Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2018

Open Access 01-12-2018 | Research

Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control

Authors: Jeffrey R. Koller, C. David Remy, Daniel P. Ferris

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Background

Controllers for assistive robotic devices can be divided into two main categories: controllers using neural signals and controllers using mechanically intrinsic signals. Both approaches are prevalent in research devices, but a direct comparison between the two could provide insight into their relative advantages and disadvantages. We studied subjects walking with robotic ankle exoskeletons using two different control modes: dynamic gain proportional myoelectric control based on soleus muscle activity (neural signal), and timing-based mechanically intrinsic control based on gait events (mechanically intrinsic signal). We hypothesized that subjects would have different measures of metabolic work rate between the two controllers as we predicted subjects would use each controller in a unique manner due to one being dependent on muscle recruitment and the other not.

Methods

The two controllers had the same average actuation signal as we used the control signals from walking with the myoelectric controller to shape the mechanically intrinsic control signal. The difference being the myoelectric controller allowed step-to-step variation in the actuation signals controlled by the user’s soleus muscle recruitment while the timing-based controller had the same actuation signal with each step regardless of muscle recruitment.

Results

We observed no statistically significant difference in metabolic work rate between the two controllers. Subjects walked with 11% less soleus activity during mid and late stance and significantly less peak soleus recruitment when using the timing-based controller than when using the myoelectric controller. While walking with the myoelectric controller, subjects walked with significantly higher average positive and negative total ankle power compared to walking with the timing-based controller.

