Skip to main content
Top
Published in: Immunity & Ageing 1/2018

Open Access 01-12-2018 | Research

Molecular changes associated with increased TNF-α-induced apoptotis in naïve (TN) and central memory (TCM) CD8+ T cells in aged humans

Authors: Sudhir Gupta, Houfen Su, Sudhanshu Agrawal, Sastry Gollapudi

Published in: Immunity & Ageing | Issue 1/2018

Login to get access

Abstract

Background

Progressive T cell decline in aged humans is associated with a deficiency of naïve (TN) and central memory (TCM) T cells. We have previously reported increased Tumor necrosis factor-α (TNF-α)-induced apoptosis in TN and TCM T cells in aged humans; however, the molecular basis of increased apoptosis remains to be defined. Since expression of TNF receptors (TNFRs) was reported to be comparable in young and aged, we investigated signaling events downstream of TNFRs to understand the molecular basis of increased TNF-α-induced apoptosis in aged TN and TCM CD8+ cells.

Results

The expression of TRAF-2 and RIP, phosphorylation of JNK, IKKα/β, and IκBα, and activation of NF-κB activation were significantly decreased in TN and TCM CD8+ cells from aged subjects as compared to young controls. Furthermore, expression of A20, Bcl-xL, cIAP1, and FLIP-L and FLIP-S was significantly decreased in TN and TCM CD8+ cells from aged subjects.

Conclusions

These data demonstrate that an impaired expression/function of molecules downstream TNFR signaling pathway that confer survival signals contribute to increased apoptosis of TN and TCM CD8+ cells in aged humans.
Literature
2.
go back to reference Vallejo AN. Immune aging and challenges for immune protection of the graying population. Aging Disease. 2011;2:339–45.PubMedPubMedCentral Vallejo AN. Immune aging and challenges for immune protection of the graying population. Aging Disease. 2011;2:339–45.PubMedPubMedCentral
3.
go back to reference Sansoni P, Vescivini R, Biasini C, Zanni F, Telera A, Lucchini G, Passeri G, Monti G, Frnchesi C, Passeri M. The Imune system in extreme longevity. Exp Gerontol. 2008;43:61–5.CrossRefPubMed Sansoni P, Vescivini R, Biasini C, Zanni F, Telera A, Lucchini G, Passeri G, Monti G, Frnchesi C, Passeri M. The Imune system in extreme longevity. Exp Gerontol. 2008;43:61–5.CrossRefPubMed
4.
go back to reference Pawlec G, Larbi A, Derhovanessian E. Senescence of the human immune system. J Compl Pathol. 2010;42(suppl 1):S39–44.CrossRef Pawlec G, Larbi A, Derhovanessian E. Senescence of the human immune system. J Compl Pathol. 2010;42(suppl 1):S39–44.CrossRef
5.
go back to reference Pawelec G, Hirokawa K, Fulop T. Altered T cell signaling in ageing. Mech Ageing Dev. 2001;122:1613–37.CrossRefPubMed Pawelec G, Hirokawa K, Fulop T. Altered T cell signaling in ageing. Mech Ageing Dev. 2001;122:1613–37.CrossRefPubMed
6.
go back to reference Ershler WB. Interleukin-6: a cytokine for gerontologists. J Am Geriatric Soc. 1993;41:176–81.CrossRef Ershler WB. Interleukin-6: a cytokine for gerontologists. J Am Geriatric Soc. 1993;41:176–81.CrossRef
7.
go back to reference Gupta S. Membrane signal transduction in T cells in aging humans. Annals of NY Acad Sciences. 1989;568:277–82.CrossRef Gupta S. Membrane signal transduction in T cells in aging humans. Annals of NY Acad Sciences. 1989;568:277–82.CrossRef
8.
go back to reference Powlec G, Barnett Y, Effros R, Forsey R, Frasca D, Globerson A, Mariani E, McLeod J, Caruso C, Franceschi C, Fulop T, Gupta S, Mocchegiani E, Solana R. T cells and aging. Front Biosci. 2002;7:d1058–183. Powlec G, Barnett Y, Effros R, Forsey R, Frasca D, Globerson A, Mariani E, McLeod J, Caruso C, Franceschi C, Fulop T, Gupta S, Mocchegiani E, Solana R. T cells and aging. Front Biosci. 2002;7:d1058–183.
