Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2018

Open Access 01-12-2018 | Methodology

Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy

Authors: Matthew Ahmadi, Margaret O’Neil, Maria Fragala-Pinkham, Nancy Lennon, Stewart Trost

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Background

Cerebral palsy (CP) is the most common physical disability among children (2.5 to 3.6 cases per 1000 live births). Inadequate physical activity (PA) is a major problem effecting the health and well-being of children with CP. Practical, yet accurate measures of PA are needed to evaluate the effectiveness of surgical and therapy-based interventions to increase PA. Accelerometer-based motion sensors have become the standard for objectively measuring PA in children and adolescents; however, current methods for estimating physical activity intensity in children with CP are associated with significant error and may dramatically underestimate HPA in children with more severe mobility limitations. Machine learning (ML) models that first classify the PA type and then predict PA intensity or energy expenditure using activity specific regression equations may be more accurate than standalone regression models. However, the feasibility and validity of ML methods has not been explored in youth with CP. Therefore, the purpose of this study was to develop and test ML models for the automatic identification of PA type in ambulant children with CP.

Methods

Twenty two children and adolescents (mean age: 12.8 ± 2.9 y) with CP classified at GMFCS Levels I to III completed 7 activity trials while wearing an ActiGraph GT3X+ accelerometer on the hip and wrist. Trials were categorised as sedentary (SED), standing utilitarian movements (SUM), comfortable walking (CW), and brisk walking (BW). Random forest (RF), support vector machine (SVM), and binary decision tree (BDT) classifiers were trained with features extracted from the vector magnitude (VM) of the raw acceleration signal using 10 s non-overlapping windows. Performance was evaluated using leave-one-subject out cross validation.

Results

SVM (82.0–89.0%) and RF (82.6–88.8%) provided significantly better classification accuracy than BDT (76.1–86.2%). Hip (82.7–85.5%) and wrist (76.1–82.6%) classifiers exhibited comparable prediction accuracy, while the combined hip and wrist (86.2–89.0%) classifiers achieved the best overall performance. For all classifiers, recognition accuracy was excellent for SED (94.1–97.9%), good to excellent for SUM (74.0–96.6%) and brisk walking (71.5–86.0%), and modest for comfortable walking (47.6–70.4%). When comfortable and brisk walking were combined into a single walking class, recognition accuracy ranged from 90.3 to 96.5%.

