Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2018

Open Access 01-12-2018 | Research

Novel TNF receptor-1 inhibitors identified as potential therapeutic candidates for traumatic brain injury

Authors: Rachel K. Rowe, Jordan L. Harrison, Hongtao Zhang, Adam D. Bachstetter, David P. Hesson, Bruce F. O’Hara, Mark I. Greene, Jonathan Lifshitz

Published in: Journal of Neuroinflammation | Issue 1/2018

Login to get access

Abstract

Background

Traumatic brain injury (TBI) begins with the application of mechanical force to the head or brain, which initiates systemic and cellular processes that are hallmarks of the disease. The pathological cascade of secondary injury processes, including inflammation, can exacerbate brain injury-induced morbidities and thus represents a plausible target for pharmaceutical therapies. We have pioneered research on post-traumatic sleep, identifying that injury-induced sleep lasting for 6 h in brain-injured mice coincides with increased cortical levels of inflammatory cytokines, including tumor necrosis factor (TNF). Here, we apply post-traumatic sleep as a physiological bio-indicator of inflammation. We hypothesized the efficacy of novel TNF receptor (TNF-R) inhibitors could be screened using post-traumatic sleep and that these novel compounds would improve functional recovery following diffuse TBI in the mouse.

Methods

Three inhibitors of TNF-R activation were synthesized based on the structure of previously reported TNF CIAM inhibitor F002, which lodges into a defined TNFR1 cavity at the TNF-binding interface, and screened for in vitro efficacy of TNF pathway inhibition (IκB phosphorylation). Compounds were screened for in vivo efficacy in modulating post-traumatic sleep. Compounds were then tested for efficacy in improving functional recovery and verification of cellular mechanism.

Results

Brain-injured mice treated with Compound 7 (C7) or SGT11 slept significantly less than those treated with vehicle, suggesting a therapeutic potential to target neuroinflammation. SGT11 restored cognitive, sensorimotor, and neurological function. C7 and SGT11 significantly decreased cortical inflammatory cytokines 3 h post-TBI.

