Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2015

Open Access 01-12-2015 | Research

Trial-to-trial latency variability of somatosensory evoked potentials as a prognostic indicator for surgical management of cervical spondylotic myelopathy

Authors: Hongyan Cui, Yazhou Wang, Xiang Li, Xiaobo Xie, Shengpu Xu, Yong Hu

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2015

Login to get access

Abstract

Background

Early detection of neural conductivity changes at the compressed spinal cord is important for predicting the surgical outcomes of patients with cervical spondylotic myelopathy (CSM). The prognostic value of median nerve somatosensory evoked potential (SEP) has been proposed previously. The present prospective study evaluates the use of trial-to-trial variability in SEP as a valuable predictor of neurological recovery after surgery of CSM.

Methods

A total of 35 CSM patients who underwent surgery with up to 6-month follow-up were recruited in this study. SEP signals were recorded preoperatively. The single trial SEP was extracted by a newly developed second-order blind identification method. The postoperative recovery was assessed using the modified Japanese Orthopaedic Association. The correlation between the latency variability of trial-to-trial SEP and post-operative recovery ratio was analyzed. The prognostic value of trial-to-trial SEP for CSM was evaluated using a receiver operator characteristic curve which can accurately reflect the relationship between sensitivity and specificity of a diagnostic method and represent the accuracy of prognosis.

Results

The correlation coefficient of trial-to-trial latency variability and the 6-month recovery ratio was statistically significant (r = −0.82, P < 0.01). The trial-to-trial SEP had a higher prognostic accuracy (AUC = 0.928, P < 0.001) with an optimal prognostic value of 9.25 % compared with averaged SEP when the threshold of recovery ratio was 40 %, and was more sensitive (93.80 %) than the averaged SEP (43.80 %).