Conclusions

ML methods provided acceptable classification accuracy for detection of a range of activities commonly performed by ambulatory children with CP. The resultant models can help clinicians more effectively monitor bouts of brisk walking in the community. The results indicate that 2-step models that first classify PA type and then predict energy expenditure using activity specific regression equations are worthy of exploration in this patient group.
Appendix
Available only for authorised users
Literature
1.
go back to reference Winter S, Autry A, Boyle C, Yeargin-Allsopp M. Trends in the prevalence of cerebral palsy in a population-based study. Pediatrics. 2002;110:1220–5.CrossRef Winter S, Autry A, Boyle C, Yeargin-Allsopp M. Trends in the prevalence of cerebral palsy in a population-based study. Pediatrics. 2002;110:1220–5.CrossRef
2.
go back to reference Damiano DL. Activity, activity, activity: rethinking our physical therapy approach to cerebral palsy. Phys Ther. 2006;86:1534–40.CrossRef Damiano DL. Activity, activity, activity: rethinking our physical therapy approach to cerebral palsy. Phys Ther. 2006;86:1534–40.CrossRef
3.
go back to reference Verschuren O, Darrah J, Novak I, Ketelaar M, Wiart L. Health-enhancing physical activity in children with cerebral palsy: more of the same is not enough. Phys Ther. 2014;94:297–305.CrossRef Verschuren O, Darrah J, Novak I, Ketelaar M, Wiart L. Health-enhancing physical activity in children with cerebral palsy: more of the same is not enough. Phys Ther. 2014;94:297–305.CrossRef
4.
go back to reference Verschuren O, Peterson MD, Balemans ACJ, Hurvitz EA. Exercise and physical activity recommendations for people with cerebral palsy. Dev Med Child Neurol. 2016;58:798–808.CrossRef Verschuren O, Peterson MD, Balemans ACJ, Hurvitz EA. Exercise and physical activity recommendations for people with cerebral palsy. Dev Med Child Neurol. 2016;58:798–808.CrossRef
5.
go back to reference Bjornson KF, Belza B, Kartin D, Logsdon R, McLaughlin JF, Thompson E. The relationship of physical activity to health status and quality of life in cerebral palsy. Pediatr Am Phys Ther Assoc. 2008;20:247–53.CrossRef Bjornson KF, Belza B, Kartin D, Logsdon R, McLaughlin JF, Thompson E. The relationship of physical activity to health status and quality of life in cerebral palsy. Pediatr Am Phys Ther Assoc. 2008;20:247–53.CrossRef
6.
go back to reference Rowland JL, Fragala-Pinkham M, Miles C, O’Neil ME. The scope of pediatric physical therapy practice in health promotion and fitness for youth with disabilities. Pediatr Phys Ther. 2015;27:2–15.CrossRef Rowland JL, Fragala-Pinkham M, Miles C, O’Neil ME. The scope of pediatric physical therapy practice in health promotion and fitness for youth with disabilities. Pediatr Phys Ther. 2015;27:2–15.CrossRef
7.
go back to reference Trost SG, O’Neil M. Clinical use of objective measures of physical activity. Br J Sports Med. 2014;48:178–81.CrossRef Trost SG, O’Neil M. Clinical use of objective measures of physical activity. Br J Sports Med. 2014;48:178–81.CrossRef
8.
go back to reference Trost SG. Measurement of physical activity in children and adolescents. Am J Lifestyle Med. 2007;1:299–314.CrossRef Trost SG. Measurement of physical activity in children and adolescents. Am J Lifestyle Med. 2007;1:299–314.CrossRef
9.
go back to reference Mitchell L, Ziviani J, Boyd R. Measurement of physical activity in children and adolescents with cerebral palsy: the way forward. Dev Med Child Neurol. 2013;55:780–1.CrossRef Mitchell L, Ziviani J, Boyd R. Measurement of physical activity in children and adolescents with cerebral palsy: the way forward. Dev Med Child Neurol. 2013;55:780–1.CrossRef
10.
go back to reference Clanchy KM, Tweedy SM, Boyd RN, Trost SG. Validity of accelerometry in ambulatory children and adolescents with cerebral palsy. Eur J Appl Physiol. 2011;111:2951–9.CrossRef Clanchy KM, Tweedy SM, Boyd RN, Trost SG. Validity of accelerometry in ambulatory children and adolescents with cerebral palsy. Eur J Appl Physiol. 2011;111:2951–9.CrossRef
11.
go back to reference Keawutan P, Bell KL, Oftedal S, Davies PSW, Boyd RN. Validation of accelerometer cut-points in children with cerebral palsy aged 4 to 5 years. Pediatr Phys Ther. 2016;28:427–34.CrossRef Keawutan P, Bell KL, Oftedal S, Davies PSW, Boyd RN. Validation of accelerometer cut-points in children with cerebral palsy aged 4 to 5 years. Pediatr Phys Ther. 2016;28:427–34.CrossRef
12.
go back to reference Oftedal S, Bell KL, Davies PSW, Ware RS, Boyd RN. Validation of accelerometer cut points in toddlers with and without cerebral palsy. Med Sci Sports Exerc. 2014;46:1808–15.CrossRef Oftedal S, Bell KL, Davies PSW, Ware RS, Boyd RN. Validation of accelerometer cut points in toddlers with and without cerebral palsy. Med Sci Sports Exerc. 2014;46:1808–15.CrossRef
13.
go back to reference Ryan J, Walsh M, Gormley J. Ability of RT3 accelerometer cut points to detect physical activity intensity in ambulatory children with cerebral palsy. Adapt Phys Act Q. 2014;31:310–24.CrossRef Ryan J, Walsh M, Gormley J. Ability of RT3 accelerometer cut points to detect physical activity intensity in ambulatory children with cerebral palsy. Adapt Phys Act Q. 2014;31:310–24.CrossRef
