Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2018

Open Access 01-12-2018 | Research

Neural predictors of gait stability when walking freely in the real-world

Authors: Sara Pizzamiglio, Hassan Abdalla, Usman Naeem, Duncan L. Turner

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Background

Gait impairments during real-world locomotion are common in neurological diseases. However, very little is currently known about the neural correlates of walking in the real world and on which regions of the brain are involved in regulating gait stability and performance. As a first step to understanding how neural control of gait may be impaired in neurological conditions such as Parkinson’s disease, we investigated how regional brain activation might predict walking performance in the urban environment and whilst engaging with secondary tasks in healthy subjects.

Methods

We recorded gait characteristics including trunk acceleration and brain activation in 14 healthy young subjects whilst they walked around the university campus freely (single task), while conversing with the experimenter and while texting with their smartphone. Neural spectral power density (PSD) was evaluated in three brain regions of interest, namely the pre-frontal cortex (PFC) and bilateral posterior parietal cortex (right/left PPC). We hypothesized that specific regional neural activation would predict trunk acceleration data obtained during the different walking conditions.

Results

Vertical trunk acceleration was predicted by gait velocity and left PPC theta (4–7 Hz) band PSD in single-task walking (R-squared = 0.725, p = 0.001) and by gait velocity and left PPC alpha (8–12 Hz) band PSD in walking while conversing (R-squared = 0.727, p = 0.001). Medio-lateral trunk acceleration was predicted by left PPC beta (15–25 Hz) band PSD when walking while texting (R-squared = 0.434, p = 0.010).