9.
go back to reference Fagiola U, Cossarizza A, Scala E, Fanales-Belasio E, Ortolani C, Cozzi E, Monti D, Franceschi C, Paganelli R. Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol. 1993;23:2375–8.CrossRef Fagiola U, Cossarizza A, Scala E, Fanales-Belasio E, Ortolani C, Cozzi E, Monti D, Franceschi C, Paganelli R. Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol. 1993;23:2375–8.CrossRef
10.
go back to reference Brunnsgaard H, Andersen-Ranberg K, Hjelmborg JB, Pedersen BK, Jeu B. Elevated tumor necrosis factor alpha and mortality in centenarians. Amer J Med. 2003;115:278–83.CrossRef Brunnsgaard H, Andersen-Ranberg K, Hjelmborg JB, Pedersen BK, Jeu B. Elevated tumor necrosis factor alpha and mortality in centenarians. Amer J Med. 2003;115:278–83.CrossRef
11.
go back to reference Trzonkowski P, Myslizska J, Godlewska B, Szmit E, Lukaszuk K, Wieckiewicz J, Brydak L, Machala M, Landowski J, Mysliwski A. Immune consequences of the spontaneous pro-inflammatory status in depressed elderly patients. Brain Behav Immun. 2004;18:135–48.CrossRefPubMed Trzonkowski P, Myslizska J, Godlewska B, Szmit E, Lukaszuk K, Wieckiewicz J, Brydak L, Machala M, Landowski J, Mysliwski A. Immune consequences of the spontaneous pro-inflammatory status in depressed elderly patients. Brain Behav Immun. 2004;18:135–48.CrossRefPubMed
12.
go back to reference Penninx BWJH, Kritchevsky SB, Newman AB, Nicklas BJ, Simonsick EM, Rubin S, Nevitt M, Visser M, Harris T, Pahor M. Inflammatory markers and incident mortality limitation in the elderly. J Amer Gerontol Soc. 2004;52:1105–13. Penninx BWJH, Kritchevsky SB, Newman AB, Nicklas BJ, Simonsick EM, Rubin S, Nevitt M, Visser M, Harris T, Pahor M. Inflammatory markers and incident mortality limitation in the elderly. J Amer Gerontol Soc. 2004;52:1105–13.
13.
go back to reference Kaech SM, Ahmed R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nature Immunol. 2001;2:415–22. Kaech SM, Ahmed R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nature Immunol. 2001;2:415–22.
14.
go back to reference Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401:708–12.CrossRefPubMed Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401:708–12.CrossRefPubMed
15.
go back to reference Masopust D, Vezys V, Marzo AL, Lanzavecchia A. Preferential localization of effector memory cells in nonlymphoid tissue. Science. 2001;291:2413–7.CrossRefPubMed Masopust D, Vezys V, Marzo AL, Lanzavecchia A. Preferential localization of effector memory cells in nonlymphoid tissue. Science. 2001;291:2413–7.CrossRefPubMed
16.
go back to reference Weninger W, Crowley MA, Manjunath N, von Andriane UH. Migratory properties of naïve, effector, and memory CD8(+) T cells. J Exp Med. 2001;194:953–66.CrossRefPubMedPubMedCentral Weninger W, Crowley MA, Manjunath N, von Andriane UH. Migratory properties of naïve, effector, and memory CD8(+) T cells. J Exp Med. 2001;194:953–66.CrossRefPubMedPubMedCentral
17.
