Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2017

Open Access 01-12-2017 | Research

A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia

Authors: Sarah R. Chang, Mark J. Nandor, Lu Li, Rudi Kobetic, Kevin M. Foglyano, John R. Schnellenberger, Musa L. Audu, Gilles Pinault, Roger D. Quinn, Ronald J. Triolo

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2017

Login to get access

Abstract

Background

Functional neuromuscular stimulation, lower limb orthosis, powered lower limb exoskeleton, and hybrid neuroprosthesis (HNP) technologies can restore stepping in individuals with paraplegia due to spinal cord injury (SCI). However, a self-contained muscle-driven controllable exoskeleton approach based on an implanted neural stimulator to restore walking has not been previously demonstrated, which could potentially result in system use outside the laboratory and viable for long term use or clinical testing. In this work, we designed and evaluated an untethered muscle-driven controllable exoskeleton to restore stepping in three individuals with paralysis from SCI.

Methods

The self-contained HNP combined neural stimulation to activate the paralyzed muscles and generate joint torques for limb movements with a controllable lower limb exoskeleton to stabilize and support the user. An onboard controller processed exoskeleton sensor signals, determined appropriate exoskeletal constraints and stimulation commands for a finite state machine (FSM), and transmitted data over Bluetooth to an off-board computer for real-time monitoring and data recording. The FSM coordinated stimulation and exoskeletal constraints to enable functions, selected with a wireless finger switch user interface, for standing up, standing, stepping, or sitting down. In the stepping function, the FSM used a sensor-based gait event detector to determine transitions between gait phases of double stance, early swing, late swing, and weight acceptance.

Results

The HNP restored stepping in three individuals with motor complete paralysis due to SCI. The controller appropriately coordinated stimulation and exoskeletal constraints using the sensor-based FSM for subjects with different stimulation systems. The average range of motion at hip and knee joints during walking were 8.5°–20.8° and 14.0°–43.6°, respectively. Walking speeds varied from 0.03 to 0.06 m/s, and cadences from 10 to 20 steps/min.