Conclusions

We interpret the reduced ankle power and muscle activity with the timing-based controller relative to the myoelectric controller to result from greater slacking effects. Subjects were able to be less engaged on a muscle level when using a controller driven by mechanically intrinsic signals than when using a controller driven by neural signals, but this had no affect on their metabolic work rate. These results suggest that the type of controller (neural vs. mechanical) is likely to affect how individuals use robotic exoskeletons for therapeutic rehabilitation or human performance augmentation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Malcolm P, Derave W, Galle S, De Clercq D. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PloS ONE. 2013; 8:56137.CrossRef Malcolm P, Derave W, Galle S, De Clercq D. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PloS ONE. 2013; 8:56137.CrossRef
2.
go back to reference Mooney LM, Rouse EJ, Herr HM. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. J Neuroeng Rehabil. 2014; 11:0003–11.CrossRef Mooney LM, Rouse EJ, Herr HM. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. J Neuroeng Rehabil. 2014; 11:0003–11.CrossRef
3.
go back to reference Jackson RW, Collins SH. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. J Appl Physiol. 2015; 119(5):541–57.CrossRefPubMed Jackson RW, Collins SH. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. J Appl Physiol. 2015; 119(5):541–57.CrossRefPubMed
4.
go back to reference Quinlivan B, Lee S, Malcolm P, Rossi D, Grimmer M, Siviy C, Karavas N, Wagner D, Asbeck A, Galiana I, et al. Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit. Sci Robot. 2017; 2(2):4416.CrossRef Quinlivan B, Lee S, Malcolm P, Rossi D, Grimmer M, Siviy C, Karavas N, Wagner D, Asbeck A, Galiana I, et al. Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit. Sci Robot. 2017; 2(2):4416.CrossRef
5.
go back to reference Zhang J, Fiers P, Witte KA, Jackson RW, Poggensee KL, Atkeson CG, Collins SH. Human-in-the-loop optimization of exoskeleton assistance during walking. Science. 2017; 356(6344):1280–4.CrossRefPubMed Zhang J, Fiers P, Witte KA, Jackson RW, Poggensee KL, Atkeson CG, Collins SH. Human-in-the-loop optimization of exoskeleton assistance during walking. Science. 2017; 356(6344):1280–4.CrossRefPubMed
6.
go back to reference Kilicarslan A, Prasad S, Grossman RG, Contreras-Vidal JL. High accuracy decoding of user intentions using eeg to control a lower-body exoskeleton. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka: IEEE: 2013. p. 5606–9. Kilicarslan A, Prasad S, Grossman RG, Contreras-Vidal JL. High accuracy decoding of user intentions using eeg to control a lower-body exoskeleton. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka: IEEE: 2013. p. 5606–9.
7.
go back to reference Hogan N. A review of the methods of processing emg for use as a proportional control signal. Biomed Eng. 1976; 11:81–6.PubMed Hogan N. A review of the methods of processing emg for use as a proportional control signal. Biomed Eng. 1976; 11:81–6.PubMed
8.
go back to reference Sawicki GS, Ferris DP. Mechanics and energetics of level walking with powered ankle exoskeletons. J Exp Biol. 2008; 211:1402–13.CrossRefPubMed Sawicki GS, Ferris DP. Mechanics and energetics of level walking with powered ankle exoskeletons. J Exp Biol. 2008; 211:1402–13.CrossRefPubMed
9.
go back to reference Li D, Becker A, Shorter KA, Bretl T, Hsiao-Wecksler E. Estimating system state during human walking with a powered ankle-foot orthosis. Mechatron IEEE/ASME Trans. 2011; 16:835–44.CrossRef Li D, Becker A, Shorter KA, Bretl T, Hsiao-Wecksler E. Estimating system state during human walking with a powered ankle-foot orthosis. Mechatron IEEE/ASME Trans. 2011; 16:835–44.CrossRef
10.
go back to reference Jimenez-Fabian R, Verlinden O. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys. 2012; 34:397–408.CrossRefPubMed Jimenez-Fabian R, Verlinden O. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys. 2012; 34:397–408.CrossRefPubMed
11.
go back to reference Asbeck AT, De Rossi SM, Holt KG, Walsh CJ. A biologically inspired soft exosuit for walking assistance. Int J Robot Res. 2015; 34(6):744–62.CrossRef Asbeck AT, De Rossi SM, Holt KG, Walsh CJ. A biologically inspired soft exosuit for walking assistance. Int J Robot Res. 2015; 34(6):744–62.CrossRef
12.
go back to reference Galle S, Malcolm P, Collins SH, De Clercq D. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power. J Neuroeng Rehabil. 2017; 14(1):35.CrossRefPubMedPubMedCentral Galle S, Malcolm P, Collins SH, De Clercq D. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power. J Neuroeng Rehabil. 2017; 14(1):35.CrossRefPubMedPubMedCentral
13.