Conclusions

Using sleep as a bio-indicator of TNF-R-dependent neuroinflammation, we identified C7 and SGT11 as potential therapeutic candidates for TBI.
Appendix
Available only for authorised users
Literature
1.
go back to reference Coronado VG, McGuire LC, Sarmiento K, Bell J, Lionbarger MR, Jones CD, Geller AI, Khoury N, Xu L. Trends in traumatic brain injury in the U.S. and the public health response: 1995-2009. J Saf Res. 2012;43:299–307.CrossRef Coronado VG, McGuire LC, Sarmiento K, Bell J, Lionbarger MR, Jones CD, Geller AI, Khoury N, Xu L. Trends in traumatic brain injury in the U.S. and the public health response: 1995-2009. J Saf Res. 2012;43:299–307.CrossRef
2.
3.
go back to reference Janowitz T, Menon DK. Exploring new routes for neuroprotective drug development in traumatic brain injury. Sci Transl Med. 2010;2:27rv21.CrossRef Janowitz T, Menon DK. Exploring new routes for neuroprotective drug development in traumatic brain injury. Sci Transl Med. 2010;2:27rv21.CrossRef
4.
go back to reference Ziebell JM, Morganti-Kossmann MC. Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics. 2010;7:22–30.CrossRefPubMedPubMedCentral Ziebell JM, Morganti-Kossmann MC. Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics. 2010;7:22–30.CrossRefPubMedPubMedCentral
5.
go back to reference Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T. Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care. 2002;8:101–5.CrossRefPubMed Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T. Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care. 2002;8:101–5.CrossRefPubMed
6.
go back to reference McCoy MK, Tansey MG. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation. 2008;5:45.CrossRefPubMedPubMedCentral McCoy MK, Tansey MG. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation. 2008;5:45.CrossRefPubMedPubMedCentral
7.
go back to reference Tuttolomondo A, Pecoraro R, Pinto A. Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a review of the evidence to date. Drug Des Devel Ther. 2014;8:2221–38.CrossRefPubMedPubMedCentral Tuttolomondo A, Pecoraro R, Pinto A. Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a review of the evidence to date. Drug Des Devel Ther. 2014;8:2221–38.CrossRefPubMedPubMedCentral
8.
go back to reference Dong Y, Fischer R, Naude PJ, Maier O, Nyakas C, Duffey M, Van der Zee EA, Dekens D, Douwenga W, Herrmann A, et al. Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration. Proc Natl Acad Sci U S A. 2016;113:12304–9.CrossRefPubMedPubMedCentral Dong Y, Fischer R, Naude PJ, Maier O, Nyakas C, Duffey M, Van der Zee EA, Dekens D, Douwenga W, Herrmann A, et al. Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration. Proc Natl Acad Sci U S A. 2016;113:12304–9.CrossRefPubMedPubMedCentral
9.
go back to reference Wang Y, Han G, Chen Y, Wang K, Liu G, Wang R, Xiao H, Li X, Hou C, Shen B, et al. Protective role of tumor necrosis factor (TNF) receptors in chronic intestinal inflammation: TNFR1 ablation boosts systemic inflammatory response. Lab Investig. 2013;93:1024–35.CrossRefPubMed Wang Y, Han G, Chen Y, Wang K, Liu G, Wang R, Xiao H, Li X, Hou C, Shen B, et al. Protective role of tumor necrosis factor (TNF) receptors in chronic intestinal inflammation: TNFR1 ablation boosts systemic inflammatory response. Lab Investig. 2013;93:1024–35.CrossRefPubMed
10.
go back to reference Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3:745–56.CrossRefPubMed Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3:745–56.CrossRefPubMed
11.
go back to reference Sedger LM, McDermott MF. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants—past, present and future. Cytokine Growth Factor Rev. 2014;25:453–72.CrossRefPubMed Sedger LM, McDermott MF. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants—past, present and future. Cytokine Growth Factor Rev. 2014;25:453–72.CrossRefPubMed
12.