go back to reference Tomiyama H, Matsuda T, Takiguchi M. Differentiation of CD8+ T cells from a memory to memory/effector phenotype. J Immunol. 2002;168:5538–50.CrossRefPubMed Tomiyama H, Matsuda T, Takiguchi M. Differentiation of CD8+ T cells from a memory to memory/effector phenotype. J Immunol. 2002;168:5538–50.CrossRefPubMed
18.
go back to reference Geginat J, Lanzvecchia A, Sallusto F. Proliferation and differentiation of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood. 2003;101:4260–6.CrossRefPubMed Geginat J, Lanzvecchia A, Sallusto F. Proliferation and differentiation of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood. 2003;101:4260–6.CrossRefPubMed
19.
go back to reference Van Lier RAW, ten Berge IJM, Gamadia LE. Human CD8+ T cell differentiation in response to viruses. Nat Rev Immunol. 2003;3:931–8.CrossRefPubMed Van Lier RAW, ten Berge IJM, Gamadia LE. Human CD8+ T cell differentiation in response to viruses. Nat Rev Immunol. 2003;3:931–8.CrossRefPubMed
20.
go back to reference Gupta S, Bi R, Su K, Yel L, Chiplunkar S, Gollapudi S. Characterization of naïve/memory effector subsets of CD8+ T cells: changes in aged humans. Exp Gerontology. 2004;20:545–50.CrossRef Gupta S, Bi R, Su K, Yel L, Chiplunkar S, Gollapudi S. Characterization of naïve/memory effector subsets of CD8+ T cells: changes in aged humans. Exp Gerontology. 2004;20:545–50.CrossRef
21.
go back to reference Gupta S, Gollapudi S. Molecular mechanisms of TNF-α-induced apoptosis in naïve and memory T cell subsets. Autoimmun Rev. 2006;5:264–8.CrossRefPubMed Gupta S, Gollapudi S. Molecular mechanisms of TNF-α-induced apoptosis in naïve and memory T cell subsets. Autoimmun Rev. 2006;5:264–8.CrossRefPubMed
22.
go back to reference Gupta S. Molecular mechanisms of TNF-α-induced apoptosis in naïve and memory T cell subsets: effect of age. Immunol Rev. 2005;205:114–25.CrossRefPubMed Gupta S. Molecular mechanisms of TNF-α-induced apoptosis in naïve and memory T cell subsets: effect of age. Immunol Rev. 2005;205:114–25.CrossRefPubMed
23.
go back to reference Gupta S, Bi R, Gollapudi S. Differential sensitivity of naïve and central and effector memory CD8+ T cells to TNF-α-induced apoptosis. J Clin Immunol. 2006;26:193–203.CrossRefPubMed Gupta S, Bi R, Gollapudi S. Differential sensitivity of naïve and central and effector memory CD8+ T cells to TNF-α-induced apoptosis. J Clin Immunol. 2006;26:193–203.CrossRefPubMed
24.
go back to reference Gupta S, Gollapudi S. Central and effector memory CD4+ and CD8+ T cells display differential sensitivity to TNF-α-induced apoptosis. N Y Acad Sci. 2005;1050:108–14.CrossRef Gupta S, Gollapudi S. Central and effector memory CD4+ and CD8+ T cells display differential sensitivity to TNF-α-induced apoptosis. N Y Acad Sci. 2005;1050:108–14.CrossRef
25.
go back to reference Salvioli S, Capri M, Scarcella E, Mangherini S, Faranca I, Volterra V, De Ronchi D, Marini M, Bonafe M, Franceschi C, Monti D. Age-dependent changes in the susceptibility to apoptosis of peripheral blood CD4+ and CD8+ T lymphocytes with virgin or memory phenotype. Mech Ageing Dev. 2003;124:409–18.CrossRefPubMed Salvioli S, Capri M, Scarcella E, Mangherini S, Faranca I, Volterra V, De Ronchi D, Marini M, Bonafe M, Franceschi C, Monti D. Age-dependent changes in the susceptibility to apoptosis of peripheral blood CD4+ and CD8+ T lymphocytes with virgin or memory phenotype. Mech Ageing Dev. 2003;124:409–18.CrossRefPubMed
27.