Conclusions

A self-contained muscle-driven exoskeleton was a feasible intervention to restore stepping in individuals with paraplegia due to SCI. The untethered hybrid system was capable of adjusting to different individuals’ needs to appropriately coordinate exoskeletal constraints with muscle activation using a sensor-driven FSM for stepping. Further improvements for out-of-the-laboratory use should include implantation of plantar flexor muscles to improve walking speed and power assist as needed at the hips and knees to maintain walking as muscles fatigue.
Literature
1.
go back to reference Kobetic R, Marsolais EB. Synthesis of paraplegic gait with multichannel functional neuromuscular stimulation. IEEE Trans Rehabil Eng. 1994;2(2):66–79.CrossRef Kobetic R, Marsolais EB. Synthesis of paraplegic gait with multichannel functional neuromuscular stimulation. IEEE Trans Rehabil Eng. 1994;2(2):66–79.CrossRef
2.
go back to reference Marsolais EB, Kobetic R. Development of a practical electrical stimulation system for restoring gait in the paralyzed patient. Clin Orthop Relat Res. 1988;233:64–74. Marsolais EB, Kobetic R. Development of a practical electrical stimulation system for restoring gait in the paralyzed patient. Clin Orthop Relat Res. 1988;233:64–74.
3.
go back to reference Kobetic R, Triolo R, Marsolais EB. Muscle Selection and Walking Performance of Multichannel FES Systems for Ambulation in Paraplegia. IEEE Trans Rehabil Eng. 1997;5(1):23–9.CrossRefPubMed Kobetic R, Triolo R, Marsolais EB. Muscle Selection and Walking Performance of Multichannel FES Systems for Ambulation in Paraplegia. IEEE Trans Rehabil Eng. 1997;5(1):23–9.CrossRefPubMed
4.
go back to reference Brissot R, Gallien P, Le Bot MP, Beaubras A, Laisne D, Beillot J, Dassonville J. Clinical experience with functional electrical stimulation-assisted gait with Parastep in spinal cord-injured patients. Spine. 2000;25(4):501–8.CrossRefPubMed Brissot R, Gallien P, Le Bot MP, Beaubras A, Laisne D, Beillot J, Dassonville J. Clinical experience with functional electrical stimulation-assisted gait with Parastep in spinal cord-injured patients. Spine. 2000;25(4):501–8.CrossRefPubMed
5.
go back to reference Tashman S, Zajac FE, Perkash I. Modeling and simulation of paraplegic ambulation in a reciprocating gait orthosis. J Biomech Eng. 1995;117(3):300–8.CrossRefPubMed Tashman S, Zajac FE, Perkash I. Modeling and simulation of paraplegic ambulation in a reciprocating gait orthosis. J Biomech Eng. 1995;117(3):300–8.CrossRefPubMed
6.
go back to reference Petrofsky JS, Smith JB. Physiologic costs of computer-controller walking in persons with paraplegia using a reciprocating-gait orthosis. Arch Phys Med Rehabil. 1991;72(11):890–6.CrossRefPubMed Petrofsky JS, Smith JB. Physiologic costs of computer-controller walking in persons with paraplegia using a reciprocating-gait orthosis. Arch Phys Med Rehabil. 1991;72(11):890–6.CrossRefPubMed
7.
go back to reference Bernardi M, Canale I, Castellano V, Di Filippo L, Felici F, Marchetti M. The efficiency of walking of paraplegic patients using a reciprocating gait orthosis. Paraplegia. 1995;33(7):409–15.CrossRefPubMed Bernardi M, Canale I, Castellano V, Di Filippo L, Felici F, Marchetti M. The efficiency of walking of paraplegic patients using a reciprocating gait orthosis. Paraplegia. 1995;33(7):409–15.CrossRefPubMed
8.
go back to reference Johnson WB, Fatone S, Gard SA. Walking mechanics of persons who use reciprocating gait orthoses. J Rehabil Res Dev. 2009;46(3):435–46.PubMed Johnson WB, Fatone S, Gard SA. Walking mechanics of persons who use reciprocating gait orthoses. J Rehabil Res Dev. 2009;46(3):435–46.PubMed
10.
go back to reference Contreras-Vidal JL, Grossman RG. NeuroRex: a clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:1579–82.PubMedPubMedCentral Contreras-Vidal JL, Grossman RG. NeuroRex: a clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:1579–82.PubMedPubMedCentral
12.