go back to reference Krueger JM. Central cytokines and sleep. J Immunol. 1993;150:A82. Krueger JM. Central cytokines and sleep. J Immunol. 1993;150:A82.
13.
go back to reference Krueger JM, Takahashi S, Kapas L, Bredow S, Roky R, Fang JD, Floyd R, Renegar KB, Guhathakurta N, Novitsky S, Obal F. Cytokines in sleep regulation. Adv Neuroimmunol. 1995;5:171–88.CrossRefPubMed Krueger JM, Takahashi S, Kapas L, Bredow S, Roky R, Fang JD, Floyd R, Renegar KB, Guhathakurta N, Novitsky S, Obal F. Cytokines in sleep regulation. Adv Neuroimmunol. 1995;5:171–88.CrossRefPubMed
14.
go back to reference Krueger JM, Obal F, Fang JD, Kubota T, Taishi P. The role of cytokines in physiological sleep regulation. Ann N Y Acad Sci. 2001;933:211–21.CrossRefPubMed Krueger JM, Obal F, Fang JD, Kubota T, Taishi P. The role of cytokines in physiological sleep regulation. Ann N Y Acad Sci. 2001;933:211–21.CrossRefPubMed
15.
go back to reference Krueger JM. The role of cytokines in sleep regulation. Curr Pharm Design. 2008;14:3408–16.CrossRef Krueger JM. The role of cytokines in sleep regulation. Curr Pharm Design. 2008;14:3408–16.CrossRef
17.
go back to reference Rowe RK, Striz M, Bachstetter AD, Van Eldik LJ, Donohue KD, O'Hara BF, Lifshitz J. Diffuse brain injury induces acute post-traumatic sleep. PLoS One. 2014;9:e82507.CrossRefPubMedPubMedCentral Rowe RK, Striz M, Bachstetter AD, Van Eldik LJ, Donohue KD, O'Hara BF, Lifshitz J. Diffuse brain injury induces acute post-traumatic sleep. PLoS One. 2014;9:e82507.CrossRefPubMedPubMedCentral
18.
go back to reference Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412.CrossRefPubMedPubMedCentral Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412.CrossRefPubMedPubMedCentral
19.
go back to reference Lifshitz J, Rowe RK, Griffiths DR, Evilsizor MN, Thomas TC, Adelson PD, McIntosh TK. Clinical relevance of midline fluid percussion brain injury: acute deficits, chronic morbidities and the utility of biomarkers. Brain Inj. 2016;30(11):1293–301.CrossRefPubMedPubMedCentral Lifshitz J, Rowe RK, Griffiths DR, Evilsizor MN, Thomas TC, Adelson PD, McIntosh TK. Clinical relevance of midline fluid percussion brain injury: acute deficits, chronic morbidities and the utility of biomarkers. Brain Inj. 2016;30(11):1293–301.CrossRefPubMedPubMedCentral
20.
go back to reference Rowe RK, Griffiths DR, Lifshitz J. Midline (central) fluid percussion model of traumatic brain injury. In: Kobeissy HF, Dixon EC, Hayes LR, Mondello S, editors. Injury models of the central nervous system: methods and protocols. New York: Springer New York; 2016. p. 211–30.CrossRef Rowe RK, Griffiths DR, Lifshitz J. Midline (central) fluid percussion model of traumatic brain injury. In: Kobeissy HF, Dixon EC, Hayes LR, Mondello S, editors. Injury models of the central nervous system: methods and protocols. New York: Springer New York; 2016. p. 211–30.CrossRef
21.
go back to reference Lifshitz J. Fluid percussion injury. In: Chen ZX J, Xu X-M, Zhang J, editors. Animal models of acute neurological injuries. Totowa: The Humana Press Inc.; 2008. Lifshitz J. Fluid percussion injury. In: Chen ZX J, Xu X-M, Zhang J, editors. Animal models of acute neurological injuries. Totowa: The Humana Press Inc.; 2008.
22.
go back to reference Rowe RK, Harrison JL, O'Hara BF, Lifshitz J. Recovery of neurological function despite immediate sleep disruption following diffuse brain injury in the mouse: clinical relevance to medically untreated concussion. Sleep. 2014;37:743–52.CrossRefPubMedPubMedCentral Rowe RK, Harrison JL, O'Hara BF, Lifshitz J. Recovery of neurological function despite immediate sleep disruption following diffuse brain injury in the mouse: clinical relevance to medically untreated concussion. Sleep. 2014;37:743–52.CrossRefPubMedPubMedCentral
23.
