design, Modeling and Control of a Series Elastic Actuator for an Assistive Knee Exoskeleton. In: 4th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Roma (Italy); 2012. p. 1813–9. doi:https://doi.org/10.1109/BioRob.2012.6290757. Karavas NC, Tsagarakis NG, Caldwell DG. Design, Modeling and Control of a Series Elastic Actuator for an Assistive Knee Exoskeleton. In: 4th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Roma (Italy); 2012. p. 1813–9. doi:https://​doi.​org/​10.​1109/​BioRob.​2012.​6290757.
36.
go back to reference Brackx B, Grosu V, Ham RVAN, Damme MVAN, Vanderborght B, Lefeber D. Design of the gait rehabilitation robot ALTACRO: a powered exoskeleton using compliant actuation. In: 5th International Workshop on Human-Friendly Robotics. Brussels (Belgium); 2012. Brackx B, Grosu V, Ham RVAN, Damme MVAN, Vanderborght B, Lefeber D. Design of the gait rehabilitation robot ALTACRO: a powered exoskeleton using compliant actuation. In: 5th International Workshop on Human-Friendly Robotics. Brussels (Belgium); 2012.
39.
go back to reference Baser O, Kizilhan H, Kilic E. Mechanical Design of a Biomimetic Compliant Lower Limb Exoskeleton (BioComEx). In: 2016 International conference on autonomous robot systems and competitions (ICARSC). Braganca (Portugal); 2016. p. 60–5. doi:https://doi.org/10.1109/ICARSC.2016.51. Baser O, Kizilhan H, Kilic E. Mechanical Design of a Biomimetic Compliant Lower Limb Exoskeleton (BioComEx). In: 2016 International conference on autonomous robot systems and competitions (ICARSC). Braganca (Portugal); 2016. p. 60–5. doi:https://​doi.​org/​10.​1109/​ICARSC.​2016.​51.
44.
go back to reference Wehner M, Quinlivan B, Aubin PM, Martinez-villalpando E, Stirling L, Holt K, et al. A Lightweight Soft Exosuit for Gait Assistance. In: 2013 IEEE International Conference on Robotics and Automation (ICRA). Karlsruhe (Germany); 2013. p. 3362–9. doi:https://doi.org/10.1109/ICRA.2013.6631046. Wehner M, Quinlivan B, Aubin PM, Martinez-villalpando E, Stirling L, Holt K, et al. A Lightweight Soft Exosuit for Gait Assistance. In: 2013 IEEE International Conference on Robotics and Automation (ICRA). Karlsruhe (Germany); 2013. p. 3362–9. doi:https://​doi.​org/​10.​1109/​ICRA.​2013.​6631046.
49.
go back to reference Pons JL. Wearable robots: biomechatronic exoskeletons. New York: John Wiley & Sons, Ltd; 2008.CrossRef Pons JL. Wearable robots: biomechatronic exoskeletons. New York: John Wiley & Sons, Ltd; 2008.CrossRef
54.
go back to reference Saccares L, Sarakoglou I, Tsagarakis NG. iT-Knee: An exoskeleton with ideal torque transmission interface for ergonomic power augmentation. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon (Korea); 2016. p. 780–6. doi:https://doi.org/10.1109/IROS.2016.7759140. Saccares L, Sarakoglou I, Tsagarakis NG. iT-Knee: An exoskeleton with ideal torque transmission interface for ergonomic power augmentation. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon (Korea); 2016. p. 780–6. doi:https://​doi.​org/​10.​1109/​IROS.​2016.​7759140.
56.
go back to reference Moltedo M, Bacek T, Junius K, Vanderborght B, Lefeber D. Mechanical Design of a Lightweight Compliant and Adaptable Active Ankle Foot Orthosis. In: 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Singapure (Singapure); 2016. p. 1224–9. doi:https://doi.org/10.1109/BIOROB.2016.7523798. Moltedo M, Bacek T, Junius K, Vanderborght B, Lefeber D. Mechanical Design of a Lightweight Compliant and Adaptable Active Ankle Foot Orthosis. In: 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Singapure (Singapure); 2016. p. 1224–9. doi:https://​doi.​org/​10.​1109/​BIOROB.​2016.​7523798.