go back to reference Screaton G, Xu X-N. T cell life and death signaling via TNF-receptor family members. Curr Opin Immunol. 2000;12:316–3222.CrossRefPubMed Screaton G, Xu X-N. T cell life and death signaling via TNF-receptor family members. Curr Opin Immunol. 2000;12:316–3222.CrossRefPubMed
28.
go back to reference Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65.CrossRefPubMed Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65.CrossRefPubMed
29.
go back to reference Gupta S. Molecular steps of TNF receptor-mediated apoptosis. Curr Mol Med. 2001;1:299–306.CrossRef Gupta S. Molecular steps of TNF receptor-mediated apoptosis. Curr Mol Med. 2001;1:299–306.CrossRef
31.
go back to reference Vallabhapurapu S, Karin M. Regulation and function of NFkappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.CrossRefPubMed Vallabhapurapu S, Karin M. Regulation and function of NFkappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.CrossRefPubMed
33.
go back to reference Li Q, Verma IM. NF-κB regulation in the immune system. Nature Rev Immunol. 2002;2:725–34.CrossRef Li Q, Verma IM. NF-κB regulation in the immune system. Nature Rev Immunol. 2002;2:725–34.CrossRef
35.
36.
go back to reference Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Z-g L. The distinct role of TRAF2 and RIP in IKK activation by TNFR1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity. 2000;12:419–29.CrossRefPubMed Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Z-g L. The distinct role of TRAF2 and RIP in IKK activation by TNFR1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity. 2000;12:419–29.CrossRefPubMed
37.
go back to reference Michaeu O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–90.CrossRef Michaeu O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–90.CrossRef
38.
go back to reference Deng Y, Ren X, Yang L, Lin Y, Wu X. A JNK-dependent pathway is required for TNF-α-induced apoptosis. Cell. 2003;115:61–70.CrossRefPubMed Deng Y, Ren X, Yang L, Lin Y, Wu X. A JNK-dependent pathway is required for TNF-α-induced apoptosis. Cell. 2003;115:61–70.CrossRefPubMed
39.
go back to reference Aggarwal S, Gollapudi S, Gupta S. Increased TNF-α-induced apoptosis in lymphocytes from aged humans: changes in TNF-α receptor expression and activation of caspases. J Immunol. 1999;162:2154–61.PubMed Aggarwal S, Gollapudi S, Gupta S. Increased TNF-α-induced apoptosis in lymphocytes from aged humans: changes in TNF-α receptor expression and activation of caspases. J Immunol. 1999;162:2154–61.PubMed
40.
go back to reference Aggarwal S, Gupta S. Increased apoptosis of T cell subsets in aging humans: altered expression of Fas (CD95), Bcl-2 and Bax. J Immunol. 1998;160:1627–37.PubMed Aggarwal S, Gupta S. Increased apoptosis of T cell subsets in aging humans: altered expression of Fas (CD95), Bcl-2 and Bax. J Immunol. 1998;160:1627–37.PubMed
41.
go back to reference Gupta S, Gollapudi S. Susceptibility of naïve and subsets of memory T cells to apoptosis via multiple signaling pathways. Autoimmunity Rev. 2007;6:476–81.CrossRef Gupta S, Gollapudi S. Susceptibility of naïve and subsets of memory T cells to apoptosis via multiple signaling pathways. Autoimmunity Rev. 2007;6:476–81.CrossRef
42.
go back to reference Gupta S, Gollapudi S. CD95-mediated apoptosis in naïve, central, and effector memory subsets of CD4+ and CD8+ T cells in aged humans. Exp Gerontol. 2008;43:266–74.CrossRefPubMed Gupta S, Gollapudi S. CD95-mediated apoptosis in naïve, central, and effector memory subsets of CD4+ and CD8+ T cells in aged humans. Exp Gerontol. 2008;43:266–74.CrossRefPubMed
43.
