Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2015

Open Access 01-12-2015 | Review

Spinal plasticity in robot-mediated therapy for the lower limbs

Authors: Andrew JT Stevenson, Natalie Mrachacz-Kersting, Edwin van Asseldonk, Duncan L. Turner, Erika G. Spaich

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2015

Login to get access

Abstract

Robot-mediated therapy can help improve walking ability in patients following injuries to the central nervous system. However, the efficacy of this treatment varies between patients, and evidence for the mechanisms underlying functional improvements in humans is poor, particularly in terms of neural changes in the spinal cord. Here, we review the recent literature on spinal plasticity induced by robotic-based training in humans and propose recommendations for the measurement of spinal plasticity using robotic devices. Evidence for spinal plasticity in humans following robotic training is limited to the lower limbs. Body weight-supported (BWS) robotic-assisted step training of patients with spinal cord injury (SCI) or stroke patients has been shown to lead to changes in the amplitude and phase modulation of spinal reflex pathways elicited by electrical stimulation or joint rotations. Of particular importance is the finding that, among other changes to the spinal reflex circuitries, BWS robotic-assisted step training in SCI patients resulted in the re-emergence of a physiological phase modulation of the soleus H-reflex during walking. Stretch reflexes elicited by joint rotations constitute a tool of interest to probe spinal circuitry since the technology necessary to produce these perturbations could be integrated as a natural part of robotic devices. Presently, ad-hoc devices with an actuator capable of producing perturbations powerful enough to elicit the reflex are available but are not part of robotic devices used for training purposes. A further development of robotic devices that include the technology to elicit stretch reflexes would allow for the spinal circuitry to be routinely tested as a part of the training and evaluation protocols.
Literature
1.
go back to reference Esquenazi A, Packel A. Robotic-assisted gait training and restoration. American Journal of Physical Medicine and Rehabilitation. 2012;91:S217–31.CrossRefPubMed Esquenazi A, Packel A. Robotic-assisted gait training and restoration. American Journal of Physical Medicine and Rehabilitation. 2012;91:S217–31.CrossRefPubMed
2.
go back to reference Hornby TG, Campbell DD, Kahn, JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: A randomized controlled study. Stroke. 2008;39(6):1786–92.CrossRefPubMed Hornby TG, Campbell DD, Kahn, JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: A randomized controlled study. Stroke. 2008;39(6):1786–92.CrossRefPubMed
3.
go back to reference Schwartz I, Sajin A, Fisher I, Neeb M, Shochina M, Katz-Leurer M et al. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PM&R. 2009;1(6):516–23. Schwartz I, Sajin A, Fisher I, Neeb M, Shochina M, Katz-Leurer M et al. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PM&R. 2009;1(6):516–23.
4.
go back to reference Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: A single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 2007;21(1):17–27. Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: A single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 2007;21(1):17–27.
5.
go back to reference Tefertiller C, Pharo B, Evans N, Winchester P. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev. 2011;48(4):387–416. Tefertiller C, Pharo B, Evans N, Winchester P. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev. 2011;48(4):387–416.
8.
go back to reference Patel S, Ho JT, Lai K, Ahangar B, Burgar GC, Scremin AE. Changes in motoneuron excitability in hemiplegic subjects after passive exercise when using a robotic arm. Arch Phys Med Rehabil. 2006;87(9):1257–61.CrossRefPubMed Patel S, Ho JT, Lai K, Ahangar B, Burgar GC, Scremin AE. Changes in motoneuron excitability in hemiplegic subjects after passive exercise when using a robotic arm. Arch Phys Med Rehabil. 2006;87(9):1257–61.CrossRefPubMed
9.
go back to reference Kao PC, Lewis CL, Ferris DP. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude. J Neuroeng Rehabil. 2010;7:33.PubMedCentralCrossRefPubMed Kao PC, Lewis CL, Ferris DP. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude. J Neuroeng Rehabil. 2010;7:33.PubMedCentralCrossRefPubMed
10.