58.
go back to reference Parri A, Yan T, Giovacchini F, Cortese M, Muscolo M, Fantozzi M, et al. A portable active pelvis orthosis for ambulatory movement assistance. In: Wearable robotics: challenges and trends; proceedings of the 2nd International Symposium on Wearable Robotics (WeRob2016). La Granja (Segovia), Spain; 2016. p. 75–80. Parri A, Yan T, Giovacchini F, Cortese M, Muscolo M, Fantozzi M, et al. A portable active pelvis orthosis for ambulatory movement assistance. In: Wearable robotics: challenges and trends; proceedings of the 2nd International Symposium on Wearable Robotics (WeRob2016). La Granja (Segovia), Spain; 2016. p. 75–80.
59.
61.
go back to reference Karavas NC, Tsagarakis NG, Saglia J, Galdwell DG. A Novel Actuator with Reconfigurable Stiffness for a Knee Exoskeleton : Design and Modeling. In: Springer, editor. Advances in Reconfigurable Mechanisms and Robots I. London (UK); 2012. p. 411–21. doi:https://doi.org/10.1007/978-1-4471-4141-9. Karavas NC, Tsagarakis NG, Saglia J, Galdwell DG. A Novel Actuator with Reconfigurable Stiffness for a Knee Exoskeleton : Design and Modeling. In: Springer, editor. Advances in Reconfigurable Mechanisms and Robots I. London (UK); 2012. p. 411–21. doi:https://​doi.​org/​10.​1007/​978-1-4471-4141-9.
66.
73.
go back to reference Park Y, Chen B, Young D, Stirling L, Wood RJ, Goldfield E, et al. Bio-inspired Active Soft Orthotic Device for Ankle Foot Pathologies. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). San Francisco (USA); 2011. p. 4488–95. doi:https://doi.org/10.1109/IROS.2011.6048620. Park Y, Chen B, Young D, Stirling L, Wood RJ, Goldfield E, et al. Bio-inspired Active Soft Orthotic Device for Ankle Foot Pathologies. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). San Francisco (USA); 2011. p. 4488–95. doi:https://​doi.​org/​10.​1109/​IROS.​2011.​6048620.
74.
go back to reference Graf ES, De Eyto A, Sposito M, Pauli C, O’Sullivan L, Bauer CM, et al. Basic functionality of a prototype wearable assistive soft exoskeleton for people with gait impairments - a case study. In: 11th ACM International Conference on PErvasive Technologies Related to Assistive Environments. 2018. p. 202–7. doi:https://doi.org/10.1145/3197768.3197779. Graf ES, De Eyto A, Sposito M, Pauli C, O’Sullivan L, Bauer CM, et al. Basic functionality of a prototype wearable assistive soft exoskeleton for people with gait impairments - a case study. In: 11th ACM International Conference on PErvasive Technologies Related to Assistive Environments. 2018. p. 202–7. doi:https://​doi.​org/​10.​1145/​3197768.​3197779.
79.
go back to reference Lee G, Ding Y, Bujanda IG, Karavas N, Zhou YM, Walsh CJ. Improved assistive profile tracking of soft exosuits for walking and jogging with off-board actuation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver (Canada); 2017. p. 1699–706. doi:https://doi.org/10.1109/IROS.2017.8205981. Lee G, Ding Y, Bujanda IG, Karavas N, Zhou YM, Walsh CJ. Improved assistive profile tracking of soft exosuits for walking and jogging with off-board actuation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver (Canada); 2017. p. 1699–706. doi:https://​doi.​org/​10.​1109/​IROS.​2017.​8205981.