Conclusions

We suggest that the left PPC may be involved in the processes of sensorimotor integration and gait control during walking in real-world conditions. Frequency-specific coding was operative in different dual tasks and may be developed as biomarkers of gait deficits in neurological conditions during performance of these types of, now commonly undertaken, dual tasks.
Literature
1.
go back to reference Ladouce S, Donaldson DI, Dudchenko PA, Ietswaart M. Understanding minds in real-world environments: toward a mobile cognition approach. Front Hum Neurosci. 2016;10:694.PubMed Ladouce S, Donaldson DI, Dudchenko PA, Ietswaart M. Understanding minds in real-world environments: toward a mobile cognition approach. Front Hum Neurosci. 2016;10:694.PubMed
2.
go back to reference Contreras-Vidal JL, Cruz-Garcia J, Kopteva A. Towards a whole body brain-machine interface system for decoding expressive movement intent challenges and opportunities. In: Brain-computer Interface (BCI), 2017 5th international winter conference on: IEEE. 2017. p. 1–4. Contreras-Vidal JL, Cruz-Garcia J, Kopteva A. Towards a whole body brain-machine interface system for decoding expressive movement intent challenges and opportunities. In: Brain-computer Interface (BCI), 2017 5th international winter conference on: IEEE. 2017. p. 1–4.
3.
go back to reference Schlink BR, Peterson SM, Hairston W, König P, Kerick SE, Ferris DP. Independent component analysis and source localization on mobile EEG data can identify increased levels of acute stress. Front Hum Neurosci. 2017:11, 310. Schlink BR, Peterson SM, Hairston W, König P, Kerick SE, Ferris DP. Independent component analysis and source localization on mobile EEG data can identify increased levels of acute stress. Front Hum Neurosci. 2017:11, 310.
4.
go back to reference Aspinall P, Mavros P, Coyne R, Roe J. The urban brain: analysing outdoor physical activity with mobile EEG. Br J Sports Med. 2013;49(4):272–276.CrossRefPubMed Aspinall P, Mavros P, Coyne R, Roe J. The urban brain: analysing outdoor physical activity with mobile EEG. Br J Sports Med. 2013;49(4):272–276.CrossRefPubMed
5.
go back to reference Tilley S, Neale C, Patuano A, Cinderby S. Older people’s experiences of mobility and mood in an urban environment: a mixed methods approach using electroencephalography (EEG) and interviews. Int J Environ Res Public Health. 2017;14(2):151.CrossRefPubMedCentral Tilley S, Neale C, Patuano A, Cinderby S. Older people’s experiences of mobility and mood in an urban environment: a mixed methods approach using electroencephalography (EEG) and interviews. Int J Environ Res Public Health. 2017;14(2):151.CrossRefPubMedCentral
6.
go back to reference Al-Yahya E, Johansen-Berg H, Kischka U, Zarei M, Cockburn J, Dawes H. Prefrontal cortex activation while walking under dual-task conditions in stroke: a multimodal imaging study. Neurorehabil Neural Repair. 2016;30(6):591–9.CrossRefPubMed Al-Yahya E, Johansen-Berg H, Kischka U, Zarei M, Cockburn J, Dawes H. Prefrontal cortex activation while walking under dual-task conditions in stroke: a multimodal imaging study. Neurorehabil Neural Repair. 2016;30(6):591–9.CrossRefPubMed
7.
go back to reference Holtzer R, Mahoney JR, Izzetoglu M, Izzetoglu K, Onaral B, Verghese J. fNIRS study of walking and walking while talking in young and old individuals. J Gerontol Ser A Biol Med Sci. 2011;66(8):879–887.CrossRef Holtzer R, Mahoney JR, Izzetoglu M, Izzetoglu K, Onaral B, Verghese J. fNIRS study of walking and walking while talking in young and old individuals. J Gerontol Ser A Biol Med Sci. 2011;66(8):879–887.CrossRef
8.
go back to reference Maidan I, Nieuwhof F, Bernad-Elazari H, Reelick MF, Bloem BR, Giladi N, et al. The role of the frontal lobe in complex walking among patients with Parkinson’s disease and healthy older adults: an fNIRS study. Neurorehabil Neural Repair. 2016;30(10):963–71.CrossRefPubMed Maidan I, Nieuwhof F, Bernad-Elazari H, Reelick MF, Bloem BR, Giladi N, et al. The role of the frontal lobe in complex walking among patients with Parkinson’s disease and healthy older adults: an fNIRS study. Neurorehabil Neural Repair. 2016;30(10):963–71.CrossRefPubMed