14.
go back to reference Trost SG, Fragala-Pinkham M, Lennon N, O’Neil ME. Decision trees for detection of activity intensity in youth with cerebral palsy. Med Sci Sports Exerc. 2016;48:958–66.CrossRef Trost SG, Fragala-Pinkham M, Lennon N, O’Neil ME. Decision trees for detection of activity intensity in youth with cerebral palsy. Med Sci Sports Exerc. 2016;48:958–66.CrossRef
15.
go back to reference Mannini A, Intille SS, Rosenberger M, Sabatini AM, Haskell W. Activity recognition in youth using a single accelerometer placed at the wrist or ankle. Med Sci Sport Exerc. 2017;49:801–12.CrossRef Mannini A, Intille SS, Rosenberger M, Sabatini AM, Haskell W. Activity recognition in youth using a single accelerometer placed at the wrist or ankle. Med Sci Sport Exerc. 2017;49:801–12.CrossRef
16.
go back to reference Trost SG, Wong W-K, K a P, Zheng Y. Artificial neural networks to predict activity type and energy expenditure in youth. Med Sci Sports Exerc. 2012;44:1801–9.CrossRef Trost SG, Wong W-K, K a P, Zheng Y. Artificial neural networks to predict activity type and energy expenditure in youth. Med Sci Sports Exerc. 2012;44:1801–9.CrossRef
17.
go back to reference Ruch N, Rumo M, Mäder U. Recognition of activities in children by two uniaxial accelerometers in free-living conditions. Eur J Appl Physiol. 2011;111:1917–27.CrossRef Ruch N, Rumo M, Mäder U. Recognition of activities in children by two uniaxial accelerometers in free-living conditions. Eur J Appl Physiol. 2011;111:1917–27.CrossRef
18.
go back to reference Mackintosh KA, Montoye AHK, Pfeiffer KA, McNarry MA. Investigating optimal accelerometer placement for energy expenditure prediction in children using a machine learning approach. Physiol Meas. 2016;37:1728–40.CrossRef Mackintosh KA, Montoye AHK, Pfeiffer KA, McNarry MA. Investigating optimal accelerometer placement for energy expenditure prediction in children using a machine learning approach. Physiol Meas. 2016;37:1728–40.CrossRef
19.
go back to reference Ruch N, Joss F, Jimmy G, Melzer K, Hänggi J, Mäder U. Neural network versus activity-specific prediction equations for energy expenditure estimation in children. J Appl Physiol. 2013;115:1229–36.CrossRef Ruch N, Joss F, Jimmy G, Melzer K, Hänggi J, Mäder U. Neural network versus activity-specific prediction equations for energy expenditure estimation in children. J Appl Physiol. 2013;115:1229–36.CrossRef
20.
go back to reference Bonomi a G, Plasqui G, Goris a HC, Westerterp KR. Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer. J Appl Physiol. 2009;107:655–61.CrossRef Bonomi a G, Plasqui G, Goris a HC, Westerterp KR. Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer. J Appl Physiol. 2009;107:655–61.CrossRef
21.
go back to reference Crouter SE, Horton M, Bassett DR. Use of a two-regression model for estimating energy expenditure in children. Med Sci Sports Exerc. 2012;44:1177–85.CrossRef Crouter SE, Horton M, Bassett DR. Use of a two-regression model for estimating energy expenditure in children. Med Sci Sports Exerc. 2012;44:1177–85.CrossRef
22.
go back to reference O’Neil ME, Fragala-Pinkham M, Lennon N, George A, Forman J, Trost SG. Reliability and validity of objective measures of physical activity in youth with cerebral palsy who are ambulatory. Phys Ther. 2016;96:37–45.CrossRef O’Neil ME, Fragala-Pinkham M, Lennon N, George A, Forman J, Trost SG. Reliability and validity of objective measures of physical activity in youth with cerebral palsy who are ambulatory. Phys Ther. 2016;96:37–45.CrossRef
23.
go back to reference O’Neil ME, Fragala-Pinkham MA, Forman JL, Trost SG. Measuring reliability and validity of the ActiGraph GT3X accelerometer for children with cerebral palsy: a feasibility study. J Pediatr Rehabil Med. 2014;7:233–40.PubMed O’Neil ME, Fragala-Pinkham MA, Forman JL, Trost SG. Measuring reliability and validity of the ActiGraph GT3X accelerometer for children with cerebral palsy: a feasibility study. J Pediatr Rehabil Med. 2014;7:233–40.PubMed
24.
go back to reference Trost SG, Zheng Y, Wong W-K. Machine learning for activity recognition: hip versus wrist data. Physiol Meas. 2014;35:2183–9.CrossRef Trost SG, Zheng Y, Wong W-K. Machine learning for activity recognition: hip versus wrist data. Physiol Meas. 2014;35:2183–9.CrossRef
25.
go back to reference Liu S, Gao RX, Freedson PS. Computational methods for estimating energy expenditure in human physical activities. Med Sci Sports Exerc. 2012;44:2138–46.CrossRef Liu S, Gao RX, Freedson PS. Computational methods for estimating energy expenditure in human physical activities. Med Sci Sports Exerc. 2012;44:2138–46.CrossRef
26.
go back to reference Vapnik VN. The nature of statistical learning theory. New York: Springer; 2000.CrossRef Vapnik VN. The nature of statistical learning theory. New York: Springer; 2000.CrossRef
28.
go back to reference Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression Trees. Belmont: Wadsworth International Group; 1984. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression Trees. Belmont: Wadsworth International Group; 1984.
29.
go back to reference Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28:1–26.CrossRef Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28:1–26.CrossRef