80.
go back to reference Ortiz J, Natali C, Di Caldwell DG. XoSoft - Iterative Design of a Modular Soft Lower Limb Exoskeleton. In: Wearable robotics: challenges and trends; proceedings of the 4th International Symposium on Wearable Robotics (WeRob2018). Pisa (Italy); 2018. p. 351–5. Ortiz J, Natali C, Di Caldwell DG. XoSoft - Iterative Design of a Modular Soft Lower Limb Exoskeleton. In: Wearable robotics: challenges and trends; proceedings of the 4th International Symposium on Wearable Robotics (WeRob2018). Pisa (Italy); 2018. p. 351–5.
84.
go back to reference Veneman JF. Design and evaluation of the gait rehabilitation robot Lopes. University of Twente; 2007. Veneman JF. Design and evaluation of the gait rehabilitation robot Lopes. University of Twente; 2007.
86.
go back to reference Ganguly A, Puyuelo G, Goñi A, Garces E, Garcia E. Wearable pediatric gait exoskeleton- a feasibility study*. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid (Spain); 2018. p. 4667–72. Ganguly A, Puyuelo G, Goñi A, Garces E, Garcia E. Wearable pediatric gait exoskeleton- a feasibility study*. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid (Spain); 2018. p. 4667–72.
99.
go back to reference Chiri A, Cempini M, De Rossi SMM, Lenzi T, Giovacchini F, Vitiello N, et al. On the design of ergonomic wearable robotic devices for motion assistance and rehabilitation. In: 34th Annual International Conference of the IEEE EMBS. San Diego (USA); 2012. p. 6124–7. doi:https://doi.org/10.1109/EMBC.2012.6347391. Chiri A, Cempini M, De Rossi SMM, Lenzi T, Giovacchini F, Vitiello N, et al. On the design of ergonomic wearable robotic devices for motion assistance and rehabilitation. In: 34th Annual International Conference of the IEEE EMBS. San Diego (USA); 2012. p. 6124–7. doi:https://​doi.​org/​10.​1109/​EMBC.​2012.​6347391.
102.
go back to reference Leal-Junior AG, Frizera A, Vargas-Valencia L, Dos Santos WM, Bo APL, Siqueira AAG, et al. Polymer optical Fiber sensors in wearable devices: toward novel instrumentation approaches for gait assistance devices. IEEE Sensors J. 2018;18:7085–92.CrossRef Leal-Junior AG, Frizera A, Vargas-Valencia L, Dos Santos WM, Bo APL, Siqueira AAG, et al. Polymer optical Fiber sensors in wearable devices: toward novel instrumentation approaches for gait assistance devices. IEEE Sensors J. 2018;18:7085–92.CrossRef
104.
go back to reference Pirjan A, Petroşanu D-M. The impact of 3D printing technology on the society and economy. J Inf Syst Oper Manag. 2013;7:360–70. Pirjan A, Petroşanu D-M. The impact of 3D printing technology on the society and economy. J Inf Syst Oper Manag. 2013;7:360–70.
107.
110.
go back to reference Torricelli D, del Ama AJ, Gonzalez J, Moreno J, Gil A, Pons JL. Benchmarking lower limb wearable robots. In: 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments. Corfu (Greece); 2015. p. 1–4. doi:https://doi.org/10.1145/2769493.2769589. Torricelli D, del Ama AJ, Gonzalez J, Moreno J, Gil A, Pons JL. Benchmarking lower limb wearable robots. In: 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments. Corfu (Greece); 2015. p. 1–4. doi:https://​doi.​org/​10.​1145/​2769493.​2769589.