9.
go back to reference Sipp AR, Gwin JT, Makeig S, Ferris DP. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response. J Neurophysiol. 2013;110(9):2050–60.CrossRefPubMedPubMedCentral Sipp AR, Gwin JT, Makeig S, Ferris DP. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response. J Neurophysiol. 2013;110(9):2050–60.CrossRefPubMedPubMedCentral
10.
go back to reference Bradford JC, Lukos JR, Ferris DP. Electrocortical activity distinguishes between uphill and level walking in humans. J Neurophysiol. 2016;115(2):958–66.CrossRefPubMed Bradford JC, Lukos JR, Ferris DP. Electrocortical activity distinguishes between uphill and level walking in humans. J Neurophysiol. 2016;115(2):958–66.CrossRefPubMed
11.
go back to reference Wagner J, Makeig S, Gola M, Neuper C, Müller-Putz G. Distinct β band oscillatory networks subserving motor and cognitive control during gait adaptation. J Neurosci. 2016;36(7):2212–26.CrossRefPubMed Wagner J, Makeig S, Gola M, Neuper C, Müller-Putz G. Distinct β band oscillatory networks subserving motor and cognitive control during gait adaptation. J Neurosci. 2016;36(7):2212–26.CrossRefPubMed
12.
go back to reference Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci. 2007;104(26):11073–8.CrossRefPubMedPubMedCentral Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci. 2007;104(26):11073–8.CrossRefPubMedPubMedCentral
13.
go back to reference Rosenberg-Katz K, Maidan I, Jacob Y, Giladi N, Mirelman A, Hausdorff JM. Alterations in conflict monitoring are related to functional connectivity in Parkinson's disease. Cortex. 2016;82:277–86.CrossRefPubMed Rosenberg-Katz K, Maidan I, Jacob Y, Giladi N, Mirelman A, Hausdorff JM. Alterations in conflict monitoring are related to functional connectivity in Parkinson's disease. Cortex. 2016;82:277–86.CrossRefPubMed
14.
go back to reference Handojoseno AA, Gilat M, Ly QT, Chamtie H, Shine JM, Nguyen TN, et al. An EEG study of turning freeze in Parkinson's disease patients: the alteration of brain dynamic on the motor and visual cortex. In: Engineering in medicine and biology society (EMBC), 2015 37th annual international conference of the IEEE: IEEE. 2015. p. 6618–21. Handojoseno AA, Gilat M, Ly QT, Chamtie H, Shine JM, Nguyen TN, et al. An EEG study of turning freeze in Parkinson's disease patients: the alteration of brain dynamic on the motor and visual cortex. In: Engineering in medicine and biology society (EMBC), 2015 37th annual international conference of the IEEE: IEEE. 2015. p. 6618–21.
15.
go back to reference Ly QT, Handojoseno AA, Gilat M, Nguyen N, Chai R, Tran Y, et al. (Year). Detection of gait initiation failure in Parkinson's disease patients using EEG signals, in: Engineering in medicine and biology society (EMBC), 2016 IEEE 38th annual international conference of the: IEEE). 2016. p. 1599–1602. Ly QT, Handojoseno AA, Gilat M, Nguyen N, Chai R, Tran Y, et al. (Year). Detection of gait initiation failure in Parkinson's disease patients using EEG signals, in: Engineering in medicine and biology society (EMBC), 2016 IEEE 38th annual international conference of the: IEEE). 2016. p. 1599–1602.
16.
go back to reference Baehr M, Frotscher M. Duus’ topical diagnosis in neurology. 5th ed. Stuttgart: Thieme; 1998. Baehr M, Frotscher M. Duus’ topical diagnosis in neurology. 5th ed. Stuttgart: Thieme; 1998.
18.
go back to reference Latt MD, Menz HB, Fung VS, Lord SR. Acceleration patterns of the head and pelvis during gait in older people with Parkinson's disease: a comparison of fallers and non-fallers. J Gerontol A Biol Sci Med Sci. 2009;64(6):700–706.CrossRefPubMed Latt MD, Menz HB, Fung VS, Lord SR. Acceleration patterns of the head and pelvis during gait in older people with Parkinson's disease: a comparison of fallers and non-fallers. J Gerontol A Biol Sci Med Sci. 2009;64(6):700–706.CrossRefPubMed
19.