go back to reference Fagnoni FF, Vescovini R, Passeri G, Bologna G, Pedrazzoni M, Lavagetto G, Casti A, Francechi C, Passeri M, Sansoni P. Shortage of circulating naïve CD8+ T cells provides new insights on immunodeficiency in aging. Blood. 2000;95:2860–8.PubMed Fagnoni FF, Vescovini R, Passeri G, Bologna G, Pedrazzoni M, Lavagetto G, Casti A, Francechi C, Passeri M, Sansoni P. Shortage of circulating naïve CD8+ T cells provides new insights on immunodeficiency in aging. Blood. 2000;95:2860–8.PubMed
44.
go back to reference Romanyukha AA, Yashin AI. Age-related changes in population of peripheral T cells: towards a model of immunosenescence. Mech Ageing Dev. 2003;124:433–43.CrossRefPubMed Romanyukha AA, Yashin AI. Age-related changes in population of peripheral T cells: towards a model of immunosenescence. Mech Ageing Dev. 2003;124:433–43.CrossRefPubMed
45.
go back to reference Effros RB, Boucher N, Porter V, Zhu X, Spaulding C, Walford RL, Kronenberg M, Cohen D, Schachter F. Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause of both in vivo and in vitro immunosenescence. Exp Gerontol. 1994;29:601–9.CrossRefPubMed Effros RB, Boucher N, Porter V, Zhu X, Spaulding C, Walford RL, Kronenberg M, Cohen D, Schachter F. Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause of both in vivo and in vitro immunosenescence. Exp Gerontol. 1994;29:601–9.CrossRefPubMed
46.
go back to reference Nociari MM, Telford W, Russo C. Postthymic development of CD28-CD8+ T cell subsets: age-associated expansion and shift from naïve to memory phenotype. J Immunol. 1999;162:3327–35.PubMed Nociari MM, Telford W, Russo C. Postthymic development of CD28-CD8+ T cell subsets: age-associated expansion and shift from naïve to memory phenotype. J Immunol. 1999;162:3327–35.PubMed
47.
go back to reference Brzezinska A, Magalska A, Szybinska A, Sikora E. Proliferation and apoptosis of human CD8+CD28+ and CD8+CD28- lymphocytes during aging. Exp Gerontol. 2004;39:539–44.CrossRefPubMed Brzezinska A, Magalska A, Szybinska A, Sikora E. Proliferation and apoptosis of human CD8+CD28+ and CD8+CD28- lymphocytes during aging. Exp Gerontol. 2004;39:539–44.CrossRefPubMed
48.
go back to reference Gupta S, Gollapudi S. TNF-α-induced apoptosis in human naïve and memory CD8+ T cells in aged humans. Exp Gerontol. 2006;41:69–77.CrossRefPubMed Gupta S, Gollapudi S. TNF-α-induced apoptosis in human naïve and memory CD8+ T cells in aged humans. Exp Gerontol. 2006;41:69–77.CrossRefPubMed
49.
go back to reference Broglie P, Matsumoto K, Akira S, Brautigan DL, Ninomiya-Tsuji J. Transforming growth factor beta-activated kinase 1 (TAK1) kinase adaptor, TAK1-binding protein 2, plays dual roles in TAK1 signaling by recruiting both an activator and an inhibitor of TAK1 kinase in tumor necrosis factor signaling pathway. J Biol Chem. 2010;285:2333–9.CrossRefPubMed Broglie P, Matsumoto K, Akira S, Brautigan DL, Ninomiya-Tsuji J. Transforming growth factor beta-activated kinase 1 (TAK1) kinase adaptor, TAK1-binding protein 2, plays dual roles in TAK1 signaling by recruiting both an activator and an inhibitor of TAK1 kinase in tumor necrosis factor signaling pathway. J Biol Chem. 2010;285:2333–9.CrossRefPubMed
50.