go back to reference Rowe RK, Harrison JL, O'Hara BF, Lifshitz J. Diffuse brain injury does not affect chronic sleep patterns in the mouse. Brain Inj. 2014;28:504–10.CrossRefPubMed Rowe RK, Harrison JL, O'Hara BF, Lifshitz J. Diffuse brain injury does not affect chronic sleep patterns in the mouse. Brain Inj. 2014;28:504–10.CrossRefPubMed
24.
go back to reference Harrison JL, Rowe RK, O'Hara BF, Adelson PD, Lifshitz J. Acute over-the-counter pharmacological intervention does not adversely affect behavioral outcome following diffuse traumatic brain injury in the mouse. Exp Brain Res. 2014;232(9):2709–19.CrossRefPubMed Harrison JL, Rowe RK, O'Hara BF, Adelson PD, Lifshitz J. Acute over-the-counter pharmacological intervention does not adversely affect behavioral outcome following diffuse traumatic brain injury in the mouse. Exp Brain Res. 2014;232(9):2709–19.CrossRefPubMed
25.
go back to reference Rowe RK, Griffiths DR, Lifshitz J. Midline (central) fluid percussion model of traumatic brain injury. Methods Mol Biol. 2016;1462:211–30.CrossRefPubMed Rowe RK, Griffiths DR, Lifshitz J. Midline (central) fluid percussion model of traumatic brain injury. Methods Mol Biol. 2016;1462:211–30.CrossRefPubMed
26.
go back to reference Hosseini AH, Lifshitz J. Brain injury forces of moderate magnitude elicit the fencing response. Med Sci Sports Exerc. 2009;41:1687–97.CrossRefPubMed Hosseini AH, Lifshitz J. Brain injury forces of moderate magnitude elicit the fencing response. Med Sci Sports Exerc. 2009;41:1687–97.CrossRefPubMed
27.
go back to reference Rowe RK, Harrison JL, Thomas TC, Pauly JR, Adelson PD, Lifshitz J. Using anesthetics and analgesics in experimental traumatic brain injury. Lab Anim (NY). 2013;42:286–91.CrossRef Rowe RK, Harrison JL, Thomas TC, Pauly JR, Adelson PD, Lifshitz J. Using anesthetics and analgesics in experimental traumatic brain injury. Lab Anim (NY). 2013;42:286–91.CrossRef
28.
go back to reference Nakachi H, Aoki K, Tomomatsu N, Alles N, Nagano K, Yamashiro M, Zhang H, Murali R, Greene MI, Ohya K, Amagasa T. A structural modulator of tumor necrosis factor type 1 receptor promotes bone formation under lipopolysaccharide-induced inflammation in a murine tooth extraction model. Eur J Pharmacol. 2012;679:132–8.CrossRefPubMed Nakachi H, Aoki K, Tomomatsu N, Alles N, Nagano K, Yamashiro M, Zhang H, Murali R, Greene MI, Ohya K, Amagasa T. A structural modulator of tumor necrosis factor type 1 receptor promotes bone formation under lipopolysaccharide-induced inflammation in a murine tooth extraction model. Eur J Pharmacol. 2012;679:132–8.CrossRefPubMed
29.
go back to reference Donohue KD, Medonza DC, Crane ER, O'Hara BF. Assessment of a non-invasive high-throughput classifier for behaviours associated with sleep and wake in mice. Biomed Eng Online. 2008;7:14.CrossRefPubMedPubMedCentral Donohue KD, Medonza DC, Crane ER, O'Hara BF. Assessment of a non-invasive high-throughput classifier for behaviours associated with sleep and wake in mice. Biomed Eng Online. 2008;7:14.CrossRefPubMedPubMedCentral
30.
go back to reference Mang GM, Nicod J, Emmenegger Y, Donohue KD, O'Hara BF, Franken P. Evaluation of a piezoelectric system as an alternative to electroencephalogram/ electromyogram recordings in mouse sleep studies. Sleep. 2014;37:1383–92.CrossRefPubMedPubMedCentral Mang GM, Nicod J, Emmenegger Y, Donohue KD, O'Hara BF, Franken P. Evaluation of a piezoelectric system as an alternative to electroencephalogram/ electromyogram recordings in mouse sleep studies. Sleep. 2014;37:1383–92.CrossRefPubMedPubMedCentral
31.
go back to reference McShane BB, Galante RJ, Jensen ST, Naidoo N, Pack AI, Wyner A. Characterization of the bout durations of sleep and wakefulness. J Neurosci Methods. 2010;193:321–33.CrossRefPubMedPubMedCentral McShane BB, Galante RJ, Jensen ST, Naidoo N, Pack AI, Wyner A. Characterization of the bout durations of sleep and wakefulness. J Neurosci Methods. 2010;193:321–33.CrossRefPubMedPubMedCentral
