Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury

Authors: Jenna M Ziebell, Samuel E Taylor, Tuoxin Cao, Jordan L Harrison, Jonathan Lifshitz

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Since their discovery, the morphology of microglia has been interpreted to mirror their function, with ramified microglia constantly surveying the micro-environment and rapidly activating when changes occur. In 1899, Franz Nissl discovered what we now recognize as a distinct microglial activation state, microglial rod cells (Stäbchenzellen), which he observed adjacent to neurons. These rod-shaped microglia are typically found in human autopsy cases of paralysis of the insane, a disease of the pre-penicillin era, and best known today from HIV-1-infected brains. Microglial rod cells have been implicated in cortical ‘synaptic stripping’ but their exact role has remained unclear. This is due at least in part to a scarcity of experimental models. Now we have noted these rod microglia after experimental diffuse brain injury in brain regions that have an associated sensory sensitivity. Here, we describe the time course, location, and surrounding architecture associated with rod microglia following experimental diffuse traumatic brain injury (TBI).

Methods

Rats were subjected to a moderate midline fluid percussion injury (mFPI), which resulted in transient suppression of their righting reflex (6 to 10 min). Multiple immunohistochemistry protocols targeting microglia with Iba1 and other known microglia markers were undertaken to identify the morphological activation of microglia. Additionally, labeling with Iba1 and cell markers for neurons and astrocytes identified the architecture that surrounds these rod cells.

Results

We identified an abundance of Iba1-positive microglia with rod morphology in the primary sensory barrel fields (S1BF). Although present for at least 4 weeks post mFPI, they developed over the first week, peaking at 7 days post-injury. In the absence of contusion, Iba1-positive microglia appear to elongate with their processes extending from the apical and basal ends. These cells then abut one another and lay adjacent to cytoarchitecture of dendrites and axons, with no alignment with astrocytes and oligodendrocytes. Iba1-positive rod microglial cells differentially express other known markers for reactive microglia including OX-6 and CD68.