go back to reference Adhikari A, Xu M, Chen ZJ. Ubiquitin-mediated activation of TAK-1 and IKK. Oncogene. 2007;26:3214–26.CrossRefPubMed Adhikari A, Xu M, Chen ZJ. Ubiquitin-mediated activation of TAK-1 and IKK. Oncogene. 2007;26:3214–26.CrossRefPubMed
51.
go back to reference Huang C-H, Omori E, Akira S, Matsumoto K, Ninomiya-Tsuji J. Osmotic stress activates the TAK1-JNK opathway while blocking TAK1-mediated NF-κB activation: TAO2 regulates TAK1. J Biol Chem. 2006;281:28802–10.CrossRef Huang C-H, Omori E, Akira S, Matsumoto K, Ninomiya-Tsuji J. Osmotic stress activates the TAK1-JNK opathway while blocking TAK1-mediated NF-κB activation: TAO2 regulates TAK1. J Biol Chem. 2006;281:28802–10.CrossRef
53.
go back to reference Irmler M, Thome M, Hahne M, Schnieder P, Hoffmann K, Steiner V, Bodmer J-L, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J. Inhibition of death receptor signals by cellular FLIP. Nature. 1997;388:190–5.CrossRefPubMed Irmler M, Thome M, Hahne M, Schnieder P, Hoffmann K, Steiner V, Bodmer J-L, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J. Inhibition of death receptor signals by cellular FLIP. Nature. 1997;388:190–5.CrossRefPubMed
54.
go back to reference Kataoka T, Budd RC, Holler N, Thome M, Martinon F, Irmler M, Burns K, Hahne M, Kennedy N, Kovacsovics M, Tschopp J. The caspases-8 inhibitor FLIP promotes activation of NF-kappaB and ERK signaling pathways. Curr Biol. 2000;10:640–8.CrossRefPubMed Kataoka T, Budd RC, Holler N, Thome M, Martinon F, Irmler M, Burns K, Hahne M, Kennedy N, Kovacsovics M, Tschopp J. The caspases-8 inhibitor FLIP promotes activation of NF-kappaB and ERK signaling pathways. Curr Biol. 2000;10:640–8.CrossRefPubMed
55.
go back to reference Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nature Rev Mol Cell Biol. 2004;3:401–10.CrossRef Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nature Rev Mol Cell Biol. 2004;3:401–10.CrossRef
56.
go back to reference Heyninck K, Beyaert R. A20 inhibits NF-κB activation by dual ubiquitin-editing functions. Trends Biochem Sci. 2005;30:1–4.CrossRefPubMed Heyninck K, Beyaert R. A20 inhibits NF-κB activation by dual ubiquitin-editing functions. Trends Biochem Sci. 2005;30:1–4.CrossRefPubMed
57.
go back to reference Lin S-C, Chung JY, Lamothe B, Rajashanker K, Lu M, Lo Y-C, Lam AY, Darnay BG, Wu H. Molecular basis for the deubiquitinating activity of the NF-κB inhibitor A20. J Mol Biol. 2008;376:526–40.CrossRefPubMed Lin S-C, Chung JY, Lamothe B, Rajashanker K, Lu M, Lo Y-C, Lam AY, Darnay BG, Wu H. Molecular basis for the deubiquitinating activity of the NF-κB inhibitor A20. J Mol Biol. 2008;376:526–40.CrossRefPubMed
58.
go back to reference Komander D, Barford DS. Structure of the A20 OUT domain and mechanistic insight into deubiquitination. Biochem J. 2008;408:77–85.CrossRef Komander D, Barford DS. Structure of the A20 OUT domain and mechanistic insight into deubiquitination. Biochem J. 2008;408:77–85.CrossRef
59.
go back to reference Tamatani M, Che YH, Matsuzaki H, Ogawa S, Okado H, Miyake S, Mizuno T, Tohyama M. Tumor necrosis factor-induces Bcl-2 and Bcl-x expression through NF-κB activation in primary hippocampus neurons. J Biol Chem. 1999;274:8531–8.CrossRefPubMed Tamatani M, Che YH, Matsuzaki H, Ogawa S, Okado H, Miyake S, Mizuno T, Tohyama M. Tumor necrosis factor-induces Bcl-2 and Bcl-x expression through NF-κB activation in primary hippocampus neurons. J Biol Chem. 1999;274:8531–8.CrossRefPubMed
60.
