Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2018

Open Access 01-12-2018 | Research

Assisting hand function after spinal cord injury with a fabric-based soft robotic glove

Authors: Leonardo Cappello, Jan T. Meyer, Kevin C. Galloway, Jeffrey D. Peisner, Rachael Granberry, Diana A. Wagner, Sven Engelhardt, Sabrina Paganoni, Conor J. Walsh

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Background

Spinal cord injury is a devastating condition that can dramatically impact hand motor function. Passive and active assistive devices are becoming more commonly used to enhance lost hand strength and dexterity. Soft robotics is an emerging discipline that combines the classical principles of robotics with soft materials and could provide a new class of active assistive devices. Soft robotic assistive devices enable a human-robot interaction facilitated by compliant and light-weight structures. The scope of this work was to demonstrate that a fabric-based soft robotic glove can effectively assist participants affected by spinal cord injury in manipulating objects encountered in daily living.

Methods

The Toronto Rehabilitation Institute Hand Function Test was administered to 9 participants with C4-C7 spinal cord injuries to assess the functionality of the soft robotic glove. The test included object manipulation tasks commonly encountered during activities of daily living (ADL) and lift force measurements. The test was administered to each participant twice; once without the assistive glove to provide baseline data and once while wearing the assistive glove. The object manipulation subtests were evaluated using a linear mixed model, including interaction effects of variables such as time since injury. The lift force measures were separately evaluated using the Wilcoxon signed-rank test.

Results

The soft robotic glove improved object manipulation in ADL tasks. The difference in mean scores between baseline and assisted conditions was significant across all participants and for all manipulated objects. An improvement of 33.42 ± 15.43% relative to the maximal test score indicates that the glove sufficiently enhances hand function during ADL tasks. Moreover, lift force also increased when using the assistive soft robotic glove, further demonstrating the effectiveness of the device in assisting hand function.