go back to reference Blicher JU, Nielsen JF. Cortical and spinal excitability changes after robotic gait training in healthy participants. Neurorehabil Neural Repair. 2009;23(2):143–9.CrossRefPubMed Blicher JU, Nielsen JF. Cortical and spinal excitability changes after robotic gait training in healthy participants. Neurorehabil Neural Repair. 2009;23(2):143–9.CrossRefPubMed
11.
go back to reference Mummidisetty CK, Smith AC, Knikou M. Modulation of reciprocal and presynaptic inhibition during robotic-assisted stepping in humans. Clin Neurophysiol. 2013;124(3):557–64.CrossRefPubMed Mummidisetty CK, Smith AC, Knikou M. Modulation of reciprocal and presynaptic inhibition during robotic-assisted stepping in humans. Clin Neurophysiol. 2013;124(3):557–64.CrossRefPubMed
12.
go back to reference Knikou M. Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury. Exp Brain Res. 2013;228(3):279–96.CrossRefPubMed Knikou M. Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury. Exp Brain Res. 2013;228(3):279–96.CrossRefPubMed
13.
go back to reference Knikou M, Mummidisetty CK. Locomotor training improves premotoneuronal control after chronic spinal cord injury. J Neurophysiol. 2014;111(11):2264–75.CrossRefPubMed Knikou M, Mummidisetty CK. Locomotor training improves premotoneuronal control after chronic spinal cord injury. J Neurophysiol. 2014;111(11):2264–75.CrossRefPubMed
14.
go back to reference Knikou M, Smith AC, Mummidisetty CK. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury. J Neurophysiol. 2015;113(7):2447–60.CrossRefPubMed Knikou M, Smith AC, Mummidisetty CK. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury. J Neurophysiol. 2015;113(7):2447–60.CrossRefPubMed
15.
go back to reference Smith AC, Mummidisetty C, Rymer WZ, Knikou M. Locomotor training alters the behavior of flexor reflexes during walking in human spinal cord injury. J Neurophysiol. 2014;112(9):2164–75.CrossRefPubMed Smith AC, Mummidisetty C, Rymer WZ, Knikou M. Locomotor training alters the behavior of flexor reflexes during walking in human spinal cord injury. J Neurophysiol. 2014;112(9):2164–75.CrossRefPubMed
16.
go back to reference Smith AC, Rymer WZ, Knikou M. Locomotor training modifies soleus monosynaptic motoneuron responses in human spinal cord injury. Exp Brain Res. 2015;233(1):89–103.PubMedCentralCrossRefPubMed Smith AC, Rymer WZ, Knikou M. Locomotor training modifies soleus monosynaptic motoneuron responses in human spinal cord injury. Exp Brain Res. 2015;233(1):89–103.PubMedCentralCrossRefPubMed
17.
go back to reference Mirbagheri MM, Kindig MW, Niu X. Effects of robotic-locomotor training on stretch reflex function and muscular properties in individuals with spinal cord injury. Clin Neurophysiol. 2015;126(5):997–1006.CrossRefPubMed Mirbagheri MM, Kindig MW, Niu X. Effects of robotic-locomotor training on stretch reflex function and muscular properties in individuals with spinal cord injury. Clin Neurophysiol. 2015;126(5):997–1006.CrossRefPubMed
18.
go back to reference Trompetto C, Marinelli L, Mori L, Cossu E, Ziliolo R, Simonini M et al. Postactivation depression changes after robotic-assisted gait training in hemiplegic stroke patients. Gait Posture. 2013;38(4):729–33. Trompetto C, Marinelli L, Mori L, Cossu E, Ziliolo R, Simonini M et al. Postactivation depression changes after robotic-assisted gait training in hemiplegic stroke patients. Gait Posture. 2013;38(4):729–33.
