Skip to main content
Top
Published in: Immunity & Ageing 1/2017

Open Access 01-12-2017 | Review

Chlorinative stress in age-related diseases: a literature review

Authors: Marco Casciaro, Eleonora Di Salvo, Elisabetta Pace, Elvira Ventura-Spagnolo, Michele Navarra, Sebastiano Gangemi

Published in: Immunity & Ageing | Issue 1/2017

Login to get access

Abstract

Aging is an agglomerate of biological long-lasting processes that result being inevitable. Main actors in this scenario are both long-term inflammation and oxidative stress. It has been proved that oxidative stress induce alteration in proteins and this fact itself is critically important in the pathophysiological mechanisms leading to diseases typical of aging. Among reactive species, chlorine ones such as hypochlorous acid (HOCl) are cytotoxic oxidants produced by activated neutrophils during chronic inflammation processes. HOCl can also cause damages by reacting with biological molecules. HOCl is generated by myeloperoxidase (MPO) and augmented serum levels of MPO have been described in acute and chronic inflammatory conditions in cardiovascular patients and has been implicated in many inflammatory diseases such as atherosclerosis, neurodegenerative conditions, and some cancers. Due to these data, we decided to conduct an up-to-date review evaluating chlorinative stress effects on every age-related disease linked; potential anti-oxidant countermeasures were also assessed. Results obtained associated HOCl generation to the aging processes and confirmed its connection with diseases like neurodegenerative and cardiovascular pathologies, atherosclerosis and cancer; chlorination was mainly linked to diseases where molecular (protein) alteration constitute the major suspected cause: i.e. inflammation, tissue lesions, DNA damages, apoptosis and oxidative stress itself. According data collected, a healthy lifestyle together with some dietary suggestion and/or the administration of nutracetical antioxidant integrators could balance the effects of chlorinative stress and, in some cases, slow down or prevent the onset of age-releated diseases.
Literature
1.
2.
go back to reference Minciullo PL, et al. Inflammaging and anti-Inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp. 2016;64(2):111–26.CrossRef Minciullo PL, et al. Inflammaging and anti-Inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp. 2016;64(2):111–26.CrossRef
3.
go back to reference D'Autreaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8(10):813–24.CrossRefPubMed D'Autreaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8(10):813–24.CrossRefPubMed
4.
go back to reference Krause KH. Aging: a revisited theory based on free radicals generated by NOX family NADPH oxidases. Exp Gerontol. 2007;42(4):256–62.CrossRefPubMed Krause KH. Aging: a revisited theory based on free radicals generated by NOX family NADPH oxidases. Exp Gerontol. 2007;42(4):256–62.CrossRefPubMed
5.
go back to reference Brieger K, et al. Reactive oxygen species: from health to disease. Swiss Med Wkly. 2012;142:w13659.PubMed Brieger K, et al. Reactive oxygen species: from health to disease. Swiss Med Wkly. 2012;142:w13659.PubMed
6.
go back to reference Yu Y, et al. Occurrence, biological consequences, and human health relevance of oxidative stress-induced DNA damage. Chem Res Toxicol. 2016;29(12):2008–39.CrossRefPubMed Yu Y, et al. Occurrence, biological consequences, and human health relevance of oxidative stress-induced DNA damage. Chem Res Toxicol. 2016;29(12):2008–39.CrossRefPubMed
7.
go back to reference Hazen SL, et al. Mass spectrometric quantification of 3-chlorotyrosine in human tissues with attomole sensitivity: a sensitive and specific marker for myeloperoxidase-catalyzed chlorination at sites of inflammation. Free Radic Biol Med. 1997;23(6):909–16.CrossRefPubMed Hazen SL, et al. Mass spectrometric quantification of 3-chlorotyrosine in human tissues with attomole sensitivity: a sensitive and specific marker for myeloperoxidase-catalyzed chlorination at sites of inflammation. Free Radic Biol Med. 1997;23(6):909–16.CrossRefPubMed
8.