go back to reference Quintero D, Villarreal DJ, Gregg RD. Preliminary experiments with a unified controller for a powered knee-ankle prosthetic leg across walking speeds. In: Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference On. Daejeon: IEEE: 2016. p. 5427–33. Quintero D, Villarreal DJ, Gregg RD. Preliminary experiments with a unified controller for a powered knee-ankle prosthetic leg across walking speeds. In: Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference On. Daejeon: IEEE: 2016. p. 5427–33.
14.
go back to reference Young AJ, Ferris DF. State of the art and future directions for lower limb robotic exoskeletons. IEEE Transact Neural Syst Rehab Eng. 2017; 25.2:171–82.CrossRef Young AJ, Ferris DF. State of the art and future directions for lower limb robotic exoskeletons. IEEE Transact Neural Syst Rehab Eng. 2017; 25.2:171–82.CrossRef
15.
go back to reference Cavanagh P, Komi P. Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur J Appl Physiol Occup Physiol. 1979; 42(3):159–63.CrossRefPubMed Cavanagh P, Komi P. Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur J Appl Physiol Occup Physiol. 1979; 42(3):159–63.CrossRefPubMed
16.
go back to reference Zhang J, Cheah CC, Collins SH. Experimental comparison of torque control methods on an ankle exoskeleton during human walking. In: Robotics and Automation (ICRA), 2015 IEEE International Conference On. Seattle: IEEE: 2015. p. 5584–9. Zhang J, Cheah CC, Collins SH. Experimental comparison of torque control methods on an ankle exoskeleton during human walking. In: Robotics and Automation (ICRA), 2015 IEEE International Conference On. Seattle: IEEE: 2015. p. 5584–9.
17.
go back to reference Ding Y, Galiana I, Siviy C, Panizzolo FA, Walsh C. Imu-based iterative control for hip extension assistance with a soft exosuit. In: Robotics and Automation (ICRA), 2016 IEEE International Conference On. Stockholm: IEEE: 2016. p. 3501–8. Ding Y, Galiana I, Siviy C, Panizzolo FA, Walsh C. Imu-based iterative control for hip extension assistance with a soft exosuit. In: Robotics and Automation (ICRA), 2016 IEEE International Conference On. Stockholm: IEEE: 2016. p. 3501–8.
18.
go back to reference Cain SM, Gordon KE, Ferris DP. Locomotor adaptation to a powered ankle-foot orthosis depends on control method. J NeuroEng Rehabil. 2007; 4(1):1.CrossRef Cain SM, Gordon KE, Ferris DP. Locomotor adaptation to a powered ankle-foot orthosis depends on control method. J NeuroEng Rehabil. 2007; 4(1):1.CrossRef
19.
go back to reference Koller JR, Jacobs DA, Ferris DP, Remy CD. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. J Neuroeng Rehabil. 2015; 12(1):97.CrossRefPubMedPubMedCentral Koller JR, Jacobs DA, Ferris DP, Remy CD. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. J Neuroeng Rehabil. 2015; 12(1):97.CrossRefPubMedPubMedCentral
21.
go back to reference Ferris DP, Gordon KE, Sawicki GS, Peethambaran A. An improved powered ankle–foot orthosis using proportional myoelectric control. Gait Posture. 2006; 23:425–8.CrossRefPubMed Ferris DP, Gordon KE, Sawicki GS, Peethambaran A. An improved powered ankle–foot orthosis using proportional myoelectric control. Gait Posture. 2006; 23:425–8.CrossRefPubMed
22.
go back to reference Gordon KE, Ferris DP. Learning to walk with a robotic ankle exoskeleton. J Biomech. 2007; 40:2636–44.CrossRefPubMed Gordon KE, Ferris DP. Learning to walk with a robotic ankle exoskeleton. J Biomech. 2007; 40:2636–44.CrossRefPubMed
23.
go back to reference Brockway J. Derivation of formulae used to calculate energy expenditure in man. Hum Nutr Clin Nutr. 1987; 41:463–71.PubMed Brockway J. Derivation of formulae used to calculate energy expenditure in man. Hum Nutr Clin Nutr. 1987; 41:463–71.PubMed
24.
go back to reference Griffin TM, Roberts TJ, Kram R. Metabolic cost of generating muscular force in human walking: insights from load-carrying and speed experiments. J Appl Physiol. 2003; 95:172–83.CrossRefPubMed Griffin TM, Roberts TJ, Kram R. Metabolic cost of generating muscular force in human walking: insights from load-carrying and speed experiments. J Appl Physiol. 2003; 95:172–83.CrossRefPubMed
25.
go back to reference Brooks GA, Fahey TD, White TP, et al. Exercise Physiology: Human Bioenergetics and Its Applications. Mountain View: Mayfield Publishing Company; 1996. Brooks GA, Fahey TD, White TP, et al. Exercise Physiology: Human Bioenergetics and Its Applications. Mountain View: Mayfield Publishing Company; 1996.
26.
go back to reference Winter D, Yack H. Emg profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr Clin Neurophysiol. 1987; 67:402–11.CrossRefPubMed Winter D, Yack H. Emg profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr Clin Neurophysiol. 1987; 67:402–11.CrossRefPubMed
27.
