Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2016

Open Access 01-12-2016 | Research

Improving stand-to-sit maneuver for individuals with spinal cord injury

Authors: Sarah R. Chang, Mark J. Nandor, Rudi Kobetic, Kevin M. Foglyano, Roger D. Quinn, Ronald J. Triolo

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2016

Login to get access

Abstract

Background

Users of neuroprostheses employing electrical stimulation (ES) generally complete the stand-to-sit (STS) maneuver with high knee angular velocities, increased upper limb support forces, and high peak impact forces at initial contact with the chair. Controlling the knee during STS descent is challenging in individuals with spinal cord injury (SCI) due to the decreasing joint moment available with increased knee angle in response to ES.

Methods

The goal of this study was to investigate the effects of incorporating either (1) a coupling mechanism that coordinates hip and knee flexion or (2) a mechanism that damps knee motion to keep the knee angular velocity constant during the STS transition. The coupling and damping were achieved by hydraulic orthotic mechanisms. Two subjects with SCI were enrolled and each served as their own controls when characterizing the performance of each mechanism during STS as compared to stimulation alone. Outcome measures such as hip-knee angle, knee angular velocity, upper limb support force, and impact force were analyzed to determine the effectiveness of the two mechanisms in providing controlled STS.

Results

The coordination between the hip and knee joints improved with each orthotic mechanism. The damping and hip-knee coupling mechanisms caused the hip and knee joint ratios of 1:1.1 and 1:0.99, respectively, which approached the 1:1 coordination ratio observed in nondisabled individuals during STS maneuver. The knee damping mechanism provided lower (p < 0.001) and a more constant knee angular velocity than the hip-knee coupling mechanism over the knee range of motion. Both the coupling and damping mechanisms were similarly effective at reducing upper limb support forces by 70 % (p < 0.001) and impact force by half (p ≤ 0.001) as compared to sitting down with stimulation alone.