114.
go back to reference He Y, Nathan K, Venkatakrishnan A, Rovekamp R, Beck C, Francisco GE, et al. An Integrated Neuro-Robotic Interface for Stroke Rehabilitation using the NASA X1 Powered Lower Limb Exoskeleton. In: 36th Annual International Conference of the IEEE EMBS. Chicago (USA); 2014. p. 3985–8. doi:https://doi.org/10.1109/EMBC.2014.6944497. He Y, Nathan K, Venkatakrishnan A, Rovekamp R, Beck C, Francisco GE, et al. An Integrated Neuro-Robotic Interface for Stroke Rehabilitation using the NASA X1 Powered Lower Limb Exoskeleton. In: 36th Annual International Conference of the IEEE EMBS. Chicago (USA); 2014. p. 3985–8. doi:https://​doi.​org/​10.​1109/​EMBC.​2014.​6944497.
116.
117.
go back to reference Damme VAN, Vanderborght B. Electronic hardware architecture of step rehabilitation robot ALTACRO. In: 9th National Congress on Theoretical and Applied Mechanics. Brussels (Belgium); 2012. p. 9–10. Damme VAN, Vanderborght B. Electronic hardware architecture of step rehabilitation robot ALTACRO. In: 9th National Congress on Theoretical and Applied Mechanics. Brussels (Belgium); 2012. p. 9–10.
119.
go back to reference Junius K, Cherelle P, Brackx B, Geeroms J, Schepers T, Vanderborght B, et al. On the use of adaptable compliant actuators in prosthetics, rehabilitation and assistive robotics. In: 9th International Workshop on Robot Motion and Control. Wasowo (Poland); 2013. Junius K, Cherelle P, Brackx B, Geeroms J, Schepers T, Vanderborght B, et al. On the use of adaptable compliant actuators in prosthetics, rehabilitation and assistive robotics. In: 9th International Workshop on Robot Motion and Control. Wasowo (Poland); 2013.
120.
go back to reference Cherelle P, Grosu V, Beyl P, Mathys A, Van Ham R, Van Damme M, et al. The MACCEPA Actuation System as Torque Actuator in the Gait Rehabilitation Robot ALTACRO. In: 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Tokyo (Japan); 2010. p. 27–32. doi:https://doi.org/10.1109/BIOROB.2010.5627030. Cherelle P, Grosu V, Beyl P, Mathys A, Van Ham R, Van Damme M, et al. The MACCEPA Actuation System as Torque Actuator in the Gait Rehabilitation Robot ALTACRO. In: 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Tokyo (Japan); 2010. p. 27–32. doi:https://​doi.​org/​10.​1109/​BIOROB.​2010.​5627030.
122.
go back to reference Bacek T, Moltedo M, Gonzalez-Vargas J, Asin Prieto G, Sanchez-Villamañan MC, Moreno JC, et al. The new generation of compliant actuators for use in controlable bio-inspired wearable robots. In: Wearable robotics: challenges and trends; proceedings of the 2nd International Symposium on Wearable Robotics (WeRob2016). La Granja (Segovia), Spain; 2016. p. 255–60. Bacek T, Moltedo M, Gonzalez-Vargas J, Asin Prieto G, Sanchez-Villamañan MC, Moreno JC, et al. The new generation of compliant actuators for use in controlable bio-inspired wearable robots. In: Wearable robotics: challenges and trends; proceedings of the 2nd International Symposium on Wearable Robotics (WeRob2016). La Granja (Segovia), Spain; 2016. p. 255–60.
123.
go back to reference Moltedo M, Bacek T, Langlois K, Junius K, Vanderborght B, Lefeber D. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis. In: 2017 International Conference on Rehabilitation Robotics (ICORR). London (UK); 2017. p. 283–8. doi:https://doi.org/10.1109/ICORR.2017.8009260. Moltedo M, Bacek T, Langlois K, Junius K, Vanderborght B, Lefeber D. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis. In: 2017 International Conference on Rehabilitation Robotics (ICORR). London (UK); 2017. p. 283–8. doi:https://​doi.​org/​10.​1109/​ICORR.​2017.​8009260.