19.
go back to reference Hultborn H, Illert M, Nielsen J, Paul A, Ballegaard M, Wiese H. On the mechanism of the post-activation depression of the H-reflex in human subjects. Exp Brain Res. 1996;108(3):450–62. Hultborn H, Illert M, Nielsen J, Paul A, Ballegaard M, Wiese H. On the mechanism of the post-activation depression of the H-reflex in human subjects. Exp Brain Res. 1996;108(3):450–62.
20.
go back to reference Grey MJ, Klinge K, Crone C, Lorentzen J, Biering-Sorensen F, Ravnborg M et al. Post-activation depression of soleus stretch reflexes in healthy and spastic humans. Exp Brain Res. 2008;185(2):189–97. Grey MJ, Klinge K, Crone C, Lorentzen J, Biering-Sorensen F, Ravnborg M et al. Post-activation depression of soleus stretch reflexes in healthy and spastic humans. Exp Brain Res. 2008;185(2):189–97.
21.
go back to reference Hendricks HT, Pasman JW, Merx JL, van Limbeek J, Zwarts MJ. Analysis of recovery processes after stroke by means of transcranial magnetic stimulation. J Clin Neurophysiol. 2003;20(3):188–95. Hendricks HT, Pasman JW, Merx JL, van Limbeek J, Zwarts MJ. Analysis of recovery processes after stroke by means of transcranial magnetic stimulation. J Clin Neurophysiol. 2003;20(3):188–95.
22.
go back to reference Avanzino L, Tacchino A, Abbruzzese G, Quartarone A, Ghilardi MF, Bonzano L et al. Recovery of motor performance deterioration induced by a demanding finger motor task does not follow cortical excitability dynamics. Neuroscience. 2011;174:84–90. Avanzino L, Tacchino A, Abbruzzese G, Quartarone A, Ghilardi MF, Bonzano L et al. Recovery of motor performance deterioration induced by a demanding finger motor task does not follow cortical excitability dynamics. Neuroscience. 2011;174:84–90.
23.
go back to reference Thompson AK, Pomerantz FR, Wolpaw JR. Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. J Neurosci. 2013;33(6):2365–75.PubMedCentralCrossRefPubMed Thompson AK, Pomerantz FR, Wolpaw JR. Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. J Neurosci. 2013;33(6):2365–75.PubMedCentralCrossRefPubMed
24.
go back to reference Thompson AK, Wolpaw JR. Operant conditioning of spinal reflexes: from basic science to clinical therapy. Front Integr Neurosci. 2014;8:25.PubMedCentralPubMed Thompson AK, Wolpaw JR. Operant conditioning of spinal reflexes: from basic science to clinical therapy. Front Integr Neurosci. 2014;8:25.PubMedCentralPubMed
25.
go back to reference Thompson AK, Wolpaw JR. Restoring Walking after Spinal Cord Injury: Operant Conditioning of Spinal Reflexes Can Help. Neuroscientist. 2015;21(2):203–15.CrossRefPubMed Thompson AK, Wolpaw JR. Restoring Walking after Spinal Cord Injury: Operant Conditioning of Spinal Reflexes Can Help. Neuroscientist. 2015;21(2):203–15.CrossRefPubMed
26.
go back to reference Wolpaw JR. What can the spinal cord teach us about learning and memory? Neuroscientist. 2010;16(5):532–49.CrossRefPubMed Wolpaw JR. What can the spinal cord teach us about learning and memory? Neuroscientist. 2010;16(5):532–49.CrossRefPubMed
27.
go back to reference Wolpaw JR, Tennissen AM. Activity-dependent spinal cord plasticity in health and disease. Annu Rev Neurosci. 2001;24(1):807–43.CrossRefPubMed Wolpaw JR, Tennissen AM. Activity-dependent spinal cord plasticity in health and disease. Annu Rev Neurosci. 2001;24(1):807–43.CrossRefPubMed
28.
go back to reference Makihara Y, Silva PdB, Thompson AK, Mrachacz-Kersting N. Operant conditioning of soleus stretch reflex in humans, in Society for Neuroscience Abstracts. LA: Society for Neuroscience Abstracts: New Orleans; 2012. Makihara Y, Silva PdB, Thompson AK, Mrachacz-Kersting N. Operant conditioning of soleus stretch reflex in humans, in Society for Neuroscience Abstracts. LA: Society for Neuroscience Abstracts: New Orleans; 2012.