Conclusion

Diffuse traumatic brain injury induces a distinct rod microglia morphology, unique phenotype, and novel association between cells; these observations entice further investigation for impact on neurological outcome.
Literature
1.
go back to reference Nissl F: Über einige Beziehungen zwischen Nervenzellerkrankungen und gliösen Erscheinungen bei verschiedenen Psychosen. Arch f Psychiatr 1899, 32:656–676. Nissl F: Über einige Beziehungen zwischen Nervenzellerkrankungen und gliösen Erscheinungen bei verschiedenen Psychosen. Arch f Psychiatr 1899, 32:656–676.
3.
go back to reference Cajal SR: History of Neuroscience No 5: Cajal’s Degeneration and Regeneration of the Nervous System. Edited by: DeFelipe J, Jones EG. New York: Oxford Press; 1991.CrossRef Cajal SR: History of Neuroscience No 5: Cajal’s Degeneration and Regeneration of the Nervous System. Edited by: DeFelipe J, Jones EG. New York: Oxford Press; 1991.CrossRef
4.
go back to reference Graeber MB, Mehraein P: Microglial rod cells. Neuropath Applied Neurobiol 1994, 20:178–180.CrossRef Graeber MB, Mehraein P: Microglial rod cells. Neuropath Applied Neurobiol 1994, 20:178–180.CrossRef
5.
go back to reference Lambertsen KL, Deierborg T, Gregersen R, Clausen BH, Wirenfeldt M, Nielsen HH, Dalmau I, Diemer NH, Dagnaes-Hansen F, Johansen FF, Keating A, Finsen B: Differences in origin of reactive microglia in bone marrow chimeric mouse and rat after transient global ischemia. J Neuropathol Exp Neurol 2011, 70:481–494.CrossRefPubMed Lambertsen KL, Deierborg T, Gregersen R, Clausen BH, Wirenfeldt M, Nielsen HH, Dalmau I, Diemer NH, Dagnaes-Hansen F, Johansen FF, Keating A, Finsen B: Differences in origin of reactive microglia in bone marrow chimeric mouse and rat after transient global ischemia. J Neuropathol Exp Neurol 2011, 70:481–494.CrossRefPubMed
6.
go back to reference Ohno M, Higashi Y, Suzuki K: Microglial cell response to neuronal degeneration in the brain of brindled mouse. Brain Res Dev Brain Res 1992, 67:37–45.CrossRefPubMed Ohno M, Higashi Y, Suzuki K: Microglial cell response to neuronal degeneration in the brain of brindled mouse. Brain Res Dev Brain Res 1992, 67:37–45.CrossRefPubMed
7.
go back to reference Wierzba-Bobrowicz T, Gwiazda E, Kosno-Kruszewska E, Lewandowska E, Lechowicz W, Bertrand E, Szpak GM, Schmidt-Sidor B: Morphological analysis of active microglia–rod and ramified microglia in human brains affected by some neurological diseases (SSPE, Alzheimer’s disease and Wilson’s disease). Folia Neuropathol 2002, 40:125–131.PubMed Wierzba-Bobrowicz T, Gwiazda E, Kosno-Kruszewska E, Lewandowska E, Lechowicz W, Bertrand E, Szpak GM, Schmidt-Sidor B: Morphological analysis of active microglia–rod and ramified microglia in human brains affected by some neurological diseases (SSPE, Alzheimer’s disease and Wilson’s disease). Folia Neuropathol 2002, 40:125–131.PubMed
8.
go back to reference Engel S, Schluesener H, Mittelbronn M, Seid K, Adjodah D, Wehner HD, Meyermann R: Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathol 2000, 100:313–322.CrossRefPubMed Engel S, Schluesener H, Mittelbronn M, Seid K, Adjodah D, Wehner HD, Meyermann R: Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathol 2000, 100:313–322.CrossRefPubMed
9.
go back to reference Gentleman SM, Leclercq PD, Moyes L, Graham DI, Smith C, Griffin WS, Nicoll JA: Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci Int 2004, 146:97–104.CrossRefPubMed Gentleman SM, Leclercq PD, Moyes L, Graham DI, Smith C, Griffin WS, Nicoll JA: Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci Int 2004, 146:97–104.CrossRefPubMed
10.
go back to reference Wilson S, Raghupathi R, Saatman KE, MacKinnon MA, McIntosh TK, Graham DI: Continued in situ DNA fragmentation of microglia/macrophages in white matter weeks and months after traumatic brain injury. J Neurotrauma 2004, 21:239–250.CrossRefPubMed Wilson S, Raghupathi R, Saatman KE, MacKinnon MA, McIntosh TK, Graham DI: Continued in situ DNA fragmentation of microglia/macrophages in white matter weeks and months after traumatic brain injury. J Neurotrauma 2004, 21:239–250.CrossRefPubMed
11.
go back to reference Das M, Leonardo CC, Rangooni S, Pennypacker KR, Mohapatra S, Mohapatra SS: Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats. J Neuroinflammation 2011, 8:148.CrossRefPubMedPubMedCentral Das M, Leonardo CC, Rangooni S, Pennypacker KR, Mohapatra S, Mohapatra SS: Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats. J Neuroinflammation 2011, 8:148.CrossRefPubMedPubMedCentral
12.
go back to reference Kelley BJ, Lifshitz J, Povlishock JT: Neuroinflammatory responses after experimental diffuse traumatic brain injury. J Neuropathol Exp Neurol 2007, 66:989–1001.CrossRefPubMed Kelley BJ, Lifshitz J, Povlishock JT: Neuroinflammatory responses after experimental diffuse traumatic brain injury. J Neuropathol Exp Neurol 2007, 66:989–1001.CrossRefPubMed
13.
go back to reference Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC: Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J Cereb Blood Flow Metab 2010, 30:769–782.CrossRefPubMed Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC: Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J Cereb Blood Flow Metab 2010, 30:769–782.CrossRefPubMed
14.