Conclusions

Orthoses imposing simple kinematic constraints, such as 1:1 hip-knee coupling or knee damping, can normalize upper limb support forces, peak knee angular velocity, and peak impact force during the STS maneuvers.
Literature
1.
go back to reference Marsolais EB, Edwards BG. Energy costs of walking and standing with functional neuromuscular stimulation and long leg braces. Arch Phys Med Rehabil. 1988;69:243–9.PubMed Marsolais EB, Edwards BG. Energy costs of walking and standing with functional neuromuscular stimulation and long leg braces. Arch Phys Med Rehabil. 1988;69:243–9.PubMed
2.
go back to reference Hirokawa S, Grimm M, Le T, Solomonow M, Baratta RV, Shoji H, D’Ambrosia RD. Energy consumption in paraplegic ambulation using the reciprocating gait orthosis and electrical stimulation of the thigh muscles. Arch Phys Med Rehabil. 1990;71(9):687–94. Hirokawa S, Grimm M, Le T, Solomonow M, Baratta RV, Shoji H, D’Ambrosia RD. Energy consumption in paraplegic ambulation using the reciprocating gait orthosis and electrical stimulation of the thigh muscles. Arch Phys Med Rehabil. 1990;71(9):687–94.
3.
go back to reference Rosman N, Spira E. Paraplegic use of walking braces: a survey. Arch Phys Med Rehabil. 1974;55(7):310–4.PubMed Rosman N, Spira E. Paraplegic use of walking braces: a survey. Arch Phys Med Rehabil. 1974;55(7):310–4.PubMed
4.
go back to reference Hong C, San Luis EB, Chung S. Follow-up study on the use of leg braces issued to spinal cord injury patients. Paraplegia. 1990;28(3):172–7.CrossRef Hong C, San Luis EB, Chung S. Follow-up study on the use of leg braces issued to spinal cord injury patients. Paraplegia. 1990;28(3):172–7.CrossRef
5.
go back to reference Benson I, Hart K, Tussler D, van Middendorp JJ. Lower-limb exoskeletons for individuals with chronic spinal cord injury: Findings from a feasibility study. Clin Rehabil. 2016;30(1):73–84.CrossRefPubMed Benson I, Hart K, Tussler D, van Middendorp JJ. Lower-limb exoskeletons for individuals with chronic spinal cord injury: Findings from a feasibility study. Clin Rehabil. 2016;30(1):73–84.CrossRefPubMed
6.
go back to reference Kozlowski AJ, Bryce TN, Dijkers MP. Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Top Spinal Cord Inj Rehabil. 2015;21(2):110–21.CrossRefPubMedPubMedCentral Kozlowski AJ, Bryce TN, Dijkers MP. Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Top Spinal Cord Inj Rehabil. 2015;21(2):110–21.CrossRefPubMedPubMedCentral
7.
go back to reference Aach M, Cruciger O, Sczesny-Kaiser M, Höffken O, Meindl RC, Tegenthoff M, Schwenkreis P, Sankai Y, Schildhauer TA. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J. 2014;14(12):2847–53. Aach M, Cruciger O, Sczesny-Kaiser M, Höffken O, Meindl RC, Tegenthoff M, Schwenkreis P, Sankai Y, Schildhauer TA. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J. 2014;14(12):2847–53.
8.
go back to reference Farris R, Quintero H, Goldfarb M. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans Neural Syst Rehabil Eng. 2011;19(6):652–9.CrossRefPubMedPubMedCentral Farris R, Quintero H, Goldfarb M. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans Neural Syst Rehabil Eng. 2011;19(6):652–9.CrossRefPubMedPubMedCentral
9.
go back to reference Yan T, Cempini M, Oddo CM, Vitiello N. Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Rob Auton Syst. 2015;64:120–36.CrossRef Yan T, Cempini M, Oddo CM, Vitiello N. Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Rob Auton Syst. 2015;64:120–36.CrossRef
10.
go back to reference Del-Ama AJ, Koutsou AD, Moreno JC, de-los-Reyes A, Gil-Agudo A, Pons JL. Review of hybrid exoskeletons to restore gait following spinal cord injury. J Rehabil Res Dev. 2012;49(4):497–514.CrossRefPubMed Del-Ama AJ, Koutsou AD, Moreno JC, de-los-Reyes A, Gil-Agudo A, Pons JL. Review of hybrid exoskeletons to restore gait following spinal cord injury. J Rehabil Res Dev. 2012;49(4):497–514.CrossRefPubMed
11.
go back to reference To CS, Kobetic R, Bulea TC, Audu ML, Schnellenberger JR, Pinault GC, Triolo RJ. Sensor-based hip control with a hybrid neuroprosthesis for walking in paraplegia. J Rehabil Res Dev. 2014;51(2):229–44.CrossRefPubMed To CS, Kobetic R, Bulea TC, Audu ML, Schnellenberger JR, Pinault GC, Triolo RJ. Sensor-based hip control with a hybrid neuroprosthesis for walking in paraplegia. J Rehabil Res Dev. 2014;51(2):229–44.CrossRefPubMed
