Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01-12-2019 | Research

Complexity based measures of postural stability provide novel evidence of functional decline in fragile X premutation carriers

Authors: Clodagh O’Keeffe, Laura P. Taboada, Niamh Feerick, Louise Gallagher, Timothy Lynch, Richard B. Reilly

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2019

Login to get access

Abstract

Background

Fragile X Associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative movement disorder characterized by tremor, ataxic gait, and balance issues resulting from a premutation of the Fragile X Mental Retardation 1 (FMR1) gene. No biomarkers have yet been identified to allow early diagnosis of FXTAS, however, recent studies have reported subtle issues in the stability of younger premutation carriers, before disease onset. This study investigates the efficacy of multiscale entropy analysis (MSE) in detecting early changes in the motor system of premutation carriers without FXTAS.

Methods

Sway complexity of 12 female Premutation carriers and 15 healthy Controls were measured under four conditions: eyes open, closed, and two dual-task conditions. A Sustained Attention Response Task (SART) and a working memory based N-Back task were employed to increase cognitive load while standing on the forceplate. A Complexity Index (Ci) was calculated for anterior-posterior (AP) and mediolateral (ML) sway. Independent t-tests were used to assess between-group differences and Oneway repeated measures ANOVA were used to assess within group differences with Bonferroni corrections to adjust for multiple comparisons.

Results

Group performances were comparable with eyes open and closed conditions. The Carrier group’s Ci was consistent across tasks and conditions while the Control group’s AP Ci increased significantly during the cognitive dual-task (p = 0.001). There was also a strong correlation between CGG repeat length and complexity for the Carrier group (p = 0.004).