29.
go back to reference Mrachacz-Kersting N,Silva PdB, Makihara Y, Arendt-Nielsen L, Sinkjaer T, Kersting U. Stretch reflex conditioning in humans: Implications for function, in Replace, Repair, Restore, Relieve – Bridging Clinical and Engineering Solutions in Neurorehabilitation: Proceedings of the 2nd International Conference on NeuroRehabilitation (ICNR2014), Aalborg, 24–26 June, 2014, W. Jensen, O.K. Andersen, and M. Akay, Editors. 2014, Springer International Publishing. p. 103–111. doi:10.1007/978-3-319-08072-7_20. Mrachacz-Kersting N,Silva PdB, Makihara Y, Arendt-Nielsen L, Sinkjaer T, Kersting U. Stretch reflex conditioning in humans: Implications for function, in Replace, Repair, Restore, Relieve – Bridging Clinical and Engineering Solutions in Neurorehabilitation: Proceedings of the 2nd International Conference on NeuroRehabilitation (ICNR2014), Aalborg, 24–26 June, 2014, W. Jensen, O.K. Andersen, and M. Akay, Editors. 2014, Springer International Publishing. p. 103–111. doi:10.​1007/​978-3-319-08072-7_​20.
30.
go back to reference Silva PdB, Makihara Y, Thompson AK, Kersting U, Mrachacz-Kersting N. Operant up-conditioning of soleus stretch reflex in healthy humans, in Society for Neuroscience Abstracts. San Diego, CA: Society for Neuroscience Abstracts; 2013. Silva PdB, Makihara Y, Thompson AK, Kersting U, Mrachacz-Kersting N. Operant up-conditioning of soleus stretch reflex in healthy humans, in Society for Neuroscience Abstracts. San Diego, CA: Society for Neuroscience Abstracts; 2013.
31.
go back to reference Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2013;7, CD006185.PubMed Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2013;7, CD006185.PubMed
32.
go back to reference Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13. Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13.
33.
go back to reference Mrachacz-Kersting N, Sinkjær T. Reflex and non-reflex torque responses to stretch of the human knee extensors. Exp Brain Res. 2003;151(1):72–81.CrossRefPubMed Mrachacz-Kersting N, Sinkjær T. Reflex and non-reflex torque responses to stretch of the human knee extensors. Exp Brain Res. 2003;151(1):72–81.CrossRefPubMed
34.
go back to reference Sinkjær T. Muscle, reflex and central components in the control of the ankle joint in healthy and spastic man. Acta Neurol Scand Suppl. 1997;170:1–28.PubMed Sinkjær T. Muscle, reflex and central components in the control of the ankle joint in healthy and spastic man. Acta Neurol Scand Suppl. 1997;170:1–28.PubMed
36.
go back to reference Marsden CD, Merton PA, Morton HB. Servo action and stretch reflex in human muscle and its apparent dependence on peripheral sensation. J Physiol. 1971;216(1):21P–2P.CrossRefPubMed Marsden CD, Merton PA, Morton HB. Servo action and stretch reflex in human muscle and its apparent dependence on peripheral sensation. J Physiol. 1971;216(1):21P–2P.CrossRefPubMed
37.
go back to reference Thompson AK, Wolpaw JR. Targeted neuroplasticity for rehabilitation. Prog Brain Res. 2015;218:157–72.CrossRefPubMed Thompson AK, Wolpaw JR. Targeted neuroplasticity for rehabilitation. Prog Brain Res. 2015;218:157–72.CrossRefPubMed
38.