Conclusions

The results gathered in this study validate our fabric-based soft robotic glove as an effective device to assist hand function in individuals who have suffered upper limb paralysis following a spinal cord injury.
Appendix
Available only for authorised users
Literature
1.
go back to reference National Spinal Cord Injury Statistical Center. Spinal cord injury. Facts and figures at a glance. J Spinal Cord Med. 2016;28:379–80. National Spinal Cord Injury Statistical Center. Spinal cord injury. Facts and figures at a glance. J Spinal Cord Med. 2016;28:379–80.
2.
go back to reference Richards C, Mackenzie N, Roberts S, Escorpizo R. People with Spinal Cord Injury in the United States. Am J Phys Med Rehabil. 2017;96:124–6.CrossRef Richards C, Mackenzie N, Roberts S, Escorpizo R. People with Spinal Cord Injury in the United States. Am J Phys Med Rehabil. 2017;96:124–6.CrossRef
3.
go back to reference Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004;21:1371–83.CrossRefPubMed Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004;21:1371–83.CrossRefPubMed
4.
go back to reference Hachem LD, Ahuja CS, Fehlings MG. Assessment and management of acute spinal cord injury: from point of injury to rehabilitation. J Spinal Cord Med. 2017;40:1–11.CrossRef Hachem LD, Ahuja CS, Fehlings MG. Assessment and management of acute spinal cord injury: from point of injury to rehabilitation. J Spinal Cord Med. 2017;40:1–11.CrossRef
5.
go back to reference Johanson ME, Murray WM. The unoperated hand: the role of passive forces in hand function after tetraplegia. Hand Clin. 2002;18:391–8.CrossRefPubMed Johanson ME, Murray WM. The unoperated hand: the role of passive forces in hand function after tetraplegia. Hand Clin. 2002;18:391–8.CrossRefPubMed
8.
go back to reference Schabowsky CN, Godfrey SB, Holley RJ, Lum PS. Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot. J Neuroeng Rehabil. 2010;7:36.CrossRefPubMedPubMedCentral Schabowsky CN, Godfrey SB, Holley RJ, Lum PS. Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot. J Neuroeng Rehabil. 2010;7:36.CrossRefPubMedPubMedCentral
10.
go back to reference Polotto A, Modulo F, Flumian F, Xiao ZG, Boscariol P, Menon C. Index finger rehabilitation/assistive device. Proc - IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2012. p. 1518–23. Polotto A, Modulo F, Flumian F, Xiao ZG, Boscariol P, Menon C. Index finger rehabilitation/assistive device. Proc - IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2012. p. 1518–23.
12.
go back to reference Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11:3.CrossRefPubMedPubMedCentral Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11:3.CrossRefPubMedPubMedCentral
13.
go back to reference Chiri A, Vitiello N, Giovacchini F, Roccella S, Vecchi F, Carrozza MC. Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE/ASME Trans Mechatronics. 2012;17:884–94.CrossRef Chiri A, Vitiello N, Giovacchini F, Roccella S, Vecchi F, Carrozza MC. Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE/ASME Trans Mechatronics. 2012;17:884–94.CrossRef
14.
go back to reference Jones CL, Wang F, Morrison R, Sarkar N, Kamper DG. Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke. IEEE/ASME Trans Mechatronics. 2014;19:131–40.CrossRef Jones CL, Wang F, Morrison R, Sarkar N, Kamper DG. Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke. IEEE/ASME Trans Mechatronics. 2014;19:131–40.CrossRef
15.
go back to reference Mao Y, Agrawal SK. Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation. Trans Robot. 2012;28:922–31. Mao Y, Agrawal SK. Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation. Trans Robot. 2012;28:922–31.
16.
go back to reference Soekadar SR, Witkowski M, Gómez C, Opisso E, Medina J, Cortese M, Cempini M, Carrozza MC, Cohen LG, Birbaumer N, Vitiello N. Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Sci Robot. 2016;1:eaag3296. https://doi.org/10.1126/scirobotics.aag3296. Soekadar SR, Witkowski M, Gómez C, Opisso E, Medina J, Cortese M, Cempini M, Carrozza MC, Cohen LG, Birbaumer N, Vitiello N. Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Sci Robot. 2016;1:eaag3296. https://​doi.​org/​10.​1126/​scirobotics.​aag3296.
17.
go back to reference Yun Y, Dancausse S, Esmatloo P, Serrato A, Merring CA, Agarwal P, Deshpande AD. Maestro: an EMG-driven assistive hand exoskeleton for spinal cord injury patients. Proc - IEEE Int Conf Robot Autom. 2017:2904–10. Yun Y, Dancausse S, Esmatloo P, Serrato A, Merring CA, Agarwal P, Deshpande AD. Maestro: an EMG-driven assistive hand exoskeleton for spinal cord injury patients. Proc - IEEE Int Conf Robot Autom. 2017:2904–10.
18.
go back to reference Kang BB, Lee H, In H, Jeong U, Chung J, Cho KJ. Development of a polymer-based tendon-driven wearable robotic hand. Proc - IEEE Int Conf Robot and Autom. 2016. p. 3750–5. Kang BB, Lee H, In H, Jeong U, Chung J, Cho KJ. Development of a polymer-based tendon-driven wearable robotic hand. Proc - IEEE Int Conf Robot and Autom. 2016. p. 3750–5.
19.
go back to reference Galiana I, Hammond FL, Howe RD, Popovic MB. Wearable soft robotic device for post-stroke shoulder rehabilitation: identifying misalignments. Proc - IEEE/RSJ Int Conf Int Robot Syst (IROS). 2012. p. 317–22. Galiana I, Hammond FL, Howe RD, Popovic MB. Wearable soft robotic device for post-stroke shoulder rehabilitation: identifying misalignments. Proc - IEEE/RSJ Int Conf Int Robot Syst (IROS). 2012. p. 317–22.
20.
go back to reference Xiloyannis M, Cappello L, Dinh BK, Antuvan CW, Masia L. Design and preliminary testing of a soft exosuit for assisting elbow movements and hand grasping. Biosystems and biorobotics; 2017. p. 557–61. Xiloyannis M, Cappello L, Dinh BK, Antuvan CW, Masia L. Design and preliminary testing of a soft exosuit for assisting elbow movements and hand grasping. Biosystems and biorobotics; 2017. p. 557–61.
21.
go back to reference Cappello L, Binh DK, Yen SC, Masia L. Design and preliminary characterization of a soft wearable exoskeleton for upper limb. Proc - IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2016. p. 623–30. Cappello L, Binh DK, Yen SC, Masia L. Design and preliminary characterization of a soft wearable exoskeleton for upper limb. Proc - IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2016. p. 623–30.