go back to reference Ziebell JM, Bye N, Semple BD, Kossmann T, Morganti-Kossmann MC: Attenuated neurological deficit, cell death and lesion volume in Fas-mutant mice is associated with altered neuroinflammation following traumatic brain injury. Brain Res 2011, 1414:94–105.CrossRefPubMed Ziebell JM, Bye N, Semple BD, Kossmann T, Morganti-Kossmann MC: Attenuated neurological deficit, cell death and lesion volume in Fas-mutant mice is associated with altered neuroinflammation following traumatic brain injury. Brain Res 2011, 1414:94–105.CrossRefPubMed
15.
go back to reference Bye N, Habgood MD, Callaway JK, Malakooti N, Potter A, Kossmann T, Morganti-Kossmann MC: Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp Neurol 2007, 204:220–233.CrossRefPubMed Bye N, Habgood MD, Callaway JK, Malakooti N, Potter A, Kossmann T, Morganti-Kossmann MC: Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp Neurol 2007, 204:220–233.CrossRefPubMed
16.
go back to reference Hellewell SC, Yan EB, Agyapomaa DA, Bye N, Morganti-Kossmann MC: Post-traumatic hypoxia exacerbates brain tissue damage: analysis of axonal injury and glial responses. J Neurotrauma 2010, 27:1997–2010.CrossRefPubMed Hellewell SC, Yan EB, Agyapomaa DA, Bye N, Morganti-Kossmann MC: Post-traumatic hypoxia exacerbates brain tissue damage: analysis of axonal injury and glial responses. J Neurotrauma 2010, 27:1997–2010.CrossRefPubMed
17.
go back to reference Hosseini AH, Lifshitz J: Brain injury forces of moderate magnitude elicit the fencing response. Med Sci Sports Exerc 2009, 41:1687–1697.CrossRefPubMed Hosseini AH, Lifshitz J: Brain injury forces of moderate magnitude elicit the fencing response. Med Sci Sports Exerc 2009, 41:1687–1697.CrossRefPubMed
18.
go back to reference Lifshitz J: Fluid percussion injury. In Animal Models of Acute Neurological Injuries. Edited by: Chen J, Xu X-M, Zhang JH. Totowa: The Humana Press, Inc; 2008. Lifshitz J: Fluid percussion injury. In Animal Models of Acute Neurological Injuries. Edited by: Chen J, Xu X-M, Zhang JH. Totowa: The Humana Press, Inc; 2008.
19.
go back to reference Lifshitz J, Kelley BJ, Povlishock JT: Perisomatic thalamic axotomy after diffuse traumatic brain injury is associated with atrophy rather than cell death. J Neuropathol Exp Neurol 2007, 66:218–229.CrossRefPubMed Lifshitz J, Kelley BJ, Povlishock JT: Perisomatic thalamic axotomy after diffuse traumatic brain injury is associated with atrophy rather than cell death. J Neuropathol Exp Neurol 2007, 66:218–229.CrossRefPubMed
20.
go back to reference McNamara KC, Lisembee AM, Lifshitz J: The whisker nuisance task identifies a late onset, persistent sensory sensitivity in diffuse brain-injured rats. J Neurotrauma 2010, 27:695–706.CrossRefPubMed McNamara KC, Lisembee AM, Lifshitz J: The whisker nuisance task identifies a late onset, persistent sensory sensitivity in diffuse brain-injured rats. J Neurotrauma 2010, 27:695–706.CrossRefPubMed
21.
go back to reference Taylor SE, Cao T, Talauliker PM, Lifshitz J: Objective morphological quantification of microscopic images using a fast fourier transformation (FFT) analysis. Current Protocols 2012, in press Taylor SE, Cao T, Talauliker PM, Lifshitz J: Objective morphological quantification of microscopic images using a fast fourier transformation (FFT) analysis. Current Protocols 2012, in press
22.
go back to reference Alvarez-Buylla A, Buskirk DR, Nottebohm F: Monoclonal antibody reveals radial glia in adult avian brain. J Comp Neurol 1987, 264:159–170.CrossRefPubMed Alvarez-Buylla A, Buskirk DR, Nottebohm F: Monoclonal antibody reveals radial glia in adult avian brain. J Comp Neurol 1987, 264:159–170.CrossRefPubMed
23.
go back to reference Gotz M, Barde YA: Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons. Neuron 2005, 46:369–372.CrossRefPubMed Gotz M, Barde YA: Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons. Neuron 2005, 46:369–372.CrossRefPubMed
24.
go back to reference Gregg C, Weiss S: Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells. J Neurosci 2003, 23:11587–11601.PubMed Gregg C, Weiss S: Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells. J Neurosci 2003, 23:11587–11601.PubMed
25.
go back to reference Hartfuss E, Forster E, Bock HH, Hack MA, Leprince P, Luque JM, Herz J, Frotscher M, Gotz M: Reelin signaling directly affects radial glia morphology and biochemical maturation. Development 2003, 130:4597–4609.CrossRefPubMed Hartfuss E, Forster E, Bock HH, Hack MA, Leprince P, Luque JM, Herz J, Frotscher M, Gotz M: Reelin signaling directly affects radial glia morphology and biochemical maturation. Development 2003, 130:4597–4609.CrossRefPubMed
26.
go back to reference Malatesta P, Hartfuss E, Gotz M: Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 2000, 127:5253–5263.PubMed Malatesta P, Hartfuss E, Gotz M: Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 2000, 127:5253–5263.PubMed
28.
go back to reference Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW: Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 1999, 30:77–105.CrossRefPubMed Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW: Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 1999, 30:77–105.CrossRefPubMed
29.
go back to reference Stence N, Waite M, Dailey ME: Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 2001, 33:256–266.CrossRefPubMed Stence N, Waite M, Dailey ME: Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 2001, 33:256–266.CrossRefPubMed
30.
go back to reference Perry VH, O’Connor V: The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro 2010, 2:e00047.PubMed Perry VH, O’Connor V: The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro 2010, 2:e00047.PubMed