go back to reference Pierrot-Deseilligny E, Burke D. The circuitry of the human spinal cord: Its role in motor control and movement disorders. Cambridge: Cambridge University Press; 2005.CrossRef Pierrot-Deseilligny E, Burke D. The circuitry of the human spinal cord: Its role in motor control and movement disorders. Cambridge: Cambridge University Press; 2005.CrossRef
39.
go back to reference Marsden CD, Rothwell JC, Day BL. Long-latency automatic responses to muscle stretch in man: origin and function. Adv Neurol. 1983;39:509–39.PubMed Marsden CD, Rothwell JC, Day BL. Long-latency automatic responses to muscle stretch in man: origin and function. Adv Neurol. 1983;39:509–39.PubMed
40.
go back to reference Mrachacz-Kersting N, Grey MJ, Sinkjaer T. Evidence for a supraspinal contribution to the human quadriceps long-latency stretch reflex. Exp Brain Res. 2006;168(4):529–40.CrossRefPubMed Mrachacz-Kersting N, Grey MJ, Sinkjaer T. Evidence for a supraspinal contribution to the human quadriceps long-latency stretch reflex. Exp Brain Res. 2006;168(4):529–40.CrossRefPubMed
41.
go back to reference Matthews PB. Observations on the automatic compensation of reflex gain on varying the pre-existing level of motor discharge in man. J Physiol. 1986;374:73–90.PubMedCentralCrossRefPubMed Matthews PB. Observations on the automatic compensation of reflex gain on varying the pre-existing level of motor discharge in man. J Physiol. 1986;374:73–90.PubMedCentralCrossRefPubMed
42.
go back to reference Grey MJ, Ladouceur M, Andersen JB, Nielsen JB, Sinkjaer T. Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans. J Physiol. 2001;534(Pt 3):925–33. Grey MJ, Ladouceur M, Andersen JB, Nielsen JB, Sinkjaer T. Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans. J Physiol. 2001;534(Pt 3):925–33.
43.
go back to reference van Doornik J, Masakado Y, Sinkjaer T, Nielsen JB. The suppression of the long-latency stretch reflex in the human tibialis anterior muscle by transcranial magnetic stimulation. Exp Brain Res. 2004;157(3):403–6.CrossRefPubMed van Doornik J, Masakado Y, Sinkjaer T, Nielsen JB. The suppression of the long-latency stretch reflex in the human tibialis anterior muscle by transcranial magnetic stimulation. Exp Brain Res. 2004;157(3):403–6.CrossRefPubMed
44.
go back to reference Capaday C, Forget R, Fraser R, Lamarre Y. Evidence for a contribution of the motor cortex to the long-latency stretch reflex of the human thumb. J Physiol. 1991;440:243–55. Capaday C, Forget R, Fraser R, Lamarre Y. Evidence for a contribution of the motor cortex to the long-latency stretch reflex of the human thumb. J Physiol. 1991;440:243–55.
45.
go back to reference Petersen N, Christensen LO, Morita H, Sinkjaer T, Nilesen JB. Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior muscle in man. J Physiol. 1998;512(Pt 1):267–76.PubMedCentralCrossRefPubMed Petersen N, Christensen LO, Morita H, Sinkjaer T, Nilesen JB. Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior muscle in man. J Physiol. 1998;512(Pt 1):267–76.PubMedCentralCrossRefPubMed
46.
go back to reference Christensen LO, Andersen JB, Sinkjaer T, Nielsen J. Transcranial magnetic stimulation and stretch reflexes in the tibialis anterior muscle during human walking. J Physiol. 2001;531(Pt 2):545–57. Christensen LO, Andersen JB, Sinkjaer T, Nielsen J. Transcranial magnetic stimulation and stretch reflexes in the tibialis anterior muscle during human walking. J Physiol. 2001;531(Pt 2):545–57.