22.
go back to reference Gaponov I, Popov D, Lee SJ, Ryu J. Auxilio : a portable cable-driven exosuit for upper extremity assistance. Int J Control Autom Syst. 2016;15:73–84.CrossRef Gaponov I, Popov D, Lee SJ, Ryu J. Auxilio : a portable cable-driven exosuit for upper extremity assistance. Int J Control Autom Syst. 2016;15:73–84.CrossRef
23.
go back to reference Radder B, Prange-Lasonder GB, AIR K, Gaasbeek L, Holmberg J, Meyer T, Buurke JH, Rietman JS. Preliminary findings of feasibility of a wearable soft-robotic glove supporting impaired hand function in daily life a soft-robotic glove supporting ADL of elderly people. Proc Int Conf Inf Commun Technol Ageing Well E-Health. 2016;Ict4awe:180–5. Radder B, Prange-Lasonder GB, AIR K, Gaasbeek L, Holmberg J, Meyer T, Buurke JH, Rietman JS. Preliminary findings of feasibility of a wearable soft-robotic glove supporting impaired hand function in daily life a soft-robotic glove supporting ADL of elderly people. Proc Int Conf Inf Commun Technol Ageing Well E-Health. 2016;Ict4awe:180–5.
24.
go back to reference Nilsson M, Ingvast J, Wikander J, Von Holst H. The Soft Extra Muscle system for improving the grasping capability in neurological rehabilitation. Proc - IEEE EMBS Conf Biomed Eng Sci (IECBES). 2012; December:412–417. Nilsson M, Ingvast J, Wikander J, Von Holst H. The Soft Extra Muscle system for improving the grasping capability in neurological rehabilitation. Proc - IEEE EMBS Conf Biomed Eng Sci (IECBES). 2012; December:412–417.
25.
go back to reference Polygerinos P, Galloway KC, Sanan S, Herman M, Walsh CJ. EMG controlled soft robotic glove for assistance during activities of daily living. Proc - IEEE Int Conf Rehab Robot (ICORR). 2015. p. 55–60. Polygerinos P, Galloway KC, Sanan S, Herman M, Walsh CJ. EMG controlled soft robotic glove for assistance during activities of daily living. Proc - IEEE Int Conf Rehab Robot (ICORR). 2015. p. 55–60.
27.
go back to reference Polygerinos P, Galloway KC, Savage E, Herman M, O’Donnell K, Walsh CJ. Soft robotic glove for hand rehabilitation and task specific training. Proc - IEEE Int Conf Robot Autom 2015; June:2913–2919. Polygerinos P, Galloway KC, Savage E, Herman M, O’Donnell K, Walsh CJ. Soft robotic glove for hand rehabilitation and task specific training. Proc - IEEE Int Conf Robot Autom 2015; June:2913–2919.
28.
go back to reference Zhao H, Jalving J, Huang R, Knepper R, Ruina A, Shepherd R. A helping hand: soft orthosis with integrated optical strain sensors and EMG control. IEEE Robot Autom Mag. 2016;23:55–64.CrossRef Zhao H, Jalving J, Huang R, Knepper R, Ruina A, Shepherd R. A helping hand: soft orthosis with integrated optical strain sensors and EMG control. IEEE Robot Autom Mag. 2016;23:55–64.CrossRef
29.
go back to reference Connelly L, Jia Y, Toro ML, Stoykov ME, Kenyon RV, Kamper DG. A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke. IEEE Trans Neural Syst Rehabil Eng. 2010;18:551–9.CrossRefPubMed Connelly L, Jia Y, Toro ML, Stoykov ME, Kenyon RV, Kamper DG. A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke. IEEE Trans Neural Syst Rehabil Eng. 2010;18:551–9.CrossRefPubMed
31.
go back to reference Vargas PA, Brasil FL, McConnell AC, Vallejo M, Corne DW, Stokes AA, Moioli RC. Combining soft robotics and brain-machine interfaces for stroke rehabilitation. In: Ibáñez J., González-Vargas J., Azorín J., Akay M., Pons J. (eds) Converging Clinical and Engineering Research on Neurorehabilitation II. Biosystems & Biorobotics. Springer, Cham. 2017;15:1257-1262. https://doi.org/10.1007/978-3-319-46669-9_205. Vargas PA, Brasil FL, McConnell AC, Vallejo M, Corne DW, Stokes AA, Moioli RC. Combining soft robotics and brain-machine interfaces for stroke rehabilitation. In: Ibáñez J., González-Vargas J., Azorín J., Akay M., Pons J. (eds) Converging Clinical and Engineering Research on Neurorehabilitation II. Biosystems & Biorobotics. Springer, Cham. 2017;15:1257-1262. https://​doi.​org/​10.​1007/​978-3-319-46669-9_​205.
34.
go back to reference Yap HK, Lim JH, Nasrallah F, Yeow C, Winslow B. Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors. Front Neurosci. 2017;11 October:1–14. Yap HK, Lim JH, Nasrallah F, Yeow C, Winslow B. Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors. Front Neurosci. 2017;11 October:1–14.
37.
go back to reference Kapadia N, Zivanovic V, Verrier M, Popovic M. Toronto Rehabilitation Institute–hand function test: assessment of gross motor function in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil. 2012;18:167–86.CrossRefPubMed Kapadia N, Zivanovic V, Verrier M, Popovic M. Toronto Rehabilitation Institute–hand function test: assessment of gross motor function in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil. 2012;18:167–86.CrossRefPubMed
38.
go back to reference Marquez-Chin C, Marquis A, Popovic MR. BCI-triggered functional electrical stimulation therapy for upper limb. Eur J Transl Myol. 2016;26:274–7.CrossRef Marquez-Chin C, Marquis A, Popovic MR. BCI-triggered functional electrical stimulation therapy for upper limb. Eur J Transl Myol. 2016;26:274–7.CrossRef
39.
go back to reference Matheus K, Dollar AM. Benchmarking grasping and manipulation: properties of the objects of daily living. Proc - IEEE/RSJ 2010 Int Conf Int Robot Syst (IROS). 2010. p. 5020–7. Matheus K, Dollar AM. Benchmarking grasping and manipulation: properties of the objects of daily living. Proc - IEEE/RSJ 2010 Int Conf Int Robot Syst (IROS). 2010. p. 5020–7.
Metadata
Title
Assisting hand function after spinal cord injury with a fabric-based soft robotic glove
Authors
Leonardo Cappello
Jan T. Meyer
Kevin C. Galloway
Jeffrey D. Peisner
Rachael Granberry
Diana A. Wagner
Sven Engelhardt
Sabrina Paganoni
Conor J. Walsh
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2018
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0391-x

Other articles of this Issue 1/2018

Journal of NeuroEngineering and Rehabilitation 1/2018 Go to the issue