31.
go back to reference Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J: Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 2009, 29:3974–3980.CrossRefPubMed Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J: Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 2009, 29:3974–3980.CrossRefPubMed
32.
go back to reference Lawson LJ, Perry VH, Dri P, Gordon S: Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990, 39:151–170.CrossRefPubMed Lawson LJ, Perry VH, Dri P, Gordon S: Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990, 39:151–170.CrossRefPubMed
33.
go back to reference Navascues J, Cuadros MA, Calvente R, Marin-Teva JL: Roles of microglia in the developing avian visual system. In Microglia in the Regenerating and Degenerating Central Nervous System. Edited by: Streit WJ. New York: Springer; 2002:15–35.CrossRef Navascues J, Cuadros MA, Calvente R, Marin-Teva JL: Roles of microglia in the developing avian visual system. In Microglia in the Regenerating and Degenerating Central Nervous System. Edited by: Streit WJ. New York: Springer; 2002:15–35.CrossRef
34.
go back to reference Ziebell JM, Morganti-Kossmann MC: Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 2010, 7:22–30.CrossRefPubMed Ziebell JM, Morganti-Kossmann MC: Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 2010, 7:22–30.CrossRefPubMed
35.
go back to reference Greer JE, McGinn MJ, Povlishock JT: Diffuse traumatic axonal injury in the mouse induces atrophy, c-Jun activation, and axonal outgrowth in the axotomized neuronal population. J Neurosci 2011, 31:5089–5105.CrossRefPubMedPubMedCentral Greer JE, McGinn MJ, Povlishock JT: Diffuse traumatic axonal injury in the mouse induces atrophy, c-Jun activation, and axonal outgrowth in the axotomized neuronal population. J Neurosci 2011, 31:5089–5105.CrossRefPubMedPubMedCentral
36.
go back to reference Lifshitz J, Lisembee AM: Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury. Brain Struct Funct 2012, 217:49–61.CrossRefPubMed Lifshitz J, Lisembee AM: Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury. Brain Struct Funct 2012, 217:49–61.CrossRefPubMed
37.
go back to reference Reneer DV: Blast-induced brain injury: Influence of shockwave components. Lexington, KY: The University of Kentucky; 2012. Reneer DV: Blast-induced brain injury: Influence of shockwave components. Lexington, KY: The University of Kentucky; 2012.
38.
go back to reference Trapp BD, Wujek JR, Criste GA, Jalabi W, Yin X, Kidd GJ, Stohlman S, Ransohoff R: Evidence for synaptic stripping by cortical microglia. Glia 2007, 55:360–368.CrossRefPubMed Trapp BD, Wujek JR, Criste GA, Jalabi W, Yin X, Kidd GJ, Stohlman S, Ransohoff R: Evidence for synaptic stripping by cortical microglia. Glia 2007, 55:360–368.CrossRefPubMed
39.
go back to reference Hall KD, Lifshitz J: Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses. Brain Res 2010, 1323:161–173.CrossRefPubMedPubMedCentral Hall KD, Lifshitz J: Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses. Brain Res 2010, 1323:161–173.CrossRefPubMedPubMedCentral
40.
go back to reference Stoll G, Jander S, Schroeter M: Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv Exp Med Biol 2002, 513:87–113.PubMed Stoll G, Jander S, Schroeter M: Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv Exp Med Biol 2002, 513:87–113.PubMed
41.
go back to reference Lenzlinger PM, Morganti-Kossmann MC, Laurer HL, McIntosh TK: The duality of the inflammatory response to traumatic brain injury. Mol Neurobiol 2001, 24:169–181.CrossRefPubMed Lenzlinger PM, Morganti-Kossmann MC, Laurer HL, McIntosh TK: The duality of the inflammatory response to traumatic brain injury. Mol Neurobiol 2001, 24:169–181.CrossRefPubMed
42.
go back to reference Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M: Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci 2005, 29:381–393.CrossRef Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M: Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci 2005, 29:381–393.CrossRef
43.
go back to reference Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M: Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 2006, 31:149–160.CrossRefPubMed Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M: Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 2006, 31:149–160.CrossRefPubMed
44.
go back to reference Wolf SA, Fisher J, Bechmann I, Steiner B, Kwidzinski E, Nitsch R: Neuroprotection by T-cells depends on their subtype and activation state. J Neuroimmunol 2002, 133:72–80.CrossRefPubMed Wolf SA, Fisher J, Bechmann I, Steiner B, Kwidzinski E, Nitsch R: Neuroprotection by T-cells depends on their subtype and activation state. J Neuroimmunol 2002, 133:72–80.CrossRefPubMed
45.
go back to reference Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev 2011, 91:461–553.CrossRefPubMed Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev 2011, 91:461–553.CrossRefPubMed
46.
go back to reference Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19:312–318.CrossRefPubMed Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19:312–318.CrossRefPubMed
Metadata
Title
Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury
Authors
Jenna M Ziebell
Samuel E Taylor
Tuoxin Cao
Jordan L Harrison
Jonathan Lifshitz
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-247

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue