Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2016

Open Access 01-12-2016 | Research

Modulatory effects of perforin gene dosage on pathogen-associated blood-brain barrier (BBB) disruption

Authors: Robin C. Willenbring, Fang Jin, David J. Hinton, Mike Hansen, Doo-Sup Choi, Kevin D. Pavelko, Aaron J. Johnson

Published in: Journal of Neuroinflammation | Issue 1/2016

Login to get access

Abstract

Background

CD8 T cell-mediated blood-brain barrier (BBB) disruption is dependent on the effector molecule perforin. Human perforin has extensive single nucleotide variants (SNVs), the significance of which is not fully understood. These SNVs can result in reduced, but not ablated, perforin activity or expression. However, complete loss of perforin expression or activity results in the lethal disease familial hemophagocytic lymphohistiocytosis type 2 (FHL 2). In this study, we address the hypothesis that a single perforin allele can alter the severity of BBB disruption in vivo using a well-established model of CNS vascular permeability in C57Bl/6 mice. The results of this study provide insight into the significance of perforin SNVs in the human population.

Methods

We isolated the effect a single perforin allele has on CNS vascular permeability through the use of perforin-heterozygous (perforin+/−) C57BL/6 mice in the peptide-induced fatal syndrome (PIFS) model of immune-mediated BBB disruption. Seven days following Theiler’s murine encephalomyelitis virus (TMEV) CNS infection, neuroinflammation and TMEV viral control were assessed through flow cytometric analysis and quantitative real-time PCR of the viral genome, respectively. Following immune-mediated BBB disruption, gadolinium-enhanced T1-weighted MRI, with 3D volumetric analysis, and confocal microscopy were used to define CNS vascular permeability. Finally, the open field behavior test was used to assess locomotor activity of mice following immune-mediated BBB disruption.

Results

Perforin-null mice had negligible CNS vascular permeability. Perforin-WT mice have extensive CNS vascular permeability. Interestingly, perforin-heterozygous mice had an intermediate level of CNS vascular permeability as measured by both gadolinium-enhanced T1-weighted MRI and fibrinogen leakage in the brain parenchyma. Differences in BBB disruption were not a result of increased CNS immune infiltrate. Additionally, TMEV was controlled in a perforin dose-dependent manner. Furthermore, a single perforin allele is sufficient to induce locomotor deficit during immune-mediated BBB disruption.

