Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2018

Open Access 01-12-2018 | Review

Soft robotic devices for hand rehabilitation and assistance: a narrative review

Authors: Chia-Ye Chu, Rita M. Patterson

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Introduction

The debilitating effects on hand function from a number of a neurologic disorders has given rise to the development of rehabilitative robotic devices aimed at restoring hand function in these patients. To combat the shortcomings of previous traditional robotics, soft robotics are rapidly emerging as an alternative due to their inherent safety, less complex designs, and increased potential for portability and efficacy. While several groups have begun designing devices, there are few devices that have progressed enough to provide clinical evidence of their design’s therapeutic abilities. Therefore, a global review of devices that have been previously attempted could facilitate the development of new and improved devices in the next step towards obtaining clinical proof of the rehabilitative effects of soft robotics in hand dysfunction.

Methods

A literature search was performed in SportDiscus, Pubmed, Scopus, and Web of Science for articles related to the design of soft robotic devices for hand rehabilitation. A framework of the key design elements of the devices was developed to ease the comparison of the various approaches to building them. This framework includes an analysis of the trends in portability, safety features, user intent detection methods, actuation systems, total DOF, number of independent actuators, device weight, evaluation metrics, and modes of rehabilitation.

Results

In this study, a total of 62 articles representing 44 unique devices were identified and summarized according to the framework we developed to compare different design aspects. By far, the most common type of device was that which used a pneumatic actuator to guide finger flexion/extension. However, the remainder of our framework elements yielded more heterogeneous results. Consequently, those results are summarized and the advantages and disadvantages of many design choices as well as their rationales were highlighted.

Conclusion

The past 3 years has seen a rapid increase in the development of soft robotic devices for hand rehabilitative applications. These mostly preclinical research prototypes display a wide range of technical solutions which have been highlighted in the framework developed in this analysis. More work needs to be done in actuator design, safety, and implementation in order for these devices to progress to clinical trials. It is our goal that this review will guide future developers through the various design considerations in order to develop better devices for patients with hand impairments.
Literature
2.
go back to reference Bütefisch C, Hummelsheim H, Denzler P, Mauritz KH. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci. 1995;130:59–68.CrossRefPubMed Bütefisch C, Hummelsheim H, Denzler P, Mauritz KH. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci. 1995;130:59–68.CrossRefPubMed
20.
go back to reference Connelly L, Jia Y, Toro ML, Stoykov ME, Kenyon RV, Kamper DG. A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society. 2010; https://doi.org/10.1109/TNSRE.2010.2047588. Connelly L, Jia Y, Toro ML, Stoykov ME, Kenyon RV, Kamper DG. A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society. 2010; https://​doi.​org/​10.​1109/​TNSRE.​2010.​2047588.
35.
36.
go back to reference Radder B, Prange-Lasonder G, Kottink A, Gaasbeek L, Holmberg J, Meyer T, Melendez-Calderon A, Ingvast J, Buurke J, Rietman J. A wearable soft-robotic glove enables hand support in ADL and rehabilitation: a feasibility study on the assistive functionality. J Rehab Assist Technol Eng. 2016; https://doi.org/10.1177/2055668316670553. Radder B, Prange-Lasonder G, Kottink A, Gaasbeek L, Holmberg J, Meyer T, Melendez-Calderon A, Ingvast J, Buurke J, Rietman J. A wearable soft-robotic glove enables hand support in ADL and rehabilitation: a feasibility study on the assistive functionality. J Rehab Assist Technol Eng. 2016; https://​doi.​org/​10.​1177/​2055668316670553​.
39.
go back to reference Nycz CJ, Delph MA, Fischer GS. Modeling and Design of a Tendon Actuated Soft Robotic Exoskeleton for Hemiparetic Upper Limb Rehabilitation. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015; https://doi.org/10.1109/EMBC.2015.7319243. Nycz CJ, Delph MA, Fischer GS. Modeling and Design of a Tendon Actuated Soft Robotic Exoskeleton for Hemiparetic Upper Limb Rehabilitation. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015; https://​doi.​org/​10.​1109/​EMBC.​2015.​7319243.
43.
go back to reference Fischer H, Triandafilou K, Thielbar K, Ochoa J, Lazzaro E, Pacholski K, Kamper D. Use of a portable assistive glove to facilitate rehabilitation in stroke survivors with severe hand impairment. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2016; https://doi.org/10.1109/TNSRE.2015.2513675. Fischer H, Triandafilou K, Thielbar K, Ochoa J, Lazzaro E, Pacholski K, Kamper D. Use of a portable assistive glove to facilitate rehabilitation in stroke survivors with severe hand impairment. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2016; https://​doi.​org/​10.​1109/​TNSRE.​2015.​2513675.
63.
go back to reference Haghshenas-Jaryani M, Nothnagle C, Patterson R, Bugnariu N, Wijesundara M. Soft Robotic Rehabilitation Exoskeleton (Rehab Glove) For Hand Therapy. ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2017; https://doi.org/10.1115/DETC2017-68291. Haghshenas-Jaryani M, Nothnagle C, Patterson R, Bugnariu N, Wijesundara M. Soft Robotic Rehabilitation Exoskeleton (Rehab Glove) For Hand Therapy. ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2017; https://​doi.​org/​10.​1115/​DETC2017-68291.
64.
go back to reference Haghshenas-Jayarni M, Patterson R, Carrigan W, Bugnariu N, Wijesundara M, Niacaris T. Kinematic study of a soft-and-rigid robotic digit for rehabilitation and assistive applications. ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2016; https://doi.org/10.1115/DETC2016-59921. Haghshenas-Jayarni M, Patterson R, Carrigan W, Bugnariu N, Wijesundara M, Niacaris T. Kinematic study of a soft-and-rigid robotic digit for rehabilitation and assistive applications. ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2016; https://​doi.​org/​10.​1115/​DETC2016-59921.
70.
go back to reference Yap HK, Lim JH, Nasrallah F, Goh J, Yeow RC. A Soft Exoskeleton for Hand Assistive and Rehabilitation Application Using Pneumatic Actuators with Variable Stiffness. Yap HK, Lim JH, Nasrallah F, Goh J, Yeow RC. A Soft Exoskeleton for Hand Assistive and Rehabilitation Application Using Pneumatic Actuators with Variable Stiffness.
81.
go back to reference Ahmad S, Roach R. Strength versus endurance training. Aust J Ortho Rheumat. 2014;1(2):5. Ahmad S, Roach R. Strength versus endurance training. Aust J Ortho Rheumat. 2014;1(2):5.
Metadata
Title
Soft robotic devices for hand rehabilitation and assistance: a narrative review
Authors
Chia-Ye Chu
Rita M. Patterson
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2018
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0350-6

Other articles of this Issue 1/2018

Journal of NeuroEngineering and Rehabilitation 1/2018 Go to the issue