go back to reference Benson I, Hart K, Tussler D, van Middendorp JJ. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin Rehabil. 2016;30(1):73–84. Benson I, Hart K, Tussler D, van Middendorp JJ. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin Rehabil. 2016;30(1):73–84.
13.
go back to reference Yang A, Asselin P, Knezevic S, Kornfeld S, Spungen AM. Assessment of In-Hospital Walking Velocity and Level of Assistance in a Powered Exoskeleton in Persons with Spinal Cord Injury. Top Spinal Cord Inj Rehabil. 2015;21(2):100–9.CrossRefPubMedPubMedCentral Yang A, Asselin P, Knezevic S, Kornfeld S, Spungen AM. Assessment of In-Hospital Walking Velocity and Level of Assistance in a Powered Exoskeleton in Persons with Spinal Cord Injury. Top Spinal Cord Inj Rehabil. 2015;21(2):100–9.CrossRefPubMedPubMedCentral
14.
go back to reference Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012;91(11):911–21.CrossRefPubMed Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012;91(11):911–21.CrossRefPubMed
16.
go back to reference Sankai Y. HAL: Hybrid Assistive Limb Based on Cybernics. Springer Tracts in Advanced Robotics. Robotics Research. 2011;66:25–34. Kaneko M, Nakamura Y, Eds.CrossRef Sankai Y. HAL: Hybrid Assistive Limb Based on Cybernics. Springer Tracts in Advanced Robotics. Robotics Research. 2011;66:25–34. Kaneko M, Nakamura Y, Eds.CrossRef
18.
go back to reference Kozlowski AJ, Bryce TN, Dijkers MP. Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking. Top Spinal Cord Inj Rehabil. 2015;21(2):110–21.CrossRefPubMedPubMedCentral Kozlowski AJ, Bryce TN, Dijkers MP. Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking. Top Spinal Cord Inj Rehabil. 2015;21(2):110–21.CrossRefPubMedPubMedCentral
20.
go back to reference Hartigan C, Kandilakis C, Dalley S, Clausen M, Wilson E, Morrison S, Etheridge S, Farris R. Mobility outcomes following five training sessions with a powered exoskeleton. Top Spinal Cord Inj Rehabil. 2015;21(2):93–9.CrossRefPubMedPubMedCentral Hartigan C, Kandilakis C, Dalley S, Clausen M, Wilson E, Morrison S, Etheridge S, Farris R. Mobility outcomes following five training sessions with a powered exoskeleton. Top Spinal Cord Inj Rehabil. 2015;21(2):93–9.CrossRefPubMedPubMedCentral
21.
go back to reference Farris R, Quintero H, Goldfarb M. Preliminary Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals. IEEE Trans Neural Syst Rehabil Eng. 2011;19(6):652–9.CrossRefPubMedPubMedCentral Farris R, Quintero H, Goldfarb M. Preliminary Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals. IEEE Trans Neural Syst Rehabil Eng. 2011;19(6):652–9.CrossRefPubMedPubMedCentral
25.
go back to reference Ha KH, Murray SA, Goldfarb M. An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia. IEEE Trans Neural Syst Rehabil Eng. 2015;99:1–12. doi:10.1109/TNSRE.2015.2421052. Ha KH, Murray SA, Goldfarb M. An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia. IEEE Trans Neural Syst Rehabil Eng. 2015;99:1–12. doi:10.​1109/​TNSRE.​2015.​2421052.
26.
go back to reference To C, Kobetic R, Bulea TC, Audu ML, Schnellenberger J, Pinault GC, Triolo R. Sensor-based hip control with a hybrid neuroprosthesis for walking in paraplegia. J Rehabil Res Dev. 2014;51(2):229–44.CrossRefPubMed To C, Kobetic R, Bulea TC, Audu ML, Schnellenberger J, Pinault GC, Triolo R. Sensor-based hip control with a hybrid neuroprosthesis for walking in paraplegia. J Rehabil Res Dev. 2014;51(2):229–44.CrossRefPubMed
27.
go back to reference To C, Kobetic R, Bulea TC, Audu ML, Schnellenberger JR, Pinault G, Triolo RJ. Sensor-based stance control with orthosis and functional neuromuscular stimulation for walking after spinal cord injury. J Prosthetics Orthotics. 2012;24(3):124–32.CrossRef To C, Kobetic R, Bulea TC, Audu ML, Schnellenberger JR, Pinault G, Triolo RJ. Sensor-based stance control with orthosis and functional neuromuscular stimulation for walking after spinal cord injury. J Prosthetics Orthotics. 2012;24(3):124–32.CrossRef
28.
go back to reference To CS, Kobetic R, Bulea T, Audu M, Schnellenberger J, Pinault G, Triolo RJ. Stance control knee mechanism for lower extremity support in a hybrid neuroprosthesis. J Rehabil Res Dev. 2011;48(7):839–50.CrossRefPubMedPubMedCentral To CS, Kobetic R, Bulea T, Audu M, Schnellenberger J, Pinault G, Triolo RJ. Stance control knee mechanism for lower extremity support in a hybrid neuroprosthesis. J Rehabil Res Dev. 2011;48(7):839–50.CrossRefPubMedPubMedCentral