go back to reference Di Lorenzo G, et al. Differences in the behavior of advanced glycation end products and advanced oxidation protein products in patients with allergic rhinitis. J Investig Allergol Clin Immunol. 2013;23(2):101–6.PubMed Di Lorenzo G, et al. Differences in the behavior of advanced glycation end products and advanced oxidation protein products in patients with allergic rhinitis. J Investig Allergol Clin Immunol. 2013;23(2):101–6.PubMed
9.
go back to reference Gangemi S, et al. Oxidative stress markers are increased in patients with mastocytosis. Allergy. 2015;70(4):436–42.CrossRefPubMed Gangemi S, et al. Oxidative stress markers are increased in patients with mastocytosis. Allergy. 2015;70(4):436–42.CrossRefPubMed
10.
go back to reference Calabrese V, et al. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta. 2012;1822(5):753–83.CrossRefPubMed Calabrese V, et al. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta. 2012;1822(5):753–83.CrossRefPubMed
11.
go back to reference Calabrese V, et al. Major pathogenic mechanisms in vascular dementia: roles of cellular stress response and hormesis in neuroprotection. J Neurosci Res. 2016;94(12):1588–603.CrossRefPubMed Calabrese V, et al. Major pathogenic mechanisms in vascular dementia: roles of cellular stress response and hormesis in neuroprotection. J Neurosci Res. 2016;94(12):1588–603.CrossRefPubMed
12.
go back to reference Calabrese V, et al. Analytical approaches to the diagnosis and treatment of aging and aging-related disease: redox status and proteomics. Free Radic Res. 2015;49(5):511–24.CrossRefPubMed Calabrese V, et al. Analytical approaches to the diagnosis and treatment of aging and aging-related disease: redox status and proteomics. Free Radic Res. 2015;49(5):511–24.CrossRefPubMed
13.
go back to reference Whiteman M, et al. Do mitochondriotropic antioxidants prevent chlorinative stress-induced mitochondrial and cellular injury? Antioxid Redox Signal. 2008;10(3):641–50.CrossRefPubMed Whiteman M, et al. Do mitochondriotropic antioxidants prevent chlorinative stress-induced mitochondrial and cellular injury? Antioxid Redox Signal. 2008;10(3):641–50.CrossRefPubMed
14.
go back to reference Bergt C, et al. Lysine residues direct the chlorination of tyrosines in YXXK motifs of apolipoprotein A-I when hypochlorous acid oxidizes high density lipoprotein. J Biol Chem. 2004;279(9):7856–66.CrossRefPubMed Bergt C, et al. Lysine residues direct the chlorination of tyrosines in YXXK motifs of apolipoprotein A-I when hypochlorous acid oxidizes high density lipoprotein. J Biol Chem. 2004;279(9):7856–66.CrossRefPubMed
15.
go back to reference Marcinkiewicz J, et al. Antimicrobial and cytotoxic activity of hypochlorous acid: interactions with taurine and nitrite. Inflamm Res. 2000;49(6):280–9.CrossRefPubMed Marcinkiewicz J, et al. Antimicrobial and cytotoxic activity of hypochlorous acid: interactions with taurine and nitrite. Inflamm Res. 2000;49(6):280–9.CrossRefPubMed
16.
go back to reference Sharma RN, Goel S. Chlorinated drinking water, cancers and adverse health outcomes in Gangtok, Sikkim, India. J Environ Sci Eng. 2007;49(4):247–54.PubMed Sharma RN, Goel S. Chlorinated drinking water, cancers and adverse health outcomes in Gangtok, Sikkim, India. J Environ Sci Eng. 2007;49(4):247–54.PubMed
17.
go back to reference Cook NL, et al. Myeloperoxidase-derived oxidants inhibit sarco/endoplasmic reticulum Ca2+−ATPase activity and perturb Ca2+ homeostasis in human coronary artery endothelial cells. Free Radic Biol Med. 2012;52(5):951–61.CrossRefPubMed Cook NL, et al. Myeloperoxidase-derived oxidants inhibit sarco/endoplasmic reticulum Ca2+−ATPase activity and perturb Ca2+ homeostasis in human coronary artery endothelial cells. Free Radic Biol Med. 2012;52(5):951–61.CrossRefPubMed
18.
go back to reference Straface E, et al. Does oxidative stress play a critical role in cardiovascular complications of Kawasaki disease? Antioxid Redox Signal. 2012;17(10):1441–6.CrossRefPubMed Straface E, et al. Does oxidative stress play a critical role in cardiovascular complications of Kawasaki disease? Antioxid Redox Signal. 2012;17(10):1441–6.CrossRefPubMed