Significance

Increased sway complexity is believed to stem from reallocation of attention to facilitate the increased cognitive demands of dual-tasks. Carriers’ complexity did not change during dual-tasks, possibly indicating capacity interference and inefficient division of attention. Lower sway complexity in carriers suggests diminished adaptive capacity under stress as well as degradation of motor functioning. Therefore, sway complexity may be a useful tool in identifying early functional decline in FMR1 premutation carriers as well as monitoring progression towards disease onset.
Literature
1.
go back to reference Jacquemont S, Hagerman RJ, Leehey MA, Hall DA, Levine RA, Brunberg JA, et al. Penetrance of the fragile X–associated tremor/ataxia syndrome in a premutation carrier population. JAMA. 2004;291(4):460–9.PubMedCrossRef Jacquemont S, Hagerman RJ, Leehey MA, Hall DA, Levine RA, Brunberg JA, et al. Penetrance of the fragile X–associated tremor/ataxia syndrome in a premutation carrier population. JAMA. 2004;291(4):460–9.PubMedCrossRef
2.
go back to reference Rodriguez-Revenga L, Madrigal I, Pagonabarraga J, Xunclà M, Badenas C, Kulisevsky J, et al. Penetrance of FMR1 premutation associated pathologies in fragile X syndrome families. Eur J Hum Genet. 2009;17(10):1359–62.PubMedPubMedCentralCrossRef Rodriguez-Revenga L, Madrigal I, Pagonabarraga J, Xunclà M, Badenas C, Kulisevsky J, et al. Penetrance of FMR1 premutation associated pathologies in fragile X syndrome families. Eur J Hum Genet. 2009;17(10):1359–62.PubMedPubMedCentralCrossRef
3.
go back to reference Wang JY, Hessl D, Hagerman RJ, Simon TJ, Tassone F, Ferrer E, et al. Abnormal trajectories in cerebellum and brainstem volumes in carriers of the fragile X premutation. Neurobiol Aging. 2017;55:11–9.PubMedPubMedCentralCrossRef Wang JY, Hessl D, Hagerman RJ, Simon TJ, Tassone F, Ferrer E, et al. Abnormal trajectories in cerebellum and brainstem volumes in carriers of the fragile X premutation. Neurobiol Aging. 2017;55:11–9.PubMedPubMedCentralCrossRef
4.
go back to reference Cohen S, Masyn K, Adams J, Hessl D, Rivera S, Tassone F, et al. Molecular and imaging correlates of the fragile X–associated tremor/ataxia syndrome. Neurology. 2006;67(8):1426–31.PubMedCrossRef Cohen S, Masyn K, Adams J, Hessl D, Rivera S, Tassone F, et al. Molecular and imaging correlates of the fragile X–associated tremor/ataxia syndrome. Neurology. 2006;67(8):1426–31.PubMedCrossRef
5.
go back to reference Wang JY, Hessl D, Hagerman RJ, Tassone F, Rivera SM. Age-dependent structural connectivity effects in fragile x premutation. Arch Neurol. 2012;69(4):482–9.PubMedPubMedCentralCrossRef Wang JY, Hessl D, Hagerman RJ, Tassone F, Rivera SM. Age-dependent structural connectivity effects in fragile x premutation. Arch Neurol. 2012;69(4):482–9.PubMedPubMedCentralCrossRef
7.
go back to reference O’Keefe JA, Robertson-Dick E, Dunn EJ, Li Y, Deng Y, Fiutko AN, et al. Characterization and early detection of balance deficits in fragile X premutation carriers with and without fragile X-associated tremor/ataxia syndrome (FXTAS). Cerebellum. 2015;14(6):650–62.PubMedCrossRef O’Keefe JA, Robertson-Dick E, Dunn EJ, Li Y, Deng Y, Fiutko AN, et al. Characterization and early detection of balance deficits in fragile X premutation carriers with and without fragile X-associated tremor/ataxia syndrome (FXTAS). Cerebellum. 2015;14(6):650–62.PubMedCrossRef
8.
go back to reference Hocking DR, Birch RC, Bui QM, Menant JC, Lord SR, Georgiou-Karistianis N, et al. Cerebellar volume mediates the relationship between FMR1 mRNA levels and voluntary step initiation in males with the premutation. Neurobiol Aging. 2017;50:5–12.PubMedCrossRef Hocking DR, Birch RC, Bui QM, Menant JC, Lord SR, Georgiou-Karistianis N, et al. Cerebellar volume mediates the relationship between FMR1 mRNA levels and voluntary step initiation in males with the premutation. Neurobiol Aging. 2017;50:5–12.PubMedCrossRef
9.
go back to reference Kraan CM, Hocking DR, Georgiou-Karistianis N, Metcalfe SA, Archibald AD, Fielding J, et al. Cognitive-motor interference during postural control indicates at-risk cerebellar profiles in females with the FMR1 premutation. Behav Brain Res. 2013;253:329–36.PubMedCrossRef Kraan CM, Hocking DR, Georgiou-Karistianis N, Metcalfe SA, Archibald AD, Fielding J, et al. Cognitive-motor interference during postural control indicates at-risk cerebellar profiles in females with the FMR1 premutation. Behav Brain Res. 2013;253:329–36.PubMedCrossRef
10.
go back to reference Kraan CM, Hocking DR, Georgiou-Karistianis N, Metcalfe SA, Archibald AD, Fielding J, et al. Age and CGG-repeat length are associated with neuromotor impairments in at-risk females with the FMR1 premutation. Neurobiol Aging. 2014;35(9):2179. e7–e13.CrossRef Kraan CM, Hocking DR, Georgiou-Karistianis N, Metcalfe SA, Archibald AD, Fielding J, et al. Age and CGG-repeat length are associated with neuromotor impairments in at-risk females with the FMR1 premutation. Neurobiol Aging. 2014;35(9):2179. e7–e13.CrossRef