29.
go back to reference Kobetic R, To CS, Schnellenberger JR, Audu ML, Bulea TC, Gaudio R, Pinault G, Tashman S, Triolo RJ. Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury. J Rehabil Res Dev. 2009;46(3):447–62.CrossRefPubMed Kobetic R, To CS, Schnellenberger JR, Audu ML, Bulea TC, Gaudio R, Pinault G, Tashman S, Triolo RJ. Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury. J Rehabil Res Dev. 2009;46(3):447–62.CrossRefPubMed
30.
go back to reference Bulea TC, Kobetic R, Audu ML, Schnellenberger JR, Pinault G, Triolo RJ. Stance phase knee flexion improves stimulation driven walking after spinal cord injury. J Neuroeng Rehabil. 2013;10:68.CrossRefPubMedPubMedCentral Bulea TC, Kobetic R, Audu ML, Schnellenberger JR, Pinault G, Triolo RJ. Stance phase knee flexion improves stimulation driven walking after spinal cord injury. J Neuroeng Rehabil. 2013;10:68.CrossRefPubMedPubMedCentral
31.
go back to reference Bulea TC, Kobetic R, Audu ML, Schnellenberger JR, Triolo RJ. Finite state control of a variable impedance hybrid neuroprosthesis for locomotion after paralysis. IEEE Trans Neural Syst Rehabil Eng. 2013;21(1):141–51.CrossRefPubMed Bulea TC, Kobetic R, Audu ML, Schnellenberger JR, Triolo RJ. Finite state control of a variable impedance hybrid neuroprosthesis for locomotion after paralysis. IEEE Trans Neural Syst Rehabil Eng. 2013;21(1):141–51.CrossRefPubMed
32.
go back to reference Bulea TC, Kobetic R, To CS, Audu M, Schnellenberger J, Triolo RJ. A variable impedance knee mechanism for controlled stance flexion during pathological gait. IEEE/ASME Trans Mechatron. 2012;17(5):822–32.CrossRef Bulea TC, Kobetic R, To CS, Audu M, Schnellenberger J, Triolo RJ. A variable impedance knee mechanism for controlled stance flexion during pathological gait. IEEE/ASME Trans Mechatron. 2012;17(5):822–32.CrossRef
33.
go back to reference Bulea TC, Kobetic R, Audu MS, Schnellenberger JR, Pinault G, Triolo RJ. Forward stair descent with a hybrid neuroprosthesis after paralysis: a single case study demonstrating feasibility. J Rehabil Res Dev. 2014;51(7):1077–94.CrossRefPubMedPubMedCentral Bulea TC, Kobetic R, Audu MS, Schnellenberger JR, Pinault G, Triolo RJ. Forward stair descent with a hybrid neuroprosthesis after paralysis: a single case study demonstrating feasibility. J Rehabil Res Dev. 2014;51(7):1077–94.CrossRefPubMedPubMedCentral
34.
go back to reference Chang SR, Kobetic R, Triolo RJ. Understanding stand-to-sit maneuver: implications for motor system neuroprostheses after paralysis. J Rehabil Res Dev. 2014;51(9):1339–51.CrossRefPubMedPubMedCentral Chang SR, Kobetic R, Triolo RJ. Understanding stand-to-sit maneuver: implications for motor system neuroprostheses after paralysis. J Rehabil Res Dev. 2014;51(9):1339–51.CrossRefPubMedPubMedCentral
36.
go back to reference Chang SR, Nandor MJ, Li L, Foglyano KM, Schnellenberger JR, Kobetic R, Quinn R, Triolo RJ. A stimulation-driven exoskeleton for walking after paraplegia, 38th Annual Int Conf IEEE Eng Med Bio Soc. 2016.CrossRef Chang SR, Nandor MJ, Li L, Foglyano KM, Schnellenberger JR, Kobetic R, Quinn R, Triolo RJ. A stimulation-driven exoskeleton for walking after paraplegia, 38th Annual Int Conf IEEE Eng Med Bio Soc. 2016.CrossRef
37.
go back to reference Agarwal S, Triolo RJ, Kobetic R, Miller M, Bieri C, Kukke S, Rohde L, Davis Jr JA. Long-term perceptions of an implanted neuroprosthesis for exercise, standing, and transfers after spinal cord injury. J Rehabil Res Dev. 2003;40(3):241–52.PubMed Agarwal S, Triolo RJ, Kobetic R, Miller M, Bieri C, Kukke S, Rohde L, Davis Jr JA. Long-term perceptions of an implanted neuroprosthesis for exercise, standing, and transfers after spinal cord injury. J Rehabil Res Dev. 2003;40(3):241–52.PubMed
38.