go back to reference Chen C, Edelstein LC, Gelinas C. The Rel/NF-κB family directly activates expression of the apoptotic inhibitor Bcl-x (L). Mol Cell Biol. 2000;20:2687–95.CrossRefPubMedPubMedCentral Chen C, Edelstein LC, Gelinas C. The Rel/NF-κB family directly activates expression of the apoptotic inhibitor Bcl-x (L). Mol Cell Biol. 2000;20:2687–95.CrossRefPubMedPubMedCentral
61.
go back to reference Gupta S, Kim H, Yel L, Gollapudi S. A role of fas-associated death domain (FADD) in increased apoptosis in aged humans. J Clin Immunol. 2004;24:24–9.CrossRefPubMed Gupta S, Kim H, Yel L, Gollapudi S. A role of fas-associated death domain (FADD) in increased apoptosis in aged humans. J Clin Immunol. 2004;24:24–9.CrossRefPubMed
62.
63.
go back to reference Xia Z-P, Chen ZJ. TRAF2: a double edge sword? Science Stke. 2005;72:1–4. Xia Z-P, Chen ZJ. TRAF2: a double edge sword? Science Stke. 2005;72:1–4.
64.
go back to reference Chung JY, Park YC, Ye H, Wu H. All TRAFs are not created equal: common distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci. 2002;115:679–88.PubMed Chung JY, Park YC, Ye H, Wu H. All TRAFs are not created equal: common distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci. 2002;115:679–88.PubMed
65.
go back to reference Sun L, Chen J. The novel functions of ubiquiination in signaling. Curr Opin Cell Biol. 2004;16:119–26.CrossRefPubMed Sun L, Chen J. The novel functions of ubiquiination in signaling. Curr Opin Cell Biol. 2004;16:119–26.CrossRefPubMed
67.
go back to reference Wu C-J, Conze DB, Li T, Srinivasula SM, Ashwell JD. Sensing of Lys63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nature Cell Biol. 2006;8:398–406.CrossRefPubMed Wu C-J, Conze DB, Li T, Srinivasula SM, Ashwell JD. Sensing of Lys63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nature Cell Biol. 2006;8:398–406.CrossRefPubMed
68.
go back to reference Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell. 2006;22:245–57.CrossRefPubMed Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell. 2006;22:245–57.CrossRefPubMed
69.
go back to reference Li H, Kobayashi M, Blonska M, You Y, Lin X. Ubiquitination of RIP is required for tumor necrosis factor-α-induced NF-κB activation. J Biol Chem. 2006;281:13636–43.CrossRefPubMed Li H, Kobayashi M, Blonska M, You Y, Lin X. Ubiquitination of RIP is required for tumor necrosis factor-α-induced NF-κB activation. J Biol Chem. 2006;281:13636–43.CrossRefPubMed
70.
go back to reference Israel A. NF-kB activation. Nondegenerative ubiquitination implicates NEMO. Trends Immunol. 2006;27:395–7.CrossRefPubMed Israel A. NF-kB activation. Nondegenerative ubiquitination implicates NEMO. Trends Immunol. 2006;27:395–7.CrossRefPubMed
71.
go back to reference Morioka S, Broglie P, Omori E, Ikeda Y, Takaesu G, Matsumoto K, Ninomiya-Tsuji J. TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation. J Cell Biol. 2014;204:607–23.CrossRefPubMedPubMedCentral Morioka S, Broglie P, Omori E, Ikeda Y, Takaesu G, Matsumoto K, Ninomiya-Tsuji J. TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation. J Cell Biol. 2014;204:607–23.CrossRefPubMedPubMedCentral
72.