Conclusions

Perforin modulates BBB disruption in a dose-dependent manner. This study demonstrates a potentially advantageous role for decreased perforin expression in reducing BBB disruption. This study also provides insight into the effect SNVs in a single perforin allele could have on functional deficit in neurological disease.
Literature
1.
go back to reference Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci. 2001;24:719–25.CrossRefPubMed Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci. 2001;24:719–25.CrossRefPubMed
2.
go back to reference Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, et al. CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci. 2006;26:1098–106.CrossRefPubMed Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, et al. CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci. 2006;26:1098–106.CrossRefPubMed
3.
go back to reference Brown H, Hien TT, Day N, Mai NT, Chuong LV, et al. Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol. 1999;25:331–40.CrossRefPubMed Brown H, Hien TT, Day N, Mai NT, Chuong LV, et al. Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol. 1999;25:331–40.CrossRefPubMed
4.
go back to reference Lacerda-Queiroz N, Rodrigues DH, Vilela MC, Rachid MA, Soriani FM, et al. Platelet-activating factor receptor is essential for the development of experimental cerebral malaria. Am J Pathol. 2012;180:246–55.CrossRefPubMed Lacerda-Queiroz N, Rodrigues DH, Vilela MC, Rachid MA, Soriani FM, et al. Platelet-activating factor receptor is essential for the development of experimental cerebral malaria. Am J Pathol. 2012;180:246–55.CrossRefPubMed
5.
go back to reference Marchi N, Johnson AJ, Puvenna V, Johnson HL, Tierney W, et al. Modulation of peripheral cytotoxic cells and ictogenesis in a model of seizures. Epilepsia. 2011;52:1627–34.CrossRefPubMedPubMedCentral Marchi N, Johnson AJ, Puvenna V, Johnson HL, Tierney W, et al. Modulation of peripheral cytotoxic cells and ictogenesis in a model of seizures. Epilepsia. 2011;52:1627–34.CrossRefPubMedPubMedCentral
6.
go back to reference Marchi N, Granata T, Ghosh C, Janigro D. Blood-brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia. 2012;53:1877–86.CrossRefPubMedPubMedCentral Marchi N, Granata T, Ghosh C, Janigro D. Blood-brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia. 2012;53:1877–86.CrossRefPubMedPubMedCentral
7.
go back to reference Medana IM, Turner GD. Human cerebral malaria and the blood-brain barrier. Int J Parasitol. 2006;36:555–68.CrossRefPubMed Medana IM, Turner GD. Human cerebral malaria and the blood-brain barrier. Int J Parasitol. 2006;36:555–68.CrossRefPubMed
8.
go back to reference Minagar A, Alexander JS. Blood-brain barrier disruption in multiple sclerosis. Mult Scler. 2003;9:540–9.CrossRefPubMed Minagar A, Alexander JS. Blood-brain barrier disruption in multiple sclerosis. Mult Scler. 2003;9:540–9.CrossRefPubMed
9.
10.
go back to reference Schneider SW, Ludwig T, Tatenhorst L, Braune S, Oberleithner H, et al. Glioblastoma cells release factors that disrupt blood-brain barrier features. Acta Neuropathol. 2004;107:272–6.CrossRefPubMed Schneider SW, Ludwig T, Tatenhorst L, Braune S, Oberleithner H, et al. Glioblastoma cells release factors that disrupt blood-brain barrier features. Acta Neuropathol. 2004;107:272–6.CrossRefPubMed
11.
go back to reference Talavera D, Castillo AM, Dominguez MC, Gutierrez AE, Meza I. IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers. J Gen Virol. 2004;85:1801–13.CrossRefPubMed Talavera D, Castillo AM, Dominguez MC, Gutierrez AE, Meza I. IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers. J Gen Virol. 2004;85:1801–13.CrossRefPubMed
12.