go back to reference Nightingale EJ, Raymond J, Middleton JW, Crosbie J, Davis GM. Benefits of FES gait in a spinal cord injured population. Spinal Cord. 2007;45(10):646–57.CrossRefPubMed Nightingale EJ, Raymond J, Middleton JW, Crosbie J, Davis GM. Benefits of FES gait in a spinal cord injured population. Spinal Cord. 2007;45(10):646–57.CrossRefPubMed
39.
go back to reference Ditunno PL, Patrick M, Stineman M, Ditunno JF. Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord. 2008;46(7):500–6.CrossRefPubMed Ditunno PL, Patrick M, Stineman M, Ditunno JF. Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord. 2008;46(7):500–6.CrossRefPubMed
41.
go back to reference Smith B, Tang Z, Johnson MW, Pourmehdi S, Gazdik MM, Buckett JR, Peckham PH. An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans Biomed Eng. 1998;45(4):463–75.CrossRefPubMed Smith B, Tang Z, Johnson MW, Pourmehdi S, Gazdik MM, Buckett JR, Peckham PH. An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans Biomed Eng. 1998;45(4):463–75.CrossRefPubMed
42.
go back to reference Knutson J, Audu M, Triolo R. Interventions for mobility and manipulation after spinal cord injury: a review of orthotic and neuroprosthetic options. Topics in Spinal Cord Injury Rehabil. 2006;11(4):61–81.CrossRef Knutson J, Audu M, Triolo R. Interventions for mobility and manipulation after spinal cord injury: a review of orthotic and neuroprosthetic options. Topics in Spinal Cord Injury Rehabil. 2006;11(4):61–81.CrossRef
43.
go back to reference Smith B, Peckham PH, Keith MW, Roscoe DD. An externally powered, multichannel, implantable stimulator for versatile control of paralyzed muscle. IEEE Trans Biomed Eng. 1987;34(7):499–508.CrossRefPubMed Smith B, Peckham PH, Keith MW, Roscoe DD. An externally powered, multichannel, implantable stimulator for versatile control of paralyzed muscle. IEEE Trans Biomed Eng. 1987;34(7):499–508.CrossRefPubMed
44.
go back to reference Granat MH, Heller BW, Nicol DJ, Baxendale RH, Andrews BJ. Improving limb flexion in FES gait using the flexion withdrawal response for the spinal cord injured person. J Biomed Eng. 1993;15(1):51–6.CrossRefPubMed Granat MH, Heller BW, Nicol DJ, Baxendale RH, Andrews BJ. Improving limb flexion in FES gait using the flexion withdrawal response for the spinal cord injured person. J Biomed Eng. 1993;15(1):51–6.CrossRefPubMed
46.
go back to reference Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A. Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study. J Spinal Cord Med. 2012;35(2):96–101.CrossRefPubMedPubMedCentral Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A. Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study. J Spinal Cord Med. 2012;35(2):96–101.CrossRefPubMedPubMedCentral
47.
go back to reference Bajd T, Kralj A, Karcnik T, Savrin R, Obreza P. Significance of FES-assisted plantarflexion during walking of incomplete SCI subjects. Gait Posture. 1994;2(1):5–10. Bajd T, Kralj A, Karcnik T, Savrin R, Obreza P. Significance of FES-assisted plantarflexion during walking of incomplete SCI subjects. Gait Posture. 1994;2(1):5–10.
48.
go back to reference Southerland DH, Cooper L, Daniel D. The role of the ankle plantar flexors in normal walking. J Bone Joint Surg. 1980;62A(3):354–63. Southerland DH, Cooper L, Daniel D. The role of the ankle plantar flexors in normal walking. J Bone Joint Surg. 1980;62A(3):354–63.
49.
go back to reference Andrews AW, Chinworth SA, Bourassa M, Garvin M, Benton D, Tanner S. Update on distance and velocity requirements for community ambulation. J Geriatr Phys Ther. 2010;33:28–34. Andrews AW, Chinworth SA, Bourassa M, Garvin M, Benton D, Tanner S. Update on distance and velocity requirements for community ambulation. J Geriatr Phys Ther. 2010;33:28–34.
Metadata
Title
A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia
Authors
Sarah R. Chang
Mark J. Nandor
Lu Li
Rudi Kobetic
Kevin M. Foglyano
John R. Schnellenberger
Musa L. Audu
Gilles Pinault
Roger D. Quinn
Ronald J. Triolo
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2017
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-017-0258-6

Other articles of this Issue 1/2017

Journal of NeuroEngineering and Rehabilitation 1/2017 Go to the issue