Conclusions

These findings indicate that the latency variability of trial-to-trial SEP reflect the recovery ratio of CSM patients after surgery. It is suggested that the latency variability of trial-to-trial SEP is useful for predicting the surgical outcomes for patients with CSM, which would be a potential indication of surgical treatment for CSM to help decision making of surgical planning for CSM patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Baptiste D, Fehlings M. Pathophysiology of cervical myelopathy. Spine J. 2006;6(6 Suppl):190S-197S. Baptiste D, Fehlings M. Pathophysiology of cervical myelopathy. Spine J. 2006;6(6 Suppl):190S-197S.
2.
go back to reference Liu B, Ma W, Zhu F, Guo CH, Yang WL. Comparison between anterior and posterior decompression for cervical spondylotic myelopathy: subjective evaluation and cost analysis. Orthop Surg. 2012;4(1):47–54.PubMed Liu B, Ma W, Zhu F, Guo CH, Yang WL. Comparison between anterior and posterior decompression for cervical spondylotic myelopathy: subjective evaluation and cost analysis. Orthop Surg. 2012;4(1):47–54.PubMed
3.
go back to reference McCormick WE, Steinmetz MP, Benzel EC. Cervical spondylotic myelopathy: make the difficult diagnosis, then refer for surgery. Cleve Clin J Med. 2003;70(10):899–904.PubMed McCormick WE, Steinmetz MP, Benzel EC. Cervical spondylotic myelopathy: make the difficult diagnosis, then refer for surgery. Cleve Clin J Med. 2003;70(10):899–904.PubMed
4.
go back to reference Zhang W, Zhang J, Yang J, Xue H, Cao D, Huang H, et al. The role of magnetic resonance imaging in pretreatment evaluation of early-stage cervical cancer. Int J Gynecol Cancer. 2014;24(7):1292–8.PubMed Zhang W, Zhang J, Yang J, Xue H, Cao D, Huang H, et al. The role of magnetic resonance imaging in pretreatment evaluation of early-stage cervical cancer. Int J Gynecol Cancer. 2014;24(7):1292–8.PubMed
5.
go back to reference Li X, Cui JL, Mak KC, Luk KDK, Hu Y: Potential use of diffusion tensor imaging in level diagnosis of multilevel cervical spondylotic myelopathy. Spine 2014, 39(10):E615-E622. Li X, Cui JL, Mak KC, Luk KDK, Hu Y: Potential use of diffusion tensor imaging in level diagnosis of multilevel cervical spondylotic myelopathy. Spine 2014, 39(10):E615-E622.
6.
go back to reference Ahn JS, Lee JK, Kim BK. Prognostic factors that affect the surgical outcome of the laminoplasty in cervical spondylotic myelopathy. Clin Orthop Surg. 2010;2(2):98–104.PubMedCentralPubMed Ahn JS, Lee JK, Kim BK. Prognostic factors that affect the surgical outcome of the laminoplasty in cervical spondylotic myelopathy. Clin Orthop Surg. 2010;2(2):98–104.PubMedCentralPubMed
7.
go back to reference Roh MS, Wilson-Holden TJ, Padberg AM, Park JB, Daniel Riew K. The utility of somatosensory evoked potential monitoring during cervical spine surgery: how often does it prompt intervention and affect outcome? Asian spine journal. 2007;1(1):43–7.CrossRefPubMedCentralPubMed Roh MS, Wilson-Holden TJ, Padberg AM, Park JB, Daniel Riew K. The utility of somatosensory evoked potential monitoring during cervical spine surgery: how often does it prompt intervention and affect outcome? Asian spine journal. 2007;1(1):43–7.CrossRefPubMedCentralPubMed
8.
go back to reference Bednarik J, Kadanka Z, Vohánka S, Stejskal L, Vlach O, Schröder R. The value of somatosensory- and motor-evoked potentials in predicting and monitoring the effect of therapy in spondylotic cervical myelopathy. Prospective randomized study. Spine (Phila Pa 1976). 1999;24(15):1593–8. Bednarik J, Kadanka Z, Vohánka S, Stejskal L, Vlach O, Schröder R. The value of somatosensory- and motor-evoked potentials in predicting and monitoring the effect of therapy in spondylotic cervical myelopathy. Prospective randomized study. Spine (Phila Pa 1976). 1999;24(15):1593–8.
9.
go back to reference Kadanka Z, Mares M, Bednarik J, Smrcka V, Krbec M, Chaloupka R, et al. Predictive factors for spondylotic cervical myelopathy treated conservatively or surgically. Eur J Neurol. 2005;12(1):55–63.PubMed Kadanka Z, Mares M, Bednarik J, Smrcka V, Krbec M, Chaloupka R, et al. Predictive factors for spondylotic cervical myelopathy treated conservatively or surgically. Eur J Neurol. 2005;12(1):55–63.PubMed
10.
go back to reference Hu Y, Ding Y, Ruan D, Wong YW, Cheung KMC, Luk KDK. Prognostic value of somatosensory-evoked potentials in the surgical management of cervical spondylotic myelopathy. Spine. 2008;33(10):E305–10.CrossRefPubMed Hu Y, Ding Y, Ruan D, Wong YW, Cheung KMC, Luk KDK. Prognostic value of somatosensory-evoked potentials in the surgical management of cervical spondylotic myelopathy. Spine. 2008;33(10):E305–10.CrossRefPubMed
11.
go back to reference Morishita Y, Hida S, Naito M, Matsushima U. Evaluation of cervical spondylotic myelopathy using somatosensory-evoked potentials. Int Orthop. 2005;29(6):343–6.PubMedCentralPubMed Morishita Y, Hida S, Naito M, Matsushima U. Evaluation of cervical spondylotic myelopathy using somatosensory-evoked potentials. Int Orthop. 2005;29(6):343–6.PubMedCentralPubMed