go back to reference Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. Opensim: open-source software to create and analyze dynamic simulations of movement. Biomed Eng IEEE Trans. 2007; 54:1940–50.CrossRef Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. Opensim: open-source software to create and analyze dynamic simulations of movement. Biomed Eng IEEE Trans. 2007; 54:1940–50.CrossRef
29.
30.
go back to reference Collins SH, Wiggin MB, Sawicki GS. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature. 2015; 522.7555:212.CrossRef Collins SH, Wiggin MB, Sawicki GS. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature. 2015; 522.7555:212.CrossRef
32.
go back to reference Asbeck AT, Schmidt K, Walsh CJ. Soft exosuit for hip assistance. Robot Auton Syst. 2015; 73:102–10.CrossRef Asbeck AT, Schmidt K, Walsh CJ. Soft exosuit for hip assistance. Robot Auton Syst. 2015; 73:102–10.CrossRef
33.
go back to reference Seo K, Lee J, Lee Y, Ha T, Shim Y. Fully autonomous hip exoskeleton saves metabolic cost of walking. In: Robotics and Automation (ICRA), 2016 IEEE International Conference On. Stockholm: IEEE: 2016. p. 4628–35. Seo K, Lee J, Lee Y, Ha T, Shim Y. Fully autonomous hip exoskeleton saves metabolic cost of walking. In: Robotics and Automation (ICRA), 2016 IEEE International Conference On. Stockholm: IEEE: 2016. p. 4628–35.
34.
go back to reference Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2008; 16(3):286–97.CrossRefPubMed Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2008; 16(3):286–97.CrossRefPubMed
35.
go back to reference Reinkensmeyer DJ, Akoner OM, Ferris DP, Gordon KE. Slacking by the human motor system: computational models and implications for robotic orthoses. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis: IEEE: 2009. p. 2129–32. Reinkensmeyer DJ, Akoner OM, Ferris DP, Gordon KE. Slacking by the human motor system: computational models and implications for robotic orthoses. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis: IEEE: 2009. p. 2129–32.
36.
go back to reference Mooney LM, Herr HM. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton. J Neuroeng Rehabil. 2016; 13(1):4.CrossRefPubMedPubMedCentral Mooney LM, Herr HM. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton. J Neuroeng Rehabil. 2016; 13(1):4.CrossRefPubMedPubMedCentral
37.
go back to reference Awad LN, Bae J, O’Donnell K, De Rossi SM, Hendron K, Sloot LH, Kudzia P, Allen S, Holt KG, Ellis TD, et al. A soft robotic exosuit improves walking in patients after stroke. Sci Transl Med. 2017; 9(400):9084.CrossRef Awad LN, Bae J, O’Donnell K, De Rossi SM, Hendron K, Sloot LH, Kudzia P, Allen S, Holt KG, Ellis TD, et al. A soft robotic exosuit improves walking in patients after stroke. Sci Transl Med. 2017; 9(400):9084.CrossRef
38.
go back to reference Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist-versus robotic-assisted locomotor training in subjects with chronic stroke. Stroke. 2008; 39(6):1786–92.CrossRefPubMed Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist-versus robotic-assisted locomotor training in subjects with chronic stroke. Stroke. 2008; 39(6):1786–92.CrossRefPubMed
39.
go back to reference Lee S, Sankai Y. Power assist control for walking aid with hal-3 based on emg and impedance adjustment around knee joint. In: Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference On. Lausanne: IEEE: 2002. p. 1499–504. Lee S, Sankai Y. Power assist control for walking aid with hal-3 based on emg and impedance adjustment around knee joint. In: Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference On. Lausanne: IEEE: 2002. p. 1499–504.
40.
go back to reference Au S, Berniker M, Herr H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 2008; 21(4):654–66.CrossRefPubMed Au S, Berniker M, Herr H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 2008; 21(4):654–66.CrossRefPubMed
41.
go back to reference Young A, Kuiken T, Hargrove L. Analysis of using emg and mechanical sensors to enhance intent recognition in powered lower limb prostheses. J Neural Eng. 2014; 11(5):056021.CrossRefPubMed Young A, Kuiken T, Hargrove L. Analysis of using emg and mechanical sensors to enhance intent recognition in powered lower limb prostheses. J Neural Eng. 2014; 11(5):056021.CrossRefPubMed
42.
go back to reference Takahashi KZ, Lewek MD, Sawicki GS. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study. J Neuroeng Rehabil. 2015; 12(1):23.CrossRefPubMedPubMedCentral Takahashi KZ, Lewek MD, Sawicki GS. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study. J Neuroeng Rehabil. 2015; 12(1):23.CrossRefPubMedPubMedCentral
Metadata
Title
Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control
Authors
Jeffrey R. Koller
C. David Remy
Daniel P. Ferris
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2018
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0379-6

Other articles of this Issue 1/2018

Journal of NeuroEngineering and Rehabilitation 1/2018 Go to the issue