124.
go back to reference Brackx B, Geeroms J, Vantilt J, Grosu V, Junius K, Cuypers H, et al. Design of a Modular Add-on Compliant Actuator to Convert an Orthosis into an Assistive Exoskeleton. In: 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Sao Paulo (Brazil); 2014. doi:https://doi.org/10.1109/BIOROB.2014.6913824. Brackx B, Geeroms J, Vantilt J, Grosu V, Junius K, Cuypers H, et al. Design of a Modular Add-on Compliant Actuator to Convert an Orthosis into an Assistive Exoskeleton. In: 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Sao Paulo (Brazil); 2014. doi:https://​doi.​org/​10.​1109/​BIOROB.​2014.​6913824.
125.
go back to reference Veneman JF, Ekkelenkamp R, Kruidhof R, van der Helm FCT, van der Kooij H. Design of a Series Elastic and Bowdencable-Based Actuation System for Use As Torque-Actuator in Exoskeleton-Type Training Robots. In: 9th IEEE International Conference on Rehabilitation Robotics (ICORR). 2005. p. 496–9. doi:https://doi.org/10.1109/ICORR.2005.1501150. Veneman JF, Ekkelenkamp R, Kruidhof R, van der Helm FCT, van der Kooij H. Design of a Series Elastic and Bowdencable-Based Actuation System for Use As Torque-Actuator in Exoskeleton-Type Training Robots. In: 9th IEEE International Conference on Rehabilitation Robotics (ICORR). 2005. p. 496–9. doi:https://​doi.​org/​10.​1109/​ICORR.​2005.​1501150.
126.
127.
go back to reference Kim S, Bae J. Development of a Lower Extremity Exoskeleton System for Human-Robot Interaction. In: 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). Kuala Lumpur (Malaysia); 2014. p. 132–5. Kim S, Bae J. Development of a Lower Extremity Exoskeleton System for Human-Robot Interaction. In: 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). Kuala Lumpur (Malaysia); 2014. p. 132–5.
129.
go back to reference Sergi F, Accoto D, Tagliamonte NL, Carpino G, Galzerano S, Guglielmelli E. Kinematic synthesis, optimization and analysis of a non-anthropomorphic 2-DOFs wearable orthosis for gait assistance. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vilamoura (Portugal); 2012. doi:https://doi.org/10.1109/IROS.2012.6386260. Sergi F, Accoto D, Tagliamonte NL, Carpino G, Galzerano S, Guglielmelli E. Kinematic synthesis, optimization and analysis of a non-anthropomorphic 2-DOFs wearable orthosis for gait assistance. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vilamoura (Portugal); 2012. doi:https://​doi.​org/​10.​1109/​IROS.​2012.​6386260.
133.
go back to reference Lopez R, Salazar S, Torres J, Lozano R. Modeling and Control of a Lower Limb Exoskeleton with two degrees of freedom. In: 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CEE). Mexico City (Mexico); 2012. doi:https://doi.org/10.1109/ICEEE.2012.6421205. Lopez R, Salazar S, Torres J, Lozano R. Modeling and Control of a Lower Limb Exoskeleton with two degrees of freedom. In: 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CEE). Mexico City (Mexico); 2012. doi:https://​doi.​org/​10.​1109/​ICEEE.​2012.​6421205.
138.
go back to reference Ren Y, Member S, Zhang D, Member S. FEXO Knee : A Rehabilitation Device for Knee Joint Combining Functional Electrical Stimulation with a Compliant Exoskeleton. In: 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Sao Paulo (Brazil); 2014. p. 683–8. doi:https://doi.org/10.1109/BIOROB.2014.6913857. Ren Y, Member S, Zhang D, Member S. FEXO Knee : A Rehabilitation Device for Knee Joint Combining Functional Electrical Stimulation with a Compliant Exoskeleton. In: 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Sao Paulo (Brazil); 2014. p. 683–8. doi:https://​doi.​org/​10.​1109/​BIOROB.​2014.​6913857.
140.