12.
13.
go back to reference To C, Kobetic R, Bulea TC, Audu ML, Schnellenberger JR, Pinault G, Triolo RJ. Sensor-based stance control with orthosis and functional neuromuscular stimulation for walking after spinal cord injury. J Prosthet Orthot. 2012;24(3):124–32. doi:10.1097/JPO.0b013e3182627a13. To C, Kobetic R, Bulea TC, Audu ML, Schnellenberger JR, Pinault G, Triolo RJ. Sensor-based stance control with orthosis and functional neuromuscular stimulation for walking after spinal cord injury. J Prosthet Orthot. 2012;24(3):124–32. doi:10.​1097/​JPO.​0b013e3182627a13​.
14.
go back to reference Kobetic R, To C, Schnellenberger J, Audu M, Bulea T, Gaudio R, Tashman S, Triolo RJ. Development of a hybrid orthosis for standing, walking and stair climbing after spinal cord injury. J Rehabil Res Dev. 2009;46(3):447–62. Kobetic R, To C, Schnellenberger J, Audu M, Bulea T, Gaudio R, Tashman S, Triolo RJ. Development of a hybrid orthosis for standing, walking and stair climbing after spinal cord injury. J Rehabil Res Dev. 2009;46(3):447–62.
15.
go back to reference Kobetic R, Marsolais EB. Synthesis of paraplegic gait with multichannel functional neuromuscular stimulation. IEEE Trans Rehabil Eng. 1994;2(2):66–79.CrossRef Kobetic R, Marsolais EB. Synthesis of paraplegic gait with multichannel functional neuromuscular stimulation. IEEE Trans Rehabil Eng. 1994;2(2):66–79.CrossRef
16.
go back to reference Dolan MJ, Andrews BJ, Veltink PH. Switching curve controller for FES-assisted standing up and sitting down. IEEE Trans Rehabil Eng. 1998;6:167–71.CrossRefPubMed Dolan MJ, Andrews BJ, Veltink PH. Switching curve controller for FES-assisted standing up and sitting down. IEEE Trans Rehabil Eng. 1998;6:167–71.CrossRefPubMed
17.
go back to reference Riener R, Ferrarin M, Pavan EE, Frigo CA. Patient-driven control of FES-supported standing up and sitting down: experimental results. IEEE Trans Rehabil Eng. 2000;8:523–9.CrossRefPubMed Riener R, Ferrarin M, Pavan EE, Frigo CA. Patient-driven control of FES-supported standing up and sitting down: experimental results. IEEE Trans Rehabil Eng. 2000;8:523–9.CrossRefPubMed
18.
go back to reference Previdi F, Ferrarin M, Savaresi SM, Bittanti S. Close-loop control of FES supported standing up and sitting down using virtual reference feedback tuning. Control Eng Pract. 2005;13:1173–82.CrossRef Previdi F, Ferrarin M, Savaresi SM, Bittanti S. Close-loop control of FES supported standing up and sitting down using virtual reference feedback tuning. Control Eng Pract. 2005;13:1173–82.CrossRef
19.
go back to reference Kumar N, Pankaj D, Sharma VK, Agnihotri RC, Jindal R. FES supported sitting-standing-sitting of completely paraplegic patient. J Sci Ind Res. 2009;68:605–7. Kumar N, Pankaj D, Sharma VK, Agnihotri RC, Jindal R. FES supported sitting-standing-sitting of completely paraplegic patient. J Sci Ind Res. 2009;68:605–7.
20.
go back to reference Poboroniuc MS, Wood DE, Riener R, Donaldson N. A new controller for FES-assisted sitting down in paraplegia. Adv Electr Comp Eng. 2010;10:9–16.CrossRef Poboroniuc MS, Wood DE, Riener R, Donaldson N. A new controller for FES-assisted sitting down in paraplegia. Adv Electr Comp Eng. 2010;10:9–16.CrossRef
21.
go back to reference Ajoudani A, Erfanian A. A neuro-sliding-mode control with adaptive modeling of uncertainty for control of movement in paralyzed limbs using functional electrical stimulation. IEEE Trans Biomed Eng. 2009;56(7):1771–80.CrossRefPubMed Ajoudani A, Erfanian A. A neuro-sliding-mode control with adaptive modeling of uncertainty for control of movement in paralyzed limbs using functional electrical stimulation. IEEE Trans Biomed Eng. 2009;56(7):1771–80.CrossRefPubMed
22.
go back to reference Jezernik S, Wassink RG, Keller T. Sliding mode closed-loop control of FES: controlling the shank movement. IEEE Trans Biomed Eng. 2004;51(2):263–72.CrossRefPubMed Jezernik S, Wassink RG, Keller T. Sliding mode closed-loop control of FES: controlling the shank movement. IEEE Trans Biomed Eng. 2004;51(2):263–72.CrossRefPubMed