go back to reference An J, Zhou DS, Zhang JL, Morida H, Wang JL, et al. Dengue-specific CD8+ T cells have both protective and pathogenic roles in dengue virus infection. Immunol Lett. 2004;95:167–74.CrossRefPubMed An J, Zhou DS, Zhang JL, Morida H, Wang JL, et al. Dengue-specific CD8+ T cells have both protective and pathogenic roles in dengue virus infection. Immunol Lett. 2004;95:167–74.CrossRefPubMed
13.
go back to reference Kilpatrick ED, Terajima M, Koster FT, Catalina MD, Cruz J, et al. Role of specific CD8+ T cells in the severity of a fulminant zoonotic viral hemorrhagic fever, hantavirus pulmonary syndrome. J Immunol. 2004;172:3297–304.CrossRefPubMed Kilpatrick ED, Terajima M, Koster FT, Catalina MD, Cruz J, et al. Role of specific CD8+ T cells in the severity of a fulminant zoonotic viral hemorrhagic fever, hantavirus pulmonary syndrome. J Immunol. 2004;172:3297–304.CrossRefPubMed
14.
go back to reference Suidan GL, Dickerson JW, Chen Y, McDole JR, Tripathi P, et al. CD8 T cell-initiated vascular endothelial growth factor expression promotes central nervous system vascular permeability under neuroinflammatory conditions. J Immunol. 2010;184:1031–40.CrossRefPubMed Suidan GL, Dickerson JW, Chen Y, McDole JR, Tripathi P, et al. CD8 T cell-initiated vascular endothelial growth factor expression promotes central nervous system vascular permeability under neuroinflammatory conditions. J Immunol. 2010;184:1031–40.CrossRefPubMed
15.
go back to reference Suidan GL, McDole JR, Chen Y, Pirko I, Johnson AJ. Induction of blood brain barrier tight junction protein alterations by CD8 T cells. PLoS One. 2008;3:e3037.CrossRefPubMed Suidan GL, McDole JR, Chen Y, Pirko I, Johnson AJ. Induction of blood brain barrier tight junction protein alterations by CD8 T cells. PLoS One. 2008;3:e3037.CrossRefPubMed
16.
go back to reference Johnson HL, Willenbring RC, Jin F, Manhart WA, LaFrance SJ, et al. Perforin competent CD8 T cells are sufficient to cause immune-mediated blood-brain barrier disruption. PLoS One. 2014;9:e111401.CrossRefPubMedPubMedCentral Johnson HL, Willenbring RC, Jin F, Manhart WA, LaFrance SJ, et al. Perforin competent CD8 T cells are sufficient to cause immune-mediated blood-brain barrier disruption. PLoS One. 2014;9:e111401.CrossRefPubMedPubMedCentral
17.
go back to reference Johnson HL, Chen Y, Jin F, Hanson LM, Gamez JD, et al. CD8 T cell-initiated blood-brain barrier disruption is independent of neutrophil support. J Immunol. 2012;189:1937–45.CrossRefPubMedPubMedCentral Johnson HL, Chen Y, Jin F, Hanson LM, Gamez JD, et al. CD8 T cell-initiated blood-brain barrier disruption is independent of neutrophil support. J Immunol. 2012;189:1937–45.CrossRefPubMedPubMedCentral
18.
go back to reference Voskoboinik I, Thia MC, Trapani JA. A functional analysis of the putative polymorphisms A91V and N252S and 22 missense perforin mutations associated with familial hemophagocytic lymphohistiocytosis. Blood. 2005;105:4700–6.CrossRefPubMed Voskoboinik I, Thia MC, Trapani JA. A functional analysis of the putative polymorphisms A91V and N252S and 22 missense perforin mutations associated with familial hemophagocytic lymphohistiocytosis. Blood. 2005;105:4700–6.CrossRefPubMed
19.
go back to reference An O, Gursoy A, Gurgey A, Keskin O. Structural and functional analysis of perforin mutations in association with clinical data of familial hemophagocytic lymphohistiocytosis type 2 (FHL2) patients. Protein Sci. 2013;22:823–39.CrossRefPubMedPubMedCentral An O, Gursoy A, Gurgey A, Keskin O. Structural and functional analysis of perforin mutations in association with clinical data of familial hemophagocytic lymphohistiocytosis type 2 (FHL2) patients. Protein Sci. 2013;22:823–39.CrossRefPubMedPubMedCentral