32.
go back to reference Ziebell JM, Bye N, Semple BD, Kossmann T, Morganti-Kossmann MC. Attenuated neurological deficit, cell death and lesion volume in Fas-mutant mice is associated with altered neuroinflammation following traumatic brain injury. Brain Res. 2011;1414:94–105.CrossRefPubMed Ziebell JM, Bye N, Semple BD, Kossmann T, Morganti-Kossmann MC. Attenuated neurological deficit, cell death and lesion volume in Fas-mutant mice is associated with altered neuroinflammation following traumatic brain injury. Brain Res. 2011;1414:94–105.CrossRefPubMed
33.
go back to reference Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2−/− mice. J Cereb Blood Flow Metab. 2010;30:769–82.CrossRefPubMed Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2−/− mice. J Cereb Blood Flow Metab. 2010;30:769–82.CrossRefPubMed
34.
go back to reference Chen Y, Constantini S, Trembovler V, Weinstock M, Shohami E. An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits. J Neurotrauma. 1996;13:557–68.CrossRefPubMed Chen Y, Constantini S, Trembovler V, Weinstock M, Shohami E. An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits. J Neurotrauma. 1996;13:557–68.CrossRefPubMed
35.
go back to reference Pleasant JM, Carlson SW, Mao H, Scheff SW, Yang KH, Saatman KE. Rate of neurodegeneration in the mouse controlled cortical impact model is influenced by impactor tip shape: implications for mechanistic and therapeutic studies. J Neurotrauma. 2011;28:2245–62.CrossRefPubMedPubMedCentral Pleasant JM, Carlson SW, Mao H, Scheff SW, Yang KH, Saatman KE. Rate of neurodegeneration in the mouse controlled cortical impact model is influenced by impactor tip shape: implications for mechanistic and therapeutic studies. J Neurotrauma. 2011;28:2245–62.CrossRefPubMedPubMedCentral
36.
go back to reference Han X, Tong J, Zhang J, Farahvar A, Wang E, Yang J, Samadani U, Smith DH, Huang JH. Imipramine treatment improves cognitive outcome associated with enhanced hippocampal neurogenesis after traumatic brain injury in mice. J Neurotrauma. 2011;28:995–1007.CrossRefPubMedPubMedCentral Han X, Tong J, Zhang J, Farahvar A, Wang E, Yang J, Samadani U, Smith DH, Huang JH. Imipramine treatment improves cognitive outcome associated with enhanced hippocampal neurogenesis after traumatic brain injury in mice. J Neurotrauma. 2011;28:995–1007.CrossRefPubMedPubMedCentral
37.
go back to reference Ennaceur A, Aggleton JP. The effects of neurotoxic lesions of the perirhinal cortex combined to fornix transection on object recognition memory in the rat. Behav Brain Res. 1997;88:181–93.CrossRefPubMed Ennaceur A, Aggleton JP. The effects of neurotoxic lesions of the perirhinal cortex combined to fornix transection on object recognition memory in the rat. Behav Brain Res. 1997;88:181–93.CrossRefPubMed
38.
go back to reference Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Van Eldik LJ. Microglial p38alpha MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Abeta). J Neuroinflammation. 2011;8:79.CrossRefPubMedPubMedCentral Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Van Eldik LJ. Microglial p38alpha MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Abeta). J Neuroinflammation. 2011;8:79.CrossRefPubMedPubMedCentral
39.
go back to reference Cao T, Thomas TC, Ziebell JM, Pauly JR, Lifshitz J. Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat. Neuroscience. 2012;225:65–75.CrossRefPubMedPubMedCentral Cao T, Thomas TC, Ziebell JM, Pauly JR, Lifshitz J. Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat. Neuroscience. 2012;225:65–75.CrossRefPubMedPubMedCentral
40.
go back to reference Ziebell JM, Taylor SE, Cao T, Harrison JL, Lifshitz J. Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. J Neuroinflammation. 2012;9:247.CrossRefPubMedPubMedCentral Ziebell JM, Taylor SE, Cao T, Harrison JL, Lifshitz J. Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. J Neuroinflammation. 2012;9:247.CrossRefPubMedPubMedCentral
41.
go back to reference Lifshitz J, Lisembee AM. Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury. Brain Struct Funct. 2012;217:49–61.CrossRefPubMed Lifshitz J, Lisembee AM. Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury. Brain Struct Funct. 2012;217:49–61.CrossRefPubMed
42.
go back to reference Harrison JL, Rowe RK, Ellis TW, Yee NS, O'Hara BF, Adelson PD, Lifshitz J. Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse. Brain Behav Immun. 2015;47:131–40.CrossRefPubMedPubMedCentral Harrison JL, Rowe RK, Ellis TW, Yee NS, O'Hara BF, Adelson PD, Lifshitz J. Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse. Brain Behav Immun. 2015;47:131–40.CrossRefPubMedPubMedCentral
44.
go back to reference Signorell A: DescTools: tools for descriptive statistics. 0.99.18 edition; 2016. Signorell A: DescTools: tools for descriptive statistics. 0.99.18 edition; 2016.
45.
go back to reference Murali R, Cheng X, Berezov A, Du X, Schon A, Freire E, Xu X, Chen YH, Greene MI. Disabling TNF receptor signaling by induced conformational perturbation of tryptophan-107. Proc Natl Acad Sci U S A. 2005;102:10970–5.CrossRefPubMedPubMedCentral Murali R, Cheng X, Berezov A, Du X, Schon A, Freire E, Xu X, Chen YH, Greene MI. Disabling TNF receptor signaling by induced conformational perturbation of tryptophan-107. Proc Natl Acad Sci U S A. 2005;102:10970–5.CrossRefPubMedPubMedCentral
46.
go back to reference Bachstetter AD, Rowe RK, Kaneko M, Goulding D, Lifshitz J, Van Eldik LJ. The p38alpha MAPK regulates microglial responsiveness to diffuse traumatic brain injury. J Neurosci. 2013;33:6143–53.CrossRefPubMedPubMedCentral Bachstetter AD, Rowe RK, Kaneko M, Goulding D, Lifshitz J, Van Eldik LJ. The p38alpha MAPK regulates microglial responsiveness to diffuse traumatic brain injury. J Neurosci. 2013;33:6143–53.CrossRefPubMedPubMedCentral
47.
go back to reference Chio CC, Lin MT, Chang CP. Microglial activation as a compelling target for treating acute traumatic brain injury. Curr Med Chem. 2015;22:759–70.CrossRefPubMed Chio CC, Lin MT, Chang CP. Microglial activation as a compelling target for treating acute traumatic brain injury. Curr Med Chem. 2015;22:759–70.CrossRefPubMed
48.
go back to reference Rochfort KD, Cummins PM. The blood-brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans. 2015;43:702–6.CrossRefPubMed Rochfort KD, Cummins PM. The blood-brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans. 2015;43:702–6.CrossRefPubMed
49.
go back to reference Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001;107:135–42.CrossRefPubMedPubMedCentral Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001;107:135–42.CrossRefPubMedPubMedCentral
50.
go back to reference Di Battista AP, Rhind SG, Hutchison MG, Hassan S, Shiu MY, Inaba K, Topolovec-Vranic J, Neto AC, Rizoli SB, Baker AJ. Inflammatory cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state following acute brain injury. J Neuroinflammation. 2016;13:40.CrossRefPubMedPubMedCentral Di Battista AP, Rhind SG, Hutchison MG, Hassan S, Shiu MY, Inaba K, Topolovec-Vranic J, Neto AC, Rizoli SB, Baker AJ. Inflammatory cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state following acute brain injury. J Neuroinflammation. 2016;13:40.CrossRefPubMedPubMedCentral
51.
go back to reference Chio CC, Chang CH, Wang CC, Cheong CU, Chao CM, Cheng BC, Yang CZ, Chang CP. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-alpha. BMC Neurosci. 2013;14:33.CrossRefPubMedPubMedCentral Chio CC, Chang CH, Wang CC, Cheong CU, Chao CM, Cheng BC, Yang CZ, Chang CP. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-alpha. BMC Neurosci. 2013;14:33.CrossRefPubMedPubMedCentral
52.