go back to reference Shim J-H, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee K-Y, Bussey C, Steckel M, Tanaka N, Yamada AS, Matsumoto K, Ghosh S. TAK1, but not TAB1 or TAB2, plays an G essential role in multiple signaling pathways in vivo. Genes Dev. 2005;19:2668–81.CrossRefPubMedPubMedCentral Shim J-H, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee K-Y, Bussey C, Steckel M, Tanaka N, Yamada AS, Matsumoto K, Ghosh S. TAK1, but not TAB1 or TAB2, plays an G essential role in multiple signaling pathways in vivo. Genes Dev. 2005;19:2668–81.CrossRefPubMedPubMedCentral
73.
go back to reference Pujari R, Hunte R, Khan WN, Shembade N. A20-mediated negative regulation of canonical NF-kB signaling pathway. Immunol Res. 2013;57:166–71.CrossRefPubMed Pujari R, Hunte R, Khan WN, Shembade N. A20-mediated negative regulation of canonical NF-kB signaling pathway. Immunol Res. 2013;57:166–71.CrossRefPubMed
74.
75.
go back to reference Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C, Enwere E, Arora V, Mak TW, Lacasse EC, Waring J, Korneluk RG. Both cIAP1 and cIAP2 regulate TNF-α-mediated NF-κB activation. Proc Nat Acad Sci (USA). 2008;105:11778–83.CrossRef Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C, Enwere E, Arora V, Mak TW, Lacasse EC, Waring J, Korneluk RG. Both cIAP1 and cIAP2 regulate TNF-α-mediated NF-κB activation. Proc Nat Acad Sci (USA). 2008;105:11778–83.CrossRef
76.
go back to reference Gupta S. A role of inhibitor of apoptosis (IAP) proteins in increased TNF-α-induced apoptosis in lymphocytes from aged humans. Mech Ageing Dev. 2004;125:99–101.CrossRefPubMed Gupta S. A role of inhibitor of apoptosis (IAP) proteins in increased TNF-α-induced apoptosis in lymphocytes from aged humans. Mech Ageing Dev. 2004;125:99–101.CrossRefPubMed
78.
go back to reference Kataoka T, Tschopp J. N-termina fragment of cFLIP (L) processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-κB activation. Mol Cell Biol. 2004;24:2627–36.CrossRefPubMedPubMedCentral Kataoka T, Tschopp J. N-termina fragment of cFLIP (L) processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-κB activation. Mol Cell Biol. 2004;24:2627–36.CrossRefPubMedPubMedCentral
79.
go back to reference Matsuda I, Matsuo K, Matsushita Y, Haruna Y, Niwa M, Kataoka T. The C-terminal domain of the long form of cellular FLICE-inhibitory protein (c-FLIPL) inhibits the interaction of the caspase 8 prodomain with the receptor-interacting protein 1 (RIP1) death domain and regulates caspase 8-dependent nuclear factor κB (NF-κB) activation. J Biol Chem. 2014;289:3876–87.CrossRefPubMedPubMedCentral Matsuda I, Matsuo K, Matsushita Y, Haruna Y, Niwa M, Kataoka T. The C-terminal domain of the long form of cellular FLICE-inhibitory protein (c-FLIPL) inhibits the interaction of the caspase 8 prodomain with the receptor-interacting protein 1 (RIP1) death domain and regulates caspase 8-dependent nuclear factor κB (NF-κB) activation. J Biol Chem. 2014;289:3876–87.CrossRefPubMedPubMedCentral
Metadata
Title
Molecular changes associated with increased TNF-α-induced apoptotis in naïve (TN) and central memory (TCM) CD8+ T cells in aged humans
Authors
Sudhir Gupta
Houfen Su
Sudhanshu Agrawal
Sastry Gollapudi
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Immunity & Ageing / Issue 1/2018
Electronic ISSN: 1742-4933
DOI
https://doi.org/10.1186/s12979-017-0109-0

Other articles of this Issue 1/2018

Immunity & Ageing 1/2018 Go to the issue