141.
go back to reference Boehler AW, Hollander KW, Sugar TG, Shin D. Design, Implementation and Test Results of a Robust Control Method for a Powered Ankle Foot Orthosis (AFO). In: 2008 IEEE international conference on robotics and automation (ICRA). Pasadena (USA); 2008. p. 2025–30. doi:https://doi.org/10.1109/ROBOT.2008.4543504. Boehler AW, Hollander KW, Sugar TG, Shin D. Design, Implementation and Test Results of a Robust Control Method for a Powered Ankle Foot Orthosis (AFO). In: 2008 IEEE international conference on robotics and automation (ICRA). Pasadena (USA); 2008. p. 2025–30. doi:https://​doi.​org/​10.​1109/​ROBOT.​2008.​4543504.
143.
go back to reference Hitt J, Oymagil AM, Sugar T, Hollander K, Boehler A, Fleeger J. Dynamically controlled ankle-foot orthosis (DCO) with regenerative kinetics: Incrementally attaining user portability. In: 2007 IEEE International Conference on Robotics and Automation (ICRA). Roma (Italy); 2007. p. 1541–6. doi:https://doi.org/10.1109/ROBOT.2007.363543. Hitt J, Oymagil AM, Sugar T, Hollander K, Boehler A, Fleeger J. Dynamically controlled ankle-foot orthosis (DCO) with regenerative kinetics: Incrementally attaining user portability. In: 2007 IEEE International Conference on Robotics and Automation (ICRA). Roma (Italy); 2007. p. 1541–6. doi:https://​doi.​org/​10.​1109/​ROBOT.​2007.​363543.
148.
go back to reference Mat Dzahir MA, Nobutomo T, Yamamoto SI. Development of body weight support gait training system using pneumatic mckibben actuators -Control of Lower Extremity Orthosis-*. In: 35th Annual International Conference of the IEEE EMBS. Osaka (Japan); 2013. p. 6417–20. doi:https://doi.org/10.1109/EMBC.2013.6611023. Mat Dzahir MA, Nobutomo T, Yamamoto SI. Development of body weight support gait training system using pneumatic mckibben actuators -Control of Lower Extremity Orthosis-*. In: 35th Annual International Conference of the IEEE EMBS. Osaka (Japan); 2013. p. 6417–20. doi:https://​doi.​org/​10.​1109/​EMBC.​2013.​6611023.
149.
go back to reference Yamamoto SI, Shibata Y, Imai S, Nobutomo T, Miyoshi T. Development of gait training system powered by pneumatic actuator like human musculoskeletal system. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR). Zurich (Switzerland); 2011. p. 8–11. doi:https://doi.org/10.1109/ICORR.2011.5975452. Yamamoto SI, Shibata Y, Imai S, Nobutomo T, Miyoshi T. Development of gait training system powered by pneumatic actuator like human musculoskeletal system. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR). Zurich (Switzerland); 2011. p. 8–11. doi:https://​doi.​org/​10.​1109/​ICORR.​2011.​5975452.
157.
158.
go back to reference Bae J, De Rossi SMM, O’Donnell K, Hendron KL, Awad LN, Teles Dos Santos TR, et al. A soft exosuit for patients with stroke: Feasibility study with a mobile off-board actuation unit. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR). Singapore (Singapore); 2015. p. 131–8. doi:https://doi.org/10.1109/ICORR.2015.7281188. Bae J, De Rossi SMM, O’Donnell K, Hendron KL, Awad LN, Teles Dos Santos TR, et al. A soft exosuit for patients with stroke: Feasibility study with a mobile off-board actuation unit. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR). Singapore (Singapore); 2015. p. 131–8. doi:https://​doi.​org/​10.​1109/​ICORR.​2015.​7281188.
Metadata
Title
Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles
Authors
Maria del Carmen Sanchez-Villamañan
Jose Gonzalez-Vargas
Diego Torricelli
Juan C. Moreno
Jose L. Pons
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2019
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-019-0517-9

Other articles of this Issue 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Go to the issue