go back to reference Galna B, Murphy AT, Morris ME. Obstacle crossing in Parkinson's disease: mediolateral sway of the centre of mass during level-ground walking and obstacle crossing. Gait Posture. 2013;38(4):790–4.CrossRefPubMed Galna B, Murphy AT, Morris ME. Obstacle crossing in Parkinson's disease: mediolateral sway of the centre of mass during level-ground walking and obstacle crossing. Gait Posture. 2013;38(4):790–4.CrossRefPubMed
20.
go back to reference Mancini M, Chiari L, Holmstrom L, Salarian A, Horak FB. Validity and reliability of an IMU-based method to detect APAs prior to gait initiation. Gait Posture. 2016;43:125–31.CrossRefPubMed Mancini M, Chiari L, Holmstrom L, Salarian A, Horak FB. Validity and reliability of an IMU-based method to detect APAs prior to gait initiation. Gait Posture. 2016;43:125–31.CrossRefPubMed
21.
go back to reference Menz HB, Lord SR, Fitzpatrick RC. Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait Posture. 2003;18(1):35–46.CrossRefPubMed Menz HB, Lord SR, Fitzpatrick RC. Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait Posture. 2003;18(1):35–46.CrossRefPubMed
22.
go back to reference Iosa M, Fusco A, Morone G, Paolucci S. Development and decline of upright gait stability. Front Ageing Neurosci. 2014;10:14. Iosa M, Fusco A, Morone G, Paolucci S. Development and decline of upright gait stability. Front Ageing Neurosci. 2014;10:14.
23.
go back to reference Menz HB, Lord SR, Fitzpatrick RC. Age-related differences in walking stability. Age Ageing. 2003;32(2):137–42.CrossRefPubMed Menz HB, Lord SR, Fitzpatrick RC. Age-related differences in walking stability. Age Ageing. 2003;32(2):137–42.CrossRefPubMed
24.
go back to reference Kavanagh JJ, Menz HB. Accelerometry: a technique for quantifying movement patterns during walking. Gait Posture. 2008;28(1):1–15.CrossRefPubMed Kavanagh JJ, Menz HB. Accelerometry: a technique for quantifying movement patterns during walking. Gait Posture. 2008;28(1):1–15.CrossRefPubMed
25.
go back to reference Terrier P, Reynard F. Effect of age on the variability and stability of gait: a cross-sectional treadmill study in healthy individuals between 20 and 69 years of age. Gait Posture. 2015;41(1):170–4.CrossRefPubMed Terrier P, Reynard F. Effect of age on the variability and stability of gait: a cross-sectional treadmill study in healthy individuals between 20 and 69 years of age. Gait Posture. 2015;41(1):170–4.CrossRefPubMed
26.
go back to reference Sekine M, Tamura T, Yoshida M, Suda Y, Kimura Y, Miyoshi H, et al. A gait abnormality measure based on root mean square of trunk acceleration. J Neuroeng Rehabil. 2013;10(1):118.CrossRefPubMedPubMedCentral Sekine M, Tamura T, Yoshida M, Suda Y, Kimura Y, Miyoshi H, et al. A gait abnormality measure based on root mean square of trunk acceleration. J Neuroeng Rehabil. 2013;10(1):118.CrossRefPubMedPubMedCentral
27.
go back to reference Sekine M, Tamura T, Yoshida M, Uchiyama T, Center C. Application of root mean square ratio of trunk acceleration for evaluation of Parkinson's disease. BSN 2014. Sekine M, Tamura T, Yoshida M, Uchiyama T, Center C. Application of root mean square ratio of trunk acceleration for evaluation of Parkinson's disease. BSN 2014.
28.
29.
go back to reference Yang M, Zheng H, Wang H, McClean S, Newell D. iGAIT: an interactive accelerometer based gait analysis system. Comput Methods Prog Biomed. 2012;108(2):715–23.CrossRef Yang M, Zheng H, Wang H, McClean S, Newell D. iGAIT: an interactive accelerometer based gait analysis system. Comput Methods Prog Biomed. 2012;108(2):715–23.CrossRef
30.
go back to reference Sejdic E, Lowry KA, Bellanca J, Redfern MS, Brach JS. A comprehensive assessment of gait accelerometry signals in time, frequency and time-frequency domains. IEEE Trans Neural Syst Rehabil Eng. 2014;22(3):603–12.CrossRefPubMed Sejdic E, Lowry KA, Bellanca J, Redfern MS, Brach JS. A comprehensive assessment of gait accelerometry signals in time, frequency and time-frequency domains. IEEE Trans Neural Syst Rehabil Eng. 2014;22(3):603–12.CrossRefPubMed
31.