20.
go back to reference Goransdotter Ericson K, Fadeel B, Nilsson-Ardnor S, Soderhall C, Samuelsson A, et al. Spectrum of perforin gene mutations in familial hemophagocytic lymphohistiocytosis. Am J Hum Genet. 2001;68:590–7.CrossRefPubMedPubMedCentral Goransdotter Ericson K, Fadeel B, Nilsson-Ardnor S, Soderhall C, Samuelsson A, et al. Spectrum of perforin gene mutations in familial hemophagocytic lymphohistiocytosis. Am J Hum Genet. 2001;68:590–7.CrossRefPubMedPubMedCentral
21.
go back to reference Mhatre S, Madkaikar M, Desai M, Ghosh K. Spectrum of perforin gene mutations in familial hemophagocytic lymphohistiocytosis (FHL) patients in India. Blood Cells Mol Dis. 2015;54:250–7.CrossRefPubMed Mhatre S, Madkaikar M, Desai M, Ghosh K. Spectrum of perforin gene mutations in familial hemophagocytic lymphohistiocytosis (FHL) patients in India. Blood Cells Mol Dis. 2015;54:250–7.CrossRefPubMed
22.
go back to reference Muralitharan S, Wali YA, Dennison D, Lamki ZA, Zachariah M, et al. Novel spectrum of perforin gene mutations in familial hemophagocytic lymphohistiocytosis in ethnic Omani patients. Am J Hematol. 2007;82:1099–102.CrossRefPubMed Muralitharan S, Wali YA, Dennison D, Lamki ZA, Zachariah M, et al. Novel spectrum of perforin gene mutations in familial hemophagocytic lymphohistiocytosis in ethnic Omani patients. Am J Hematol. 2007;82:1099–102.CrossRefPubMed
23.
go back to reference Voskoboinik I, Thia MC, De Bono A, Browne K, Cretney E, et al. The functional basis for hemophagocytic lymphohistiocytosis in a patient with co-inherited missense mutations in the perforin (PFN1) gene. J Exp Med. 2004;200:811–6.CrossRefPubMedPubMedCentral Voskoboinik I, Thia MC, De Bono A, Browne K, Cretney E, et al. The functional basis for hemophagocytic lymphohistiocytosis in a patient with co-inherited missense mutations in the perforin (PFN1) gene. J Exp Med. 2004;200:811–6.CrossRefPubMedPubMedCentral
24.
go back to reference Zhang K, Johnson JA, Biroschak J, Villanueva J, Lee SM, et al. Familial haemophagocytic lymphohistiocytosis in patients who are heterozygous for the A91V perforin variation is often associated with other genetic defects. Int J Immunogenet. 2007;34:231–3.CrossRefPubMed Zhang K, Johnson JA, Biroschak J, Villanueva J, Lee SM, et al. Familial haemophagocytic lymphohistiocytosis in patients who are heterozygous for the A91V perforin variation is often associated with other genetic defects. Int J Immunogenet. 2007;34:231–3.CrossRefPubMed
25.
go back to reference Zur Stadt U, Beutel K, Weber B, Kabisch H, Schneppenheim R, et al. A91V is a polymorphism in the perforin gene not causative of an FHLH phenotype. Blood. 2004;104:1909. author reply 1910.CrossRefPubMed Zur Stadt U, Beutel K, Weber B, Kabisch H, Schneppenheim R, et al. A91V is a polymorphism in the perforin gene not causative of an FHLH phenotype. Blood. 2004;104:1909. author reply 1910.CrossRefPubMed
26.
go back to reference House IG, Thia K, Brennan AJ, Tothill R, Dobrovic A, et al. Heterozygosity for the common perforin mutation, p.A91V, impairs the cytotoxicity of primary natural killer cells from healthy individuals. Immunol Cell Biol. 2015;93:575–80.CrossRefPubMed House IG, Thia K, Brennan AJ, Tothill R, Dobrovic A, et al. Heterozygosity for the common perforin mutation, p.A91V, impairs the cytotoxicity of primary natural killer cells from healthy individuals. Immunol Cell Biol. 2015;93:575–80.CrossRefPubMed
27.
go back to reference Stepp SE, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 1999;286:1957–9.CrossRefPubMed Stepp SE, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 1999;286:1957–9.CrossRefPubMed
28.