47.
go back to reference Andersen JB, Sinkjær T. Mobile ankle and knee perturbator. IEEE Trans Biomed Eng. 2003;50(10):1208–11.CrossRefPubMed Andersen JB, Sinkjær T. Mobile ankle and knee perturbator. IEEE Trans Biomed Eng. 2003;50(10):1208–11.CrossRefPubMed
48.
go back to reference Mrachacz-Kersting N, Lavoie BA, Andersen JB, Sinkjaer T. Characterisation of the quadriceps stretch reflex during the transition from swing to stance phase of human walking. Exp Brain Res. 2004;159(1):108–22. Mrachacz-Kersting N, Lavoie BA, Andersen JB, Sinkjaer T. Characterisation of the quadriceps stretch reflex during the transition from swing to stance phase of human walking. Exp Brain Res. 2004;159(1):108–22.
49.
go back to reference Sinkjær T, Andersen JB, Larsen B. Soleus stretch reflex modulation during gait in humans. J Neurophysiol. 1996;76(2):1112–20.PubMed Sinkjær T, Andersen JB, Larsen B. Soleus stretch reflex modulation during gait in humans. J Neurophysiol. 1996;76(2):1112–20.PubMed
50.
go back to reference Sinkjær T, Andersen JB, Nielsen JF, Hansen HJ. Soleus long-latency stretch reflexes during walking in healthy and spastic humans. Clin Neurophysiol. 1999;110(5):951–9. Sinkjær T, Andersen JB, Nielsen JF, Hansen HJ. Soleus long-latency stretch reflexes during walking in healthy and spastic humans. Clin Neurophysiol. 1999;110(5):951–9.
51.
go back to reference Tucker MR, Moser A, Lambercy O, Sulzer J, Gassert R. Design of a wearable perturbator for human knee impedance estimation during gait. IEEE Int Conf Rehabil Robot. 2013;2013:1–6. Tucker MR, Moser A, Lambercy O, Sulzer J, Gassert R. Design of a wearable perturbator for human knee impedance estimation during gait. IEEE Int Conf Rehabil Robot. 2013;2013:1–6.
52.
go back to reference Field-Fote EC, Dietz V. Single joint perturbation during gait: preserved compensatory response pattern in spinal cord injured subjects. Clin Neurophysiol. 2007;118(7):1607–16.PubMedCentralCrossRefPubMed Field-Fote EC, Dietz V. Single joint perturbation during gait: preserved compensatory response pattern in spinal cord injured subjects. Clin Neurophysiol. 2007;118(7):1607–16.PubMedCentralCrossRefPubMed
53.
go back to reference Mirbagheri MM, Alibiglou L, Thajchayapong M, Rymer WZ. Muscle and reflex changes with varying joint angle in hemiparetic stroke. J Neuroeng Rehabil. 2008;5:6.PubMedCentralCrossRefPubMed Mirbagheri MM, Alibiglou L, Thajchayapong M, Rymer WZ. Muscle and reflex changes with varying joint angle in hemiparetic stroke. J Neuroeng Rehabil. 2008;5:6.PubMedCentralCrossRefPubMed
54.
go back to reference de Gooijer-van de Groep KL, de Vulgt E, de Groot JH, van der Heijden-Maessen HCM, Wielheesen DHM, van Wijlen-Hempel RMS et al. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy. J Neuroeng Rehabil. 2013;10:81. de Gooijer-van de Groep KL, de Vulgt E, de Groot JH, van der Heijden-Maessen HCM, Wielheesen DHM, van Wijlen-Hempel RMS et al. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy. J Neuroeng Rehabil. 2013;10:81.
Metadata
Title
Spinal plasticity in robot-mediated therapy for the lower limbs
Authors
Andrew JT Stevenson
Natalie Mrachacz-Kersting
Edwin van Asseldonk
Duncan L. Turner
Erika G. Spaich
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2015
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-015-0073-x

Other articles of this Issue 1/2015

Journal of NeuroEngineering and Rehabilitation 1/2015 Go to the issue