go back to reference Van Criekinge T, Saeys W, Hallemans A, Velghe S, Viskens P-J, Vereeck L, et al. Trunk biomechanics during hemiplegic gait after stroke: a systematic review. Gait Posture. 2017;54:133–43.CrossRefPubMed Van Criekinge T, Saeys W, Hallemans A, Velghe S, Viskens P-J, Vereeck L, et al. Trunk biomechanics during hemiplegic gait after stroke: a systematic review. Gait Posture. 2017;54:133–43.CrossRefPubMed
32.
go back to reference Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.CrossRefPubMed Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.CrossRefPubMed
33.
go back to reference Cardoso J-F. Infomax and maximum likelihood for blind source separation. IEEE Signal Process Lett. 1997;4(4):112–4.CrossRef Cardoso J-F. Infomax and maximum likelihood for blind source separation. IEEE Signal Process Lett. 1997;4(4):112–4.CrossRef
34.
go back to reference Delorme A, Sejnowski T, Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage. 2007;34(4):1443–9.CrossRefPubMed Delorme A, Sejnowski T, Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage. 2007;34(4):1443–9.CrossRefPubMed
35.
go back to reference Perrin F, Pernier J, Bertrand O, Echallier J. Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol. 1989;72(2):184–7.CrossRefPubMed Perrin F, Pernier J, Bertrand O, Echallier J. Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol. 1989;72(2):184–7.CrossRefPubMed
36.
go back to reference Ferree TC. Spline interpolation of the scalp EEG. Secondary TitlEGI. 2000. Ferree TC. Spline interpolation of the scalp EEG. Secondary TitlEGI. 2000.
37.
go back to reference Lin M-IB, Lin K-H. Walking while performing working memory tasks changes the prefrontal cortex hemodynamic activations and gait kinematics. Front Behav Neurosci. 2016;10:92.PubMedPubMedCentral Lin M-IB, Lin K-H. Walking while performing working memory tasks changes the prefrontal cortex hemodynamic activations and gait kinematics. Front Behav Neurosci. 2016;10:92.PubMedPubMedCentral
38.
go back to reference Maidan I, Bernad-Elazari H, Giladi N, Hausdorff JM, Mirelman A. When is higher level cognitive control needed for locomotor tasks among patients with Parkinson’s disease? Brain Topogr. 2017;30(4):1–8.CrossRef Maidan I, Bernad-Elazari H, Giladi N, Hausdorff JM, Mirelman A. When is higher level cognitive control needed for locomotor tasks among patients with Parkinson’s disease? Brain Topogr. 2017;30(4):1–8.CrossRef
40.
go back to reference Nieuwhof F, Bloem BR, Reelick MF, Aarts E, Maidan I, Mirelman A, et al. Impaired dual tasking in Parkinson’s disease is associated with reduced focusing of cortico-striatal activity. Brain. 2017;140(5):1384–98.CrossRefPubMed Nieuwhof F, Bloem BR, Reelick MF, Aarts E, Maidan I, Mirelman A, et al. Impaired dual tasking in Parkinson’s disease is associated with reduced focusing of cortico-striatal activity. Brain. 2017;140(5):1384–98.CrossRefPubMed
41.
go back to reference Holtzer R, Mahoney JR, Izzetoglu M, Wang C, England S, Verghese J. Online fronto-cortical control of simple and attention-demanding locomotion in humans. NeuroImage. 2015;112:152–9.CrossRefPubMedPubMedCentral Holtzer R, Mahoney JR, Izzetoglu M, Wang C, England S, Verghese J. Online fronto-cortical control of simple and attention-demanding locomotion in humans. NeuroImage. 2015;112:152–9.CrossRefPubMedPubMedCentral
42.
go back to reference Holtzer R, Verghese J, Allali G, Izzetoglu M, Wang C, Mahoney JR. Neurological gait abnormalities moderate the functional brain signature of the posture first hypothesis. Brain Topogr. 2016;29(2):334–43.CrossRefPubMed Holtzer R, Verghese J, Allali G, Izzetoglu M, Wang C, Mahoney JR. Neurological gait abnormalities moderate the functional brain signature of the posture first hypothesis. Brain Topogr. 2016;29(2):334–43.CrossRefPubMed
43.
go back to reference Hernandez ME, Holtzer R, Chaparro G, Jean K, Balto JM, Sandroff BM, et al. Brain activation changes during locomotion in middle-aged to older adults with multiple sclerosis. J Neurol Sci. 2016;370:277–83.CrossRefPubMed Hernandez ME, Holtzer R, Chaparro G, Jean K, Balto JM, Sandroff BM, et al. Brain activation changes during locomotion in middle-aged to older adults with multiple sclerosis. J Neurol Sci. 2016;370:277–83.CrossRefPubMed