11.
go back to reference Hocking DR, Kraan CM, Godler DE, Bui QM, Li X, Bradshaw JL, et al. Evidence linking FMR1 mRNA and attentional demands of stepping and postural control in women with the premutation. Neurobiol Aging. 2015;36(3):1400–8.PubMedCrossRef Hocking DR, Kraan CM, Godler DE, Bui QM, Li X, Bradshaw JL, et al. Evidence linking FMR1 mRNA and attentional demands of stepping and postural control in women with the premutation. Neurobiol Aging. 2015;36(3):1400–8.PubMedCrossRef
13.
go back to reference Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture. 2002;16(1):1–14.PubMedCrossRef Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture. 2002;16(1):1–14.PubMedCrossRef
15.
go back to reference Peterka R. Sensorimotor integration in human postural control. J Neurophysiol. 2002;88(3):1097–118.PubMedCrossRef Peterka R. Sensorimotor integration in human postural control. J Neurophysiol. 2002;88(3):1097–118.PubMedCrossRef
16.
go back to reference Costa M, Goldberger AL, Peng C-K. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. 2002;89(6):068102.PubMedCrossRef Costa M, Goldberger AL, Peng C-K. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. 2002;89(6):068102.PubMedCrossRef
17.
go back to reference Manor B, Lipsitz LA. Physiologic complexity and aging: implications for physical function and rehabilitation. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;45:287–93.CrossRef Manor B, Lipsitz LA. Physiologic complexity and aging: implications for physical function and rehabilitation. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;45:287–93.CrossRef
18.
go back to reference Lipsitz LA. Dynamics of stability: the physiologic basis of functional health and frailty. J Gerontol Ser A Biol Med Sci. 2002;57(3):B115–B25.CrossRef Lipsitz LA. Dynamics of stability: the physiologic basis of functional health and frailty. J Gerontol Ser A Biol Med Sci. 2002;57(3):B115–B25.CrossRef
19.
go back to reference Manor B, Costa MD, Hu K, Newton E, Starobinets OV, Kang HG, et al. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. Am J Phys Heart Circ Phys. 2010;109(6):1786-91. Manor B, Costa MD, Hu K, Newton E, Starobinets OV, Kang HG, et al. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. Am J Phys Heart Circ Phys. 2010;109(6):1786-91.
20.
go back to reference Wechsler D. WASI (Wechsler adult scale–reduced). New York: The Psychological Corporation; 1999. Wechsler D. WASI (Wechsler adult scale–reduced). New York: The Psychological Corporation; 1999.
21.
go back to reference Kirchner WK. Age differences in short-term retention of rapidly changing information. J Exp Psychol. 1958;55(4):352.PubMedCrossRef Kirchner WK. Age differences in short-term retention of rapidly changing information. J Exp Psychol. 1958;55(4):352.PubMedCrossRef
22.
go back to reference Robertson IH, Manly T, Andrade J, Baddeley BT, Yiend J. ‘Oops!’: performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia. 1997;35(6):747–58.PubMedCrossRef Robertson IH, Manly T, Andrade J, Baddeley BT, Yiend J. ‘Oops!’: performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia. 1997;35(6):747–58.PubMedCrossRef
23.
go back to reference Scoppa F, Capra R, Gallamini M, Shiffer R. Clinical stabilometry standardization: basic definitions–acquisition interval–sampling frequency. Gait Posture. 2013;37(2):290–2.PubMedCrossRef Scoppa F, Capra R, Gallamini M, Shiffer R. Clinical stabilometry standardization: basic definitions–acquisition interval–sampling frequency. Gait Posture. 2013;37(2):290–2.PubMedCrossRef
24.
go back to reference Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences: The Royal Society; 1998. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences: The Royal Society; 1998.
25.
go back to reference Gow BJ, Peng C-K, Wayne PM, Ahn AC. Multiscale entropy analysis of center-of-pressure dynamics in human postural control: methodological considerations. Entropy. 2015;17(12):7926–47.CrossRef Gow BJ, Peng C-K, Wayne PM, Ahn AC. Multiscale entropy analysis of center-of-pressure dynamics in human postural control: methodological considerations. Entropy. 2015;17(12):7926–47.CrossRef
26.
go back to reference Zhou J, Lipsitz L, Habtemariam D, Manor B. Sub-sensory vibratory noise augments the physiologic complexity of postural control in older adults. J Neuroeng Rehabil. 2016;13(1):44.PubMedPubMedCentralCrossRef Zhou J, Lipsitz L, Habtemariam D, Manor B. Sub-sensory vibratory noise augments the physiologic complexity of postural control in older adults. J Neuroeng Rehabil. 2016;13(1):44.PubMedPubMedCentralCrossRef
27.