go back to reference Baratz R, Tweedie D, Wang JY, Rubovitch V, Luo W, Hoffer BJ, Greig NH, Pick CG. Transiently lowering tumor necrosis factor-alpha synthesis ameliorates neuronal cell loss and cognitive impairments induced by minimal traumatic brain injury in mice. J Neuroinflammation. 2015;12:45.CrossRefPubMedPubMedCentral Baratz R, Tweedie D, Wang JY, Rubovitch V, Luo W, Hoffer BJ, Greig NH, Pick CG. Transiently lowering tumor necrosis factor-alpha synthesis ameliorates neuronal cell loss and cognitive impairments induced by minimal traumatic brain injury in mice. J Neuroinflammation. 2015;12:45.CrossRefPubMedPubMedCentral
53.
go back to reference Belarbi K, Jopson T, Tweedie D, Arellano C, Luo W, Greig NH, Rosi S. TNF-alpha protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflammation. 2012;9:23.CrossRefPubMedPubMedCentral Belarbi K, Jopson T, Tweedie D, Arellano C, Luo W, Greig NH, Rosi S. TNF-alpha protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflammation. 2012;9:23.CrossRefPubMedPubMedCentral
54.
go back to reference Cavas M, Beltran D, Navarro JF. Behavioural effects of dimethyl sulfoxide (DMSO): changes in sleep architecture in rats. Toxicol Lett. 2005;157:221–32.CrossRefPubMed Cavas M, Beltran D, Navarro JF. Behavioural effects of dimethyl sulfoxide (DMSO): changes in sleep architecture in rats. Toxicol Lett. 2005;157:221–32.CrossRefPubMed
56.
go back to reference Tobinick E, Kim NM, Reyzin G, Rodriguez-Romanacce H, DePuy V. Selective TNF inhibition for chronic stroke and traumatic brain injury: an observational study involving 629 consecutive patients treated with perispinal etanercept. CNS Drugs. 2012;26:1051–70.CrossRefPubMed Tobinick E, Kim NM, Reyzin G, Rodriguez-Romanacce H, DePuy V. Selective TNF inhibition for chronic stroke and traumatic brain injury: an observational study involving 629 consecutive patients treated with perispinal etanercept. CNS Drugs. 2012;26:1051–70.CrossRefPubMed
57.
go back to reference Baratz R, Tweedie D, Rubovitch V, Luo W, Yoon JS, Hoffer BJ, Greig NH, Pick CG. Tumor necrosis factor-alpha synthesis inhibitor, 3,6′-dithiothalidomide, reverses behavioral impairments induced by minimal traumatic brain injury in mice. J Neurochem. 2011;118:1032–42.CrossRefPubMedPubMedCentral Baratz R, Tweedie D, Rubovitch V, Luo W, Yoon JS, Hoffer BJ, Greig NH, Pick CG. Tumor necrosis factor-alpha synthesis inhibitor, 3,6′-dithiothalidomide, reverses behavioral impairments induced by minimal traumatic brain injury in mice. J Neurochem. 2011;118:1032–42.CrossRefPubMedPubMedCentral
58.
go back to reference Sun YX, Dai DK, Liu R, Wang T, Luo CL, Bao HJ, Yang R, Feng XY, Qin ZH, Chen XP, Tao LY. Therapeutic effect of SN50, an inhibitor of nuclear factor-kappaB, in treatment of TBI in mice. Neurol Sci. 2013;34:345–55.CrossRefPubMed Sun YX, Dai DK, Liu R, Wang T, Luo CL, Bao HJ, Yang R, Feng XY, Qin ZH, Chen XP, Tao LY. Therapeutic effect of SN50, an inhibitor of nuclear factor-kappaB, in treatment of TBI in mice. Neurol Sci. 2013;34:345–55.CrossRefPubMed
59.
go back to reference Wang YX, You Q, Su WL, Li Q, Hu ZQ, Wang ZG, Sun YP, Zhu WX, Ruan CP. A study on inhibition of inflammation via p75TNFR signaling pathway activation in mice with traumatic brain injury. J Surg Res. 2013;182:127–33.CrossRefPubMed Wang YX, You Q, Su WL, Li Q, Hu ZQ, Wang ZG, Sun YP, Zhu WX, Ruan CP. A study on inhibition of inflammation via p75TNFR signaling pathway activation in mice with traumatic brain injury. J Surg Res. 2013;182:127–33.CrossRefPubMed
Metadata
Title
Novel TNF receptor-1 inhibitors identified as potential therapeutic candidates for traumatic brain injury
Authors
Rachel K. Rowe
Jordan L. Harrison
Hongtao Zhang
Adam D. Bachstetter
David P. Hesson
Bruce F. O’Hara
Mark I. Greene
Jonathan Lifshitz
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2018
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-018-1200-y

Other articles of this Issue 1/2018

Journal of Neuroinflammation 1/2018 Go to the issue