19.
go back to reference Cabassi A, et al. Myeloperoxidase-related chlorination activity is positively associated with circulating Ceruloplasmin in chronic heart failure patients: relationship with Neurohormonal, inflammatory, and nutritional parameters. Biomed Res Int. 2015;2015:691693.CrossRefPubMedPubMedCentral Cabassi A, et al. Myeloperoxidase-related chlorination activity is positively associated with circulating Ceruloplasmin in chronic heart failure patients: relationship with Neurohormonal, inflammatory, and nutritional parameters. Biomed Res Int. 2015;2015:691693.CrossRefPubMedPubMedCentral
20.
go back to reference Ray RS, Katyal A. Myeloperoxidase: bridging the gap in neurodegeneration. Neurosci Biobehav Rev. 2016;68:611–20.CrossRefPubMed Ray RS, Katyal A. Myeloperoxidase: bridging the gap in neurodegeneration. Neurosci Biobehav Rev. 2016;68:611–20.CrossRefPubMed
21.
go back to reference Daugherty A, et al. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994;94(1):437–44.CrossRefPubMedPubMedCentral Daugherty A, et al. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994;94(1):437–44.CrossRefPubMedPubMedCentral
22.
go back to reference Hazen SL, Heinecke JW. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest. 1997;99(9):2075–81.CrossRefPubMedPubMedCentral Hazen SL, Heinecke JW. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest. 1997;99(9):2075–81.CrossRefPubMedPubMedCentral
23.
go back to reference Wu W, Chen Y, Hazen SL. Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J Biol Chem. 1999;274(36):25933–44.CrossRefPubMed Wu W, Chen Y, Hazen SL. Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J Biol Chem. 1999;274(36):25933–44.CrossRefPubMed
24.
go back to reference Zhang C, et al. Endothelial dysfunction is induced by proinflammatory oxidant hypochlorous acid. Am J Physiol Heart Circ Physiol. 2001;281(4):H1469–75.PubMed Zhang C, et al. Endothelial dysfunction is induced by proinflammatory oxidant hypochlorous acid. Am J Physiol Heart Circ Physiol. 2001;281(4):H1469–75.PubMed
25.
go back to reference Ismael FO, et al. Role of Myeloperoxidase oxidants in the modulation of cellular Lysosomal enzyme function: a contributing factor to macrophage dysfunction in atherosclerosis? PLoS One. 2016;11(12):e0168844.CrossRefPubMedPubMedCentral Ismael FO, et al. Role of Myeloperoxidase oxidants in the modulation of cellular Lysosomal enzyme function: a contributing factor to macrophage dysfunction in atherosclerosis? PLoS One. 2016;11(12):e0168844.CrossRefPubMedPubMedCentral
26.
go back to reference Wang XS, et al. Neutrophils recruited to the myocardium after acute experimental myocardial infarct generate hypochlorous acid that oxidizes cardiac myoglobin. Arch Biochem Biophys. 2016;612:103–14.CrossRefPubMed Wang XS, et al. Neutrophils recruited to the myocardium after acute experimental myocardial infarct generate hypochlorous acid that oxidizes cardiac myoglobin. Arch Biochem Biophys. 2016;612:103–14.CrossRefPubMed
27.
go back to reference Okabe E, et al. The effect of hypochlorous acid and hydrogen peroxide on coronary flow and arrhythmogenesis in myocardial ischemia and reperfusion. Eur J Pharmacol. 1993;248(1):33–9.PubMed Okabe E, et al. The effect of hypochlorous acid and hydrogen peroxide on coronary flow and arrhythmogenesis in myocardial ischemia and reperfusion. Eur J Pharmacol. 1993;248(1):33–9.PubMed
28.
go back to reference Raschke P, et al. Postischemic dysfunction of the heart induced by small numbers of neutrophils via formation of hypochlorous acid. Basic Res Cardiol. 1993;88(4):321–39.PubMed Raschke P, et al. Postischemic dysfunction of the heart induced by small numbers of neutrophils via formation of hypochlorous acid. Basic Res Cardiol. 1993;88(4):321–39.PubMed
29.
go back to reference Mian KB, Martin W. Hydrogen peroxide-induced impairment of reactivity in rat isolated aorta: potentiation by 3-amino-1,2,4-triazole. Br J Pharmacol. 1997;121(4):813–9.CrossRefPubMedPubMedCentral Mian KB, Martin W. Hydrogen peroxide-induced impairment of reactivity in rat isolated aorta: potentiation by 3-amino-1,2,4-triazole. Br J Pharmacol. 1997;121(4):813–9.CrossRefPubMedPubMedCentral