12.
go back to reference Bouchard JA, Bohlman HH, Biro C. Intraoperative improvements of somatosensory evoked potentials: correlation to clinical outcome in surgery for cervical spondylitic myelopathy. Spine. 1996;21(5):589–94.CrossRefPubMed Bouchard JA, Bohlman HH, Biro C. Intraoperative improvements of somatosensory evoked potentials: correlation to clinical outcome in surgery for cervical spondylitic myelopathy. Spine. 1996;21(5):589–94.CrossRefPubMed
13.
go back to reference Ma Y, Hu Y, Valentin N, Geocadin RG, Thakor NV, Jia X. Time jitter of somatosensory evoked potentials in recovery from hypoxic-ischemic brain injury. J Neurosci Methods. 2011;201(2):355–60.PubMedCentralPubMed Ma Y, Hu Y, Valentin N, Geocadin RG, Thakor NV, Jia X. Time jitter of somatosensory evoked potentials in recovery from hypoxic-ischemic brain injury. J Neurosci Methods. 2011;201(2):355–60.PubMedCentralPubMed
14.
go back to reference Nakai S, Sonoo M, Shimizu T. Somatosensory evoked potentials (SEPs) for the evaluation of cervical spondylotic myelopathy: utility of the onset-latency parameters. Clin Neurophysiol. 2008;119(10):2396–404.PubMed Nakai S, Sonoo M, Shimizu T. Somatosensory evoked potentials (SEPs) for the evaluation of cervical spondylotic myelopathy: utility of the onset-latency parameters. Clin Neurophysiol. 2008;119(10):2396–404.PubMed
15.
go back to reference Hu Y, Luk KDK, Lu WW, Leong JCY. Application of time-frequency analysis to somatosensory evoked potential for intraoperative spinal cord monitoring. J Neurol Neurosur Ps. 2003;74(1):82–7. Hu Y, Luk KDK, Lu WW, Leong JCY. Application of time-frequency analysis to somatosensory evoked potential for intraoperative spinal cord monitoring. J Neurol Neurosur Ps. 2003;74(1):82–7.
16.
go back to reference Hu Y, Liu HT, Luk KDK. Signal-to-noise ratio of intraoperative tibial nerve somatosensory-evoked potentials. J Clin Neurophysiol. 2010;27(1):30–3.PubMed Hu Y, Liu HT, Luk KDK. Signal-to-noise ratio of intraoperative tibial nerve somatosensory-evoked potentials. J Clin Neurophysiol. 2010;27(1):30–3.PubMed
17.
go back to reference Yu WR, Liu T, Kiehl TR, Fehlings MG. Human neuropathological and animal model evidence supporting a role for Fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy. Brain. 2011;134(Pt 5):1277–92.CrossRefPubMed Yu WR, Liu T, Kiehl TR, Fehlings MG. Human neuropathological and animal model evidence supporting a role for Fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy. Brain. 2011;134(Pt 5):1277–92.CrossRefPubMed
18.
go back to reference Nowak J, Hagerman I, Ylen M, Nyquist O, Sylven C. Electrocardiogram signal variance analysis in the diagnosis of coronary artery disease–a comparison with exercise stress test in an angiographically documented high prevalence population. Clin Cardiol. 1993;16(9):671–82.PubMed Nowak J, Hagerman I, Ylen M, Nyquist O, Sylven C. Electrocardiogram signal variance analysis in the diagnosis of coronary artery disease–a comparison with exercise stress test in an angiographically documented high prevalence population. Clin Cardiol. 1993;16(9):671–82.PubMed
19.
go back to reference Liu HT, Xie XB, Xu SP, Wan F, Hu Y. One-unit second-order blind identification with reference for short transient signals. Inform Sciences. 2013;227:90–101. Liu HT, Xie XB, Xu SP, Wan F, Hu Y. One-unit second-order blind identification with reference for short transient signals. Inform Sciences. 2013;227:90–101.
20.
go back to reference Hu L, Zhang ZG, Hung YS, Luk KD, Iannetti GD, Hu Y. Single-trial detection of somatosensory evoked potentials by probabilistic independent component analysis and wavelet filtering. Clin Neurophysiol. 2011;122(7):1429–39.PubMed Hu L, Zhang ZG, Hung YS, Luk KD, Iannetti GD, Hu Y. Single-trial detection of somatosensory evoked potentials by probabilistic independent component analysis and wavelet filtering. Clin Neurophysiol. 2011;122(7):1429–39.PubMed
21.
go back to reference Liu HT, Chang CQ, Luk KDK, Hu Y. Comparison of blind source separation methods in fast somatosensory-evoked potential detection. J Clin Neurophysiol. 2011;28(2):170–7.PubMed Liu HT, Chang CQ, Luk KDK, Hu Y. Comparison of blind source separation methods in fast somatosensory-evoked potential detection. J Clin Neurophysiol. 2011;28(2):170–7.PubMed
22.
go back to reference Kearney RE. Evaluation of the Wiener filter applied to evoked EMG potentials. Electroencephalogr Clin Neurophysiol. 1979;46(4):475–8.PubMed Kearney RE. Evaluation of the Wiener filter applied to evoked EMG potentials. Electroencephalogr Clin Neurophysiol. 1979;46(4):475–8.PubMed
23.
go back to reference Ting KH, Fung PC, Chang CQ, Chan FH. Automatic correction of artifact from single-trial event-related potentials by blind source separation using second order statistics only. Med Eng Phys. 2006;28(8):780–94.PubMed Ting KH, Fung PC, Chang CQ, Chan FH. Automatic correction of artifact from single-trial event-related potentials by blind source separation using second order statistics only. Med Eng Phys. 2006;28(8):780–94.PubMed
24.