44.
go back to reference Calton JL, Taube JS. Where am I and how will I get there from here? A role for posterior parietal cortex in the integration of spatial information and route planning. Neurobiol Learn Mem. 2009;91(2):186–96.CrossRefPubMed Calton JL, Taube JS. Where am I and how will I get there from here? A role for posterior parietal cortex in the integration of spatial information and route planning. Neurobiol Learn Mem. 2009;91(2):186–96.CrossRefPubMed
45.
go back to reference Buneo CA, Andersen RA. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia. 2006;44(13):2594–606.CrossRefPubMed Buneo CA, Andersen RA. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia. 2006;44(13):2594–606.CrossRefPubMed
46.
go back to reference Beloozerova IN, Sirota MG. Integration of motor and visual information in the parietal area 5 during locomotion. J Neurophysiol. 2003;90(2):961–71.CrossRefPubMed Beloozerova IN, Sirota MG. Integration of motor and visual information in the parietal area 5 during locomotion. J Neurophysiol. 2003;90(2):961–71.CrossRefPubMed
47.
go back to reference Lajoie K, Andujar J-E, Pearson K, Drew T. Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory. J Neurophysiol. 2010;103(4):2234–54.CrossRefPubMed Lajoie K, Andujar J-E, Pearson K, Drew T. Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory. J Neurophysiol. 2010;103(4):2234–54.CrossRefPubMed
48.
go back to reference Lee M-S, Kim H-S, Lyoo C-H. “Off” gait freezing and temporal discrimination threshold in patients with Parkinson disease. Neurology. 2005;64(4):670–4.CrossRefPubMed Lee M-S, Kim H-S, Lyoo C-H. “Off” gait freezing and temporal discrimination threshold in patients with Parkinson disease. Neurology. 2005;64(4):670–4.CrossRefPubMed
49.
go back to reference Bálint R. Seelenlahmungs des' Schauens', optische Ataxie, raumliche Storung der Aufmerksamkeit. Monatsschr Psychiat Neurol. 1909;25:51–81.CrossRef Bálint R. Seelenlahmungs des' Schauens', optische Ataxie, raumliche Storung der Aufmerksamkeit. Monatsschr Psychiat Neurol. 1909;25:51–81.CrossRef
50.
go back to reference Yordanova J, Kolev V, Verleger R, Heide W, Grumbt M, Schürmann M. Synchronization of fronto-parietal beta and theta networks as a signature of visual awareness in neglect. NeuroImage. 2017;146:341–54.CrossRefPubMed Yordanova J, Kolev V, Verleger R, Heide W, Grumbt M, Schürmann M. Synchronization of fronto-parietal beta and theta networks as a signature of visual awareness in neglect. NeuroImage. 2017;146:341–54.CrossRefPubMed
51.
go back to reference Tang X, Wu J, Shen Y. The interactions of multisensory integration with endogenous and exogenous attention. Neurosci Biobehav Rev. 2016;61:208–24.CrossRefPubMed Tang X, Wu J, Shen Y. The interactions of multisensory integration with endogenous and exogenous attention. Neurosci Biobehav Rev. 2016;61:208–24.CrossRefPubMed
52.
go back to reference Lenka A, Naduthota RM, Jha M, Panda R, Prajapati A, Jhunjhunwala K, et al. Freezing of gait in Parkinson's disease is associated with altered functional brain connectivity. Parkinsonism Relat Disord. 2016;24:100–6.CrossRefPubMed Lenka A, Naduthota RM, Jha M, Panda R, Prajapati A, Jhunjhunwala K, et al. Freezing of gait in Parkinson's disease is associated with altered functional brain connectivity. Parkinsonism Relat Disord. 2016;24:100–6.CrossRefPubMed
53.
go back to reference Caplan JB, Madsen JR, Schulze-Bonhage A, Aschenbrenner-Scheibe R, Newman EL, Kahana MJ. Human θ oscillations related to sensorimotor integration and spatial learning. J Neurosci. 2003;23(11):4726–36.PubMed Caplan JB, Madsen JR, Schulze-Bonhage A, Aschenbrenner-Scheibe R, Newman EL, Kahana MJ. Human θ oscillations related to sensorimotor integration and spatial learning. J Neurosci. 2003;23(11):4726–36.PubMed
54.
go back to reference Ekstrom AD, Caplan JB, Ho E, Shattuck K, Fried I, Kahana MJ. Human hippocampal theta activity during virtual navigation. Hippocampus. 2005;15(7):881–9.CrossRefPubMed Ekstrom AD, Caplan JB, Ho E, Shattuck K, Fried I, Kahana MJ. Human hippocampal theta activity during virtual navigation. Hippocampus. 2005;15(7):881–9.CrossRefPubMed