30.
go back to reference Jaimes EA, Sweeney C, Raij L. Effects of the reactive oxygen species hydrogen peroxide and hypochlorite on endothelial nitric oxide production. Hypertension. 2001;38(4):877–83.PubMed Jaimes EA, Sweeney C, Raij L. Effects of the reactive oxygen species hydrogen peroxide and hypochlorite on endothelial nitric oxide production. Hypertension. 2001;38(4):877–83.PubMed
31.
go back to reference Sand C, et al. Effects of hypochlorite and hydrogen peroxide on cardiac autonomic receptors and vascular endothelial function. Clin Exp Pharmacol Physiol. 2003;30(4):249–53.CrossRefPubMed Sand C, et al. Effects of hypochlorite and hydrogen peroxide on cardiac autonomic receptors and vascular endothelial function. Clin Exp Pharmacol Physiol. 2003;30(4):249–53.CrossRefPubMed
32.
go back to reference Raftery MJ, et al. Novel intra- and inter-molecular sulfinamide bonds in S100A8 produced by hypochlorite oxidation. J Biol Chem. 2001;276(36):33393–401.CrossRefPubMed Raftery MJ, et al. Novel intra- and inter-molecular sulfinamide bonds in S100A8 produced by hypochlorite oxidation. J Biol Chem. 2001;276(36):33393–401.CrossRefPubMed
33.
go back to reference Mallis RJ, et al. Irreversible thiol oxidation in carbonic anhydrase III: protection by S-glutathiolation and detection in aging rats. Biol Chem. 2002;383(3–4):649–62.PubMed Mallis RJ, et al. Irreversible thiol oxidation in carbonic anhydrase III: protection by S-glutathiolation and detection in aging rats. Biol Chem. 2002;383(3–4):649–62.PubMed
34.
go back to reference Strosova M, Skuciova M, Horakova L. Oxidative damage to Ca2+−ATPase sarcoplasmic reticulum by HOCl and protective effect of some antioxidants. Biofactors. 2005;24(1–4):111–6.CrossRefPubMed Strosova M, Skuciova M, Horakova L. Oxidative damage to Ca2+−ATPase sarcoplasmic reticulum by HOCl and protective effect of some antioxidants. Biofactors. 2005;24(1–4):111–6.CrossRefPubMed
35.
go back to reference Hazell LJ, et al. Is hypochlorous acid (HOCl) involved in age-related nuclear cataract? Clin Exp Optom. 2002;85(2):97–100.CrossRefPubMed Hazell LJ, et al. Is hypochlorous acid (HOCl) involved in age-related nuclear cataract? Clin Exp Optom. 2002;85(2):97–100.CrossRefPubMed
36.
go back to reference Baskol G, et al. Investigation of protein oxidation and lipid peroxidation in patients with rheumatoid arthritis. Cell Biochem Funct. 2006;24(4):307–11.CrossRefPubMed Baskol G, et al. Investigation of protein oxidation and lipid peroxidation in patients with rheumatoid arthritis. Cell Biochem Funct. 2006;24(4):307–11.CrossRefPubMed
38.
go back to reference Hazeldine J, et al. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell. 2014;13(4):690–8.CrossRefPubMedPubMedCentral Hazeldine J, et al. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell. 2014;13(4):690–8.CrossRefPubMedPubMedCentral
39.
go back to reference Tian R, et al. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: role of NADPH oxidase and hypochlorous acid. Biochem Biophys Res Commun. 2017;484(3):572–8.CrossRefPubMed Tian R, et al. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: role of NADPH oxidase and hypochlorous acid. Biochem Biophys Res Commun. 2017;484(3):572–8.CrossRefPubMed
40.
go back to reference Lu N, et al. Inhibition of myeloperoxidase-mediated oxidative damage by nitrite in SH-SY5Y cells: relevance to neuroprotection in neurodegenerative diseases. Eur J Pharmacol. 2016;780:142–7.CrossRefPubMed Lu N, et al. Inhibition of myeloperoxidase-mediated oxidative damage by nitrite in SH-SY5Y cells: relevance to neuroprotection in neurodegenerative diseases. Eur J Pharmacol. 2016;780:142–7.CrossRefPubMed
41.
go back to reference Maki RA, et al. Aberrant expression of myeloperoxidase in astrocytes promotes phospholipid oxidation and memory deficits in a mouse model of Alzheimer disease. J Biol Chem. 2009;284(5):3158–69.CrossRefPubMedPubMedCentral Maki RA, et al. Aberrant expression of myeloperoxidase in astrocytes promotes phospholipid oxidation and memory deficits in a mouse model of Alzheimer disease. J Biol Chem. 2009;284(5):3158–69.CrossRefPubMedPubMedCentral