30.
go back to reference Forman G, Scholz M. Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement. ACM SIGKDD Explor Newsl. 2010;12:49–57.CrossRef Forman G, Scholz M. Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement. ACM SIGKDD Explor Newsl. 2010;12:49–57.CrossRef
31.
go back to reference Stapor K. Evaluating and Comparing Classifiers: Review, Some Recommendations and Limitations. Proceedings of the 10th International Conference on Computer Recognition Systems CORES. 2017. pp. 12–21. Stapor K. Evaluating and Comparing Classifiers: Review, Some Recommendations and Limitations. Proceedings of the 10th International Conference on Computer Recognition Systems CORES. 2017. pp. 12–21.
32.
go back to reference World Health Organization. International classification of functioning, disability and health (ICF). Geneva: World Health Organization; 2002. World Health Organization. International classification of functioning, disability and health (ICF). Geneva: World Health Organization; 2002.
33.
go back to reference Chowdhury AK, Tjondronegoro D, Chandran V, Trost SG. Ensemble methods for classification of physical activities from wrist Accelerometry. Med Sci Sports Exerc. 2017;49:1965–73.CrossRef Chowdhury AK, Tjondronegoro D, Chandran V, Trost SG. Ensemble methods for classification of physical activities from wrist Accelerometry. Med Sci Sports Exerc. 2017;49:1965–73.CrossRef
34.
go back to reference Trost SG, Cliff DP, Ahmadi MN, Tuc NV, Hagenbuchner M. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data. Med Sci Sports Exerc. 2018;50:634–41.CrossRef Trost SG, Cliff DP, Ahmadi MN, Tuc NV, Hagenbuchner M. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data. Med Sci Sports Exerc. 2018;50:634–41.CrossRef
35.
go back to reference Hagenbuchner M, Cliff DP, Trost SG, Van Tuc N, Peoples GE. Prediction of activity type in preschool children using machine learning techniques. J Sci Med Sport. 2015;18:426–31.CrossRef Hagenbuchner M, Cliff DP, Trost SG, Van Tuc N, Peoples GE. Prediction of activity type in preschool children using machine learning techniques. J Sci Med Sport. 2015;18:426–31.CrossRef
36.
go back to reference Kotsiantis SB. Supervised Machine Learning: A Review of Classification Techniques. Informatica. 2007;31:249–268. Kotsiantis SB. Supervised Machine Learning: A Review of Classification Techniques. Informatica. 2007;31:249–268.
37.
go back to reference Wolpert DH. The Supervised Learning No-Free-Lunch Theorems. In: Proceedings of the 6th Online World Conference on Soft Computing in Industrial Applications. 2001. pp. 25–42.CrossRef Wolpert DH. The Supervised Learning No-Free-Lunch Theorems. In: Proceedings of the 6th Online World Conference on Soft Computing in Industrial Applications. 2001. pp. 25–42.CrossRef
38.
go back to reference Catal C, Tufekci S, Pirmit E, Kocabag G. On the use of ensemble of classifiers for accelerometer-based activity recognition. Appl Soft Comput J. 2015;37:1018–22.CrossRef Catal C, Tufekci S, Pirmit E, Kocabag G. On the use of ensemble of classifiers for accelerometer-based activity recognition. Appl Soft Comput J. 2015;37:1018–22.CrossRef
39.
go back to reference Van Hees VT, Golubic R, Ekelund U, Brage S. Impact of study design on development and evaluation of an activity-type classifier. J Appl Physiol. 2013;114:1042–51.CrossRef Van Hees VT, Golubic R, Ekelund U, Brage S. Impact of study design on development and evaluation of an activity-type classifier. J Appl Physiol. 2013;114:1042–51.CrossRef
40.
go back to reference Bao L, Intille SS. Activity recognition from user-annotated acceleration data. In: Proceedings for the 2nd International Conference on Pervasive Computing. 2004. pp. 1–17. Bao L, Intille SS. Activity recognition from user-annotated acceleration data. In: Proceedings for the 2nd International Conference on Pervasive Computing. 2004. pp. 1–17.
41.
go back to reference Dodd KJ. Partial body-weight- supported treadmill training can improve walking in children with cerebral palsy : a clinical controlled trial. Dev Med Child Neurol. 2007;49:101–5.CrossRef Dodd KJ. Partial body-weight- supported treadmill training can improve walking in children with cerebral palsy : a clinical controlled trial. Dev Med Child Neurol. 2007;49:101–5.CrossRef
42.
go back to reference Johnston TE, Watson KE, Ross SA, Gates PE, Gaughan JP, Lauer RT, et al. Effects of a supported speed treadmill training exercise program on impairment and function for children with cerebral palsy. Dev Med Child Neurol. 2011;53:742–50.CrossRef Johnston TE, Watson KE, Ross SA, Gates PE, Gaughan JP, Lauer RT, et al. Effects of a supported speed treadmill training exercise program on impairment and function for children with cerebral palsy. Dev Med Child Neurol. 2011;53:742–50.CrossRef
Metadata
Title
Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy
Authors
Matthew Ahmadi
Margaret O’Neil
Maria Fragala-Pinkham
Nancy Lennon
Stewart Trost
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2018
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0456-x

Other articles of this Issue 1/2018

Journal of NeuroEngineering and Rehabilitation 1/2018 Go to the issue