55.
go back to reference Chiu TC, Gramann K, Ko LW, Duann JR, Jung TP, Lin CT. Alpha modulation in parietal and retrosplenial cortex correlates with navigation performance. Psychophysiology. 2012;49(1):43–55.CrossRefPubMed Chiu TC, Gramann K, Ko LW, Duann JR, Jung TP, Lin CT. Alpha modulation in parietal and retrosplenial cortex correlates with navigation performance. Psychophysiology. 2012;49(1):43–55.CrossRefPubMed
56.
go back to reference Bohbot VD, Copara MS, Gotman J, Ekstrom AD. Low-frequency theta oscillations in the human hippocampus during real-world and virtual navigation. Nat Commun. 2017;8:14415.CrossRefPubMedPubMedCentral Bohbot VD, Copara MS, Gotman J, Ekstrom AD. Low-frequency theta oscillations in the human hippocampus during real-world and virtual navigation. Nat Commun. 2017;8:14415.CrossRefPubMedPubMedCentral
57.
go back to reference Giraud A-L, Kleinschmidt A, Poeppel D, Lund TE, Frackowiak RS, Laufs H. Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron. 2007;56(6):1127–34.CrossRefPubMed Giraud A-L, Kleinschmidt A, Poeppel D, Lund TE, Frackowiak RS, Laufs H. Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron. 2007;56(6):1127–34.CrossRefPubMed
58.
go back to reference Simons JS, Spiers HJ. Prefrontal and medial temporal lobe interactions in long-term memory. Nat Rev Neurosci. 2003;4(8):637–48.CrossRefPubMed Simons JS, Spiers HJ. Prefrontal and medial temporal lobe interactions in long-term memory. Nat Rev Neurosci. 2003;4(8):637–48.CrossRefPubMed
59.
go back to reference Lin C-T, Chiu T-C, Gramann K. EEG correlates of spatial orientation in the human retrosplenial complex. NeuroImage. 2015;120:123–32.CrossRefPubMed Lin C-T, Chiu T-C, Gramann K. EEG correlates of spatial orientation in the human retrosplenial complex. NeuroImage. 2015;120:123–32.CrossRefPubMed
60.
go back to reference Engel AK, Fries P. Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol. 2010;20(2):156–65.CrossRefPubMed Engel AK, Fries P. Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol. 2010;20(2):156–65.CrossRefPubMed
61.
go back to reference Prakash KG, Bannur BM, Chavan MD, Saniya K, Sailesh KS, Rajagopalan A. Neuroanatomical changes in Parkinson's disease in relation to cognition: an update. J Adv Pharm Technol Res. 2016;7(4):123.CrossRefPubMedPubMedCentral Prakash KG, Bannur BM, Chavan MD, Saniya K, Sailesh KS, Rajagopalan A. Neuroanatomical changes in Parkinson's disease in relation to cognition: an update. J Adv Pharm Technol Res. 2016;7(4):123.CrossRefPubMedPubMedCentral
62.
go back to reference Nakanishi Y, Wada F, Saeki S, Hachisuka K. Rapid changes in arousal states of healthy volunteers during robot-assisted gait training: a quantitative time-series electroencephalography study. J Neuroeng Rehabil. 2014;11(1):59.CrossRefPubMedPubMedCentral Nakanishi Y, Wada F, Saeki S, Hachisuka K. Rapid changes in arousal states of healthy volunteers during robot-assisted gait training: a quantitative time-series electroencephalography study. J Neuroeng Rehabil. 2014;11(1):59.CrossRefPubMedPubMedCentral
63.
go back to reference Calabrò RS, Naro A, Russo M, Leo A, De Luca R, Balletta T, Buda A, La Rosa G, Bramanti A, Bramanti P. The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. J Neuroeng Rehabil. 2017;14(1):53.CrossRefPubMedPubMedCentral Calabrò RS, Naro A, Russo M, Leo A, De Luca R, Balletta T, Buda A, La Rosa G, Bramanti A, Bramanti P. The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. J Neuroeng Rehabil. 2017;14(1):53.CrossRefPubMedPubMedCentral
Metadata
Title
Neural predictors of gait stability when walking freely in the real-world
Authors
Sara Pizzamiglio
Hassan Abdalla
Usman Naeem
Duncan L. Turner
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2018
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0357-z

Other articles of this Issue 1/2018

Journal of NeuroEngineering and Rehabilitation 1/2018 Go to the issue