go back to reference Tavy DL, Wagner GL, Keunen RW, Wattendorff AR, Hekster RE, Franssen H. Transcranial magnetic stimulation in patients with cervical spondylotic myelopathy: clinical and radiological correlations. Muscle Nerve. 1994;17(2):235–41.PubMed Tavy DL, Wagner GL, Keunen RW, Wattendorff AR, Hekster RE, Franssen H. Transcranial magnetic stimulation in patients with cervical spondylotic myelopathy: clinical and radiological correlations. Muscle Nerve. 1994;17(2):235–41.PubMed
25.
go back to reference Wen CY, Cui JL, Liu HS, Mak KC, Cheung WY, Luk KDK, et al. Is diffusion anisotropy a biomarker for disease severity and surgical prognosis of cervical spondylotic myelopathy? Radiology. 2014;270(1):197–204.CrossRefPubMed Wen CY, Cui JL, Liu HS, Mak KC, Cheung WY, Luk KDK, et al. Is diffusion anisotropy a biomarker for disease severity and surgical prognosis of cervical spondylotic myelopathy? Radiology. 2014;270(1):197–204.CrossRefPubMed
26.
go back to reference Hanley JA, Mcneil BJ. The meaning and use of the area under a receiver operating characteristic (Roc) curve. Radiology. 1982;143(1):29–36.CrossRefPubMed Hanley JA, Mcneil BJ. The meaning and use of the area under a receiver operating characteristic (Roc) curve. Radiology. 1982;143(1):29–36.CrossRefPubMed
27.
go back to reference Nakamura M, Fujiyoshi K, Tsuji O, Konomi T, Hosogane N, Watanabe K, et al. Clinical significance of diffusion tensor tractography as a predictor of functional recovery after laminoplasty in patients with cervical compressive myelopathy. J Neurosurg Spine. 2012;17(2):147–52.PubMed Nakamura M, Fujiyoshi K, Tsuji O, Konomi T, Hosogane N, Watanabe K, et al. Clinical significance of diffusion tensor tractography as a predictor of functional recovery after laminoplasty in patients with cervical compressive myelopathy. J Neurosurg Spine. 2012;17(2):147–52.PubMed
28.
go back to reference Holly LT, Moftakhar P, Khoo LT, Shamie AN, Wang JC. Surgical outcomes of elderly patients with cervical spondylotic myelopathy. Surg Neurol. 2008;69(3):233–40.PubMed Holly LT, Moftakhar P, Khoo LT, Shamie AN, Wang JC. Surgical outcomes of elderly patients with cervical spondylotic myelopathy. Surg Neurol. 2008;69(3):233–40.PubMed
29.
go back to reference Suri A, Chabbra RP, Mehta VS, Gaikwad S, Pandey RM. Effect of intramedullary signal changes on the surgical outcome of patients with cervical spondylotic myelopathy. Spine J. 2003;3(1):33–45.PubMed Suri A, Chabbra RP, Mehta VS, Gaikwad S, Pandey RM. Effect of intramedullary signal changes on the surgical outcome of patients with cervical spondylotic myelopathy. Spine J. 2003;3(1):33–45.PubMed
30.
go back to reference Hoshiyama M, Kakigi R. New concept for the recovery function of short-latency somatosensory evoked cortical potentials following median nerve stimulation. Clin Neurophysiol. 2002;113(4):535–41.PubMed Hoshiyama M, Kakigi R. New concept for the recovery function of short-latency somatosensory evoked cortical potentials following median nerve stimulation. Clin Neurophysiol. 2002;113(4):535–41.PubMed
31.
go back to reference Matsukado Y, Yoshida M, Goya T, Shimoji K. Classification of cervical spondylosis or disc protrusion by preoperative evoked spinal electrogram. Follow-up study. J Neurosurg. 1976;44(4):435–41.PubMed Matsukado Y, Yoshida M, Goya T, Shimoji K. Classification of cervical spondylosis or disc protrusion by preoperative evoked spinal electrogram. Follow-up study. J Neurosurg. 1976;44(4):435–41.PubMed
32.
go back to reference Makeig S, Jung TP, Bell AJ, Ghahremani D, Sejnowski TJ. Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci U S A. 1997;94(20):10979–84.PubMedCentralPubMed Makeig S, Jung TP, Bell AJ, Ghahremani D, Sejnowski TJ. Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci U S A. 1997;94(20):10979–84.PubMedCentralPubMed
33.
go back to reference Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging. 2004;23(2):137–52.PubMed Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging. 2004;23(2):137–52.PubMed
34.
go back to reference Lin QH, Zheng YR, Yin FL, Liang HL, Calhoun VD. A fast algorithm for one-unit ICA-R. Inform Sciences. 2007;177(5):1265–75. Lin QH, Zheng YR, Yin FL, Liang HL, Calhoun VD. A fast algorithm for one-unit ICA-R. Inform Sciences. 2007;177(5):1265–75.
35.
go back to reference Tang AC, Sutherland MT, McKinney CJ. Validation of SOBI components from high-density EEG. Neuroimage. 2005;25(2):539–53.CrossRefPubMed Tang AC, Sutherland MT, McKinney CJ. Validation of SOBI components from high-density EEG. Neuroimage. 2005;25(2):539–53.CrossRefPubMed
Metadata
Title
Trial-to-trial latency variability of somatosensory evoked potentials as a prognostic indicator for surgical management of cervical spondylotic myelopathy
Authors
Hongyan Cui
Yazhou Wang
Xiang Li
Xiaobo Xie
Shengpu Xu
Yong Hu
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2015
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-015-0042-4

Other articles of this Issue 1/2015

Journal of NeuroEngineering and Rehabilitation 1/2015 Go to the issue