23.
go back to reference Qiu S, He F, Tang J, Xu J, Zhang L, Zhao X, Qi H, Zhou P, Cheng X, Wan B, Ming D. Intelligent algorithm tuning PID method of functional electrical stimulation using knee joint angle. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2561–4. Qiu S, He F, Tang J, Xu J, Zhang L, Zhao X, Qi H, Zhou P, Cheng X, Wan B, Ming D. Intelligent algorithm tuning PID method of functional electrical stimulation using knee joint angle. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2561–4.
24.
go back to reference Sharma N, Stegath K, Gregory CM, Dixon WE. Nonlinear neuromuscular electrical stimulation tracking control of a human limb. IEEE Trans Neural Syst Rehabil Eng. 2009;17(6):576–84.CrossRefPubMed Sharma N, Stegath K, Gregory CM, Dixon WE. Nonlinear neuromuscular electrical stimulation tracking control of a human limb. IEEE Trans Neural Syst Rehabil Eng. 2009;17(6):576–84.CrossRefPubMed
25.
go back to reference Ferrarin M, Palazzo F, Riener R, Quintern J. Model-based control of FES-induced single joint movements. IEEE Trans Neural Syst Rehabil Eng. 2001;9(3):245–57.CrossRefPubMed Ferrarin M, Palazzo F, Riener R, Quintern J. Model-based control of FES-induced single joint movements. IEEE Trans Neural Syst Rehabil Eng. 2001;9(3):245–57.CrossRefPubMed
26.
go back to reference Spring AN, Kofman J, Lemaire ED. Design and evaluation of an orthotic knee-extension assist. IEEE Trans Neural Syst Rehabil Eng. 2012;20(5):678–87.CrossRefPubMed Spring AN, Kofman J, Lemaire ED. Design and evaluation of an orthotic knee-extension assist. IEEE Trans Neural Syst Rehabil Eng. 2012;20(5):678–87.CrossRefPubMed
27.
go back to reference Chang SR, Kobetic R, Triolo RJ. Understanding stand-to-sit maneuver: implications for motor system neuroprostheses after paralysis. J Rehabil Res Dev. 2014;51(9):1339–51.CrossRefPubMedPubMedCentral Chang SR, Kobetic R, Triolo RJ. Understanding stand-to-sit maneuver: implications for motor system neuroprostheses after paralysis. J Rehabil Res Dev. 2014;51(9):1339–51.CrossRefPubMedPubMedCentral
28.
go back to reference Randeberg LL, Winnem AM, Langlois NE, Larsen EL, Haaverstad R, Skallerud B, Haugen OA, Svaasand LO. Skin changes following minor trauma. Lasers Surg Med. 2007;39(5):403–13.CrossRefPubMed Randeberg LL, Winnem AM, Langlois NE, Larsen EL, Haaverstad R, Skallerud B, Haugen OA, Svaasand LO. Skin changes following minor trauma. Lasers Surg Med. 2007;39(5):403–13.CrossRefPubMed
29.
go back to reference Triolo RJ, Bailey SN, Miller ME, Rohde LM, Anderson JS, Davis Jr JA, Abbas JJ, DiPonio LA, Forrest GP, Gater DR Jr, Yang LJ. Longitudinal performance of a surgically implanted neuroprosthesis for lower-extremity exercise, standing, and transfers after spinal cord injury. Arch Phys Med Rehabil. 2012;93(5):896–904. http://dx.doi.org/10.1016/j.apmr.2012.01.001. Triolo RJ, Bailey SN, Miller ME, Rohde LM, Anderson JS, Davis Jr JA, Abbas JJ, DiPonio LA, Forrest GP, Gater DR Jr, Yang LJ. Longitudinal performance of a surgically implanted neuroprosthesis for lower-extremity exercise, standing, and transfers after spinal cord injury. Arch Phys Med Rehabil. 2012;93(5):896–904. http://​dx.​doi.​org/​10.​1016/​j.​apmr.​2012.​01.​001.
30.
go back to reference Yoshioka S, Nagano A, Himeno R, Fukashiro S. Computation of the kinematics and the minimum peak joint moments of sit-to-stand movements. Biomed Eng Online. 2007;6:26.CrossRefPubMedPubMedCentral Yoshioka S, Nagano A, Himeno R, Fukashiro S. Computation of the kinematics and the minimum peak joint moments of sit-to-stand movements. Biomed Eng Online. 2007;6:26.CrossRefPubMedPubMedCentral
Metadata
Title
Improving stand-to-sit maneuver for individuals with spinal cord injury
Authors
Sarah R. Chang
Mark J. Nandor
Rudi Kobetic
Kevin M. Foglyano
Roger D. Quinn
Ronald J. Triolo
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2016
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-016-0137-6

Other articles of this Issue 1/2016

Journal of NeuroEngineering and Rehabilitation 1/2016 Go to the issue