go back to reference Silvia I, Moody G. An open-source toolbox for analysing and processing PhysioNet databases in MATLAB and octave. J Open Res Softw. 2014;2(1):27. Silvia I, Moody G. An open-source toolbox for analysing and processing PhysioNet databases in MATLAB and octave. J Open Res Softw. 2014;2(1):27.
28.
go back to reference Goldberger A, Amaral L, L G, Hausdorff J, PCh I, Mark R, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):215–20.CrossRef Goldberger A, Amaral L, L G, Hausdorff J, PCh I, Mark R, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):215–20.CrossRef
29.
go back to reference Sasaki O, Usami S-i, Gagey P-M, Martinerie J, Le Van Quyen M, Arranz P. Role of visual input in nonlinear postural control system. Exp Brain Res. 2002;147(1):1–7.PubMedCrossRef Sasaki O, Usami S-i, Gagey P-M, Martinerie J, Le Van Quyen M, Arranz P. Role of visual input in nonlinear postural control system. Exp Brain Res. 2002;147(1):1–7.PubMedCrossRef
30.
go back to reference Lipsitz LA, Goldberger AL. Loss of'complexity'and aging: potential applications of fractals and chaos theory to senescence. JAMA. 1992;267(13):1806–9.PubMedCrossRef Lipsitz LA, Goldberger AL. Loss of'complexity'and aging: potential applications of fractals and chaos theory to senescence. JAMA. 1992;267(13):1806–9.PubMedCrossRef
31.
go back to reference Kang HG, Costa MD, Priplata AA, Starobinets OV, Goldberger AL, Peng C-K, et al. Frailty and the degradation of complex balance dynamics during a dual-task protocol. J Gerontol A Biol Sci Med Sci. 2009;64(12):1304–11.PubMedCrossRef Kang HG, Costa MD, Priplata AA, Starobinets OV, Goldberger AL, Peng C-K, et al. Frailty and the degradation of complex balance dynamics during a dual-task protocol. J Gerontol A Biol Sci Med Sci. 2009;64(12):1304–11.PubMedCrossRef
32.
go back to reference O’Keefe JA, Robertson-Dick EE, Hall DA, Berry-Kravis E. Gait and functional mobility deficits in fragile X-associated tremor/ataxia syndrome. Cerebellum. 2016;15(4):475–82.PubMedCrossRef O’Keefe JA, Robertson-Dick EE, Hall DA, Berry-Kravis E. Gait and functional mobility deficits in fragile X-associated tremor/ataxia syndrome. Cerebellum. 2016;15(4):475–82.PubMedCrossRef
33.
go back to reference Stoffregen TA, Smart LJ, Bardy BG, Pagulayan RJ. Postural stabilization of looking. J Exp Psychol Hum Percept Perform. 1999;25(6):1641.CrossRef Stoffregen TA, Smart LJ, Bardy BG, Pagulayan RJ. Postural stabilization of looking. J Exp Psychol Hum Percept Perform. 1999;25(6):1641.CrossRef
34.
go back to reference Hocking DR, Kogan CS, Cornish KM. Selective spatial processing deficits in an at-risk subgroup of the fragile X premutation. Brain Cogn. 2012;79(1):39–44.PubMedCrossRef Hocking DR, Kogan CS, Cornish KM. Selective spatial processing deficits in an at-risk subgroup of the fragile X premutation. Brain Cogn. 2012;79(1):39–44.PubMedCrossRef
36.
go back to reference Narcisa V, Aguilar D, Nguyen DV, Campos L, Brodovsky J, White S, et al. A quantitative assessment of tremor and ataxia in female FMR1 premutation carriers using CATSYS. Curr Gerontol Geriatr Res. 2011;2011:484713.PubMedPubMedCentralCrossRef Narcisa V, Aguilar D, Nguyen DV, Campos L, Brodovsky J, White S, et al. A quantitative assessment of tremor and ataxia in female FMR1 premutation carriers using CATSYS. Curr Gerontol Geriatr Res. 2011;2011:484713.PubMedPubMedCentralCrossRef
37.
go back to reference Allen EG, Juncos J, Letz R, Rusin M, Hamilton D, Novak G, et al. Detection of early FXTAS motor symptoms using the CATSYS computerised neuromotor test battery. J Med Genet. 2008;45(5):290–7.PubMedPubMedCentralCrossRef Allen EG, Juncos J, Letz R, Rusin M, Hamilton D, Novak G, et al. Detection of early FXTAS motor symptoms using the CATSYS computerised neuromotor test battery. J Med Genet. 2008;45(5):290–7.PubMedPubMedCentralCrossRef
38.
go back to reference Hagerman R, Hagerman P. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome. Lancet Neurol. 2013;12(8):786–98.PubMedPubMedCentralCrossRef Hagerman R, Hagerman P. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome. Lancet Neurol. 2013;12(8):786–98.PubMedPubMedCentralCrossRef
39.
go back to reference Leehey M, Berry-Kravis E, Goetz C, Zhang L, Hall D, Li L, et al. FMR1 CGG repeat length predicts motor dysfunction in premutation carriers. Neurology. 2008;70(16 Part 2):1397–402.PubMedCrossRef Leehey M, Berry-Kravis E, Goetz C, Zhang L, Hall D, Li L, et al. FMR1 CGG repeat length predicts motor dysfunction in premutation carriers. Neurology. 2008;70(16 Part 2):1397–402.PubMedCrossRef
Metadata
Title
Complexity based measures of postural stability provide novel evidence of functional decline in fragile X premutation carriers
Authors
Clodagh O’Keeffe
Laura P. Taboada
Niamh Feerick
Louise Gallagher
Timothy Lynch
Richard B. Reilly
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2019
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-019-0560-6

Other articles of this Issue 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Go to the issue