42.
go back to reference Marcinkiewicz J, et al. Enhancement of immunogenic properties of ovalbumin as a result of its chlorination. Int J BioChemiPhysics. 1991;23(12):1393–5.CrossRef Marcinkiewicz J, et al. Enhancement of immunogenic properties of ovalbumin as a result of its chlorination. Int J BioChemiPhysics. 1991;23(12):1393–5.CrossRef
43.
go back to reference Guo Y, Schneider LA, Wangensteen OD. HOCl effects on tracheal epithelium: conductance and permeability measurements. J Appl Physiol (1985). 1995;78(4):1330–8. Guo Y, Schneider LA, Wangensteen OD. HOCl effects on tracheal epithelium: conductance and permeability measurements. J Appl Physiol (1985). 1995;78(4):1330–8.
44.
go back to reference Foote CS, Goyne TE, Lehrer RI. Assessment of chlorination by human neutrophils. Nature. 1983;301(5902):715–6.CrossRefPubMed Foote CS, Goyne TE, Lehrer RI. Assessment of chlorination by human neutrophils. Nature. 1983;301(5902):715–6.CrossRefPubMed
45.
go back to reference Falk RJ, et al. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci U S A. 1990;87(11):4115–9.CrossRefPubMedPubMedCentral Falk RJ, et al. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci U S A. 1990;87(11):4115–9.CrossRefPubMedPubMedCentral
46.
go back to reference Xu PC, et al. Influence of myeloperoxidase-catalyzing reaction on the binding between myeloperoxidase and anti-myeloperoxidase antibodies. Hum Immunol. 2012;73(4):364–9.CrossRefPubMed Xu PC, et al. Influence of myeloperoxidase-catalyzing reaction on the binding between myeloperoxidase and anti-myeloperoxidase antibodies. Hum Immunol. 2012;73(4):364–9.CrossRefPubMed
47.
go back to reference Wang J, et al. Deglycosylation influences the oxidation activity and antigenicity of myeloperoxidase. Nephrology (Carlton). 2016. doi:10.1111/nep.12926. Wang J, et al. Deglycosylation influences the oxidation activity and antigenicity of myeloperoxidase. Nephrology (Carlton). 2016. doi:10.​1111/​nep.​12926.
49.
go back to reference Yamori Y, et al. Fish and lifestyle-related disease prevention: experimental and epidemiological evidence for anti-atherogenic potential of taurine. Clin Exp Pharmacol Physiol. 2004;31(Suppl 2):S20–3.CrossRefPubMed Yamori Y, et al. Fish and lifestyle-related disease prevention: experimental and epidemiological evidence for anti-atherogenic potential of taurine. Clin Exp Pharmacol Physiol. 2004;31(Suppl 2):S20–3.CrossRefPubMed
50.
go back to reference Calabrese V, et al. The hormetic role of dietary antioxidants in free radical-related diseases. Curr Pharm Des. 2010;16(7):877–83.CrossRefPubMed Calabrese V, et al. The hormetic role of dietary antioxidants in free radical-related diseases. Curr Pharm Des. 2010;16(7):877–83.CrossRefPubMed
51.
go back to reference Capó X, et al. Effects of almond- and olive oil-based Docosahexaenoic- and vitamin E-enriched beverage dietary supplementation on inflammation associated to exercise and age. Nutrients. 2016;8(10):619.CrossRefPubMedCentral Capó X, et al. Effects of almond- and olive oil-based Docosahexaenoic- and vitamin E-enriched beverage dietary supplementation on inflammation associated to exercise and age. Nutrients. 2016;8(10):619.CrossRefPubMedCentral
52.
go back to reference Calabrese V, et al. Hormesis, cellular stress response and neuroinflammation in schizophrenia: early onset versus late onset state. J Neurosci Res. 2017;95(5):1182–93.CrossRefPubMed Calabrese V, et al. Hormesis, cellular stress response and neuroinflammation in schizophrenia: early onset versus late onset state. J Neurosci Res. 2017;95(5):1182–93.CrossRefPubMed
Metadata
Title
Chlorinative stress in age-related diseases: a literature review
Authors
Marco Casciaro
Eleonora Di Salvo
Elisabetta Pace
Elvira Ventura-Spagnolo
Michele Navarra
Sebastiano Gangemi
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Immunity & Ageing / Issue 1/2017
Electronic ISSN: 1742-4933
DOI
https://doi.org/10.1186/s12979-017-0104-5

Other articles of this Issue 1/2017

Immunity & Ageing 1/2017 Go to the issue