go back to reference Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15:388–400.CrossRefPubMed Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15:388–400.CrossRefPubMed
29.
go back to reference Voskoboinik I, Dunstone MA, Baran K, Whisstock JC, Trapani JA. Perforin: structure, function, and role in human immunopathology. Immunol Rev. 2010;235:35–54.CrossRefPubMed Voskoboinik I, Dunstone MA, Baran K, Whisstock JC, Trapani JA. Perforin: structure, function, and role in human immunopathology. Immunol Rev. 2010;235:35–54.CrossRefPubMed
30.
go back to reference Trapani JA, Thia KY, Andrews M, Davis ID, Gedye C, et al. Human perforin mutations and susceptibility to multiple primary cancers. Oncoimmunology. 2013;2:e24185.CrossRefPubMedPubMedCentral Trapani JA, Thia KY, Andrews M, Davis ID, Gedye C, et al. Human perforin mutations and susceptibility to multiple primary cancers. Oncoimmunology. 2013;2:e24185.CrossRefPubMedPubMedCentral
31.
go back to reference Revelo XS, Tsai S, Lei H, Luck H, Ghazarian M, et al. Perforin is a novel immune regulator of obesity related insulin resistance. Diabetes. 2015;64(1):90–103. Revelo XS, Tsai S, Lei H, Luck H, Ghazarian M, et al. Perforin is a novel immune regulator of obesity related insulin resistance. Diabetes. 2015;64(1):90–103.
32.
go back to reference Orilieri E, Cappellano G, Clementi R, Cometa A, Ferretti M, et al. Variations of the perforin gene in patients with type 1 diabetes. Diabetes. 2008;57:1078–83.CrossRefPubMed Orilieri E, Cappellano G, Clementi R, Cometa A, Ferretti M, et al. Variations of the perforin gene in patients with type 1 diabetes. Diabetes. 2008;57:1078–83.CrossRefPubMed
33.
go back to reference Prugnolle F, Manica A, Charpentier M, Guegan JF, Guernier V, et al. Pathogen-driven selection and worldwide HLA class I diversity. Curr Biol. 2005;15:1022–7.CrossRefPubMed Prugnolle F, Manica A, Charpentier M, Guegan JF, Guernier V, et al. Pathogen-driven selection and worldwide HLA class I diversity. Curr Biol. 2005;15:1022–7.CrossRefPubMed
34.
go back to reference Brennan AJ, House IG, Oliaro J, Ramsbottom KM, Hagn M, et al. A method for detecting intracellular perforin in mouse lymphocytes. J Immunol. 2014;193:5744–50.CrossRefPubMed Brennan AJ, House IG, Oliaro J, Ramsbottom KM, Hagn M, et al. A method for detecting intracellular perforin in mouse lymphocytes. J Immunol. 2014;193:5744–50.CrossRefPubMed
35.
go back to reference Gebhard JR, Perry CM, Harkins S, Lane T, Mena I, et al. Coxsackievirus B3-induced myocarditis: perforin exacerbates disease, but plays no detectable role in virus clearance. Am J Pathol. 1998;153:417–28.CrossRefPubMedPubMedCentral Gebhard JR, Perry CM, Harkins S, Lane T, Mena I, et al. Coxsackievirus B3-induced myocarditis: perforin exacerbates disease, but plays no detectable role in virus clearance. Am J Pathol. 1998;153:417–28.CrossRefPubMedPubMedCentral
36.
go back to reference Pavelko KD, Girtman MA, Mitsunaga Y, Mendez-Fernandez YV, Bell MP, et al. Theiler’s murine encephalomyelitis virus as a vaccine candidate for immunotherapy. PLoS One. 2011;6:e20217.CrossRefPubMedPubMedCentral Pavelko KD, Girtman MA, Mitsunaga Y, Mendez-Fernandez YV, Bell MP, et al. Theiler’s murine encephalomyelitis virus as a vaccine candidate for immunotherapy. PLoS One. 2011;6:e20217.CrossRefPubMedPubMedCentral
37.
go back to reference Johnson AJ, Mendez-Fernandez Y, Moyer AM, Sloma CR, Pirko I, et al. Antigen-specific CD8+ T cells mediate a peptide-induced fatal syndrome. J Immunol. 2005;174:6854–62.CrossRefPubMed Johnson AJ, Mendez-Fernandez Y, Moyer AM, Sloma CR, Pirko I, et al. Antigen-specific CD8+ T cells mediate a peptide-induced fatal syndrome. J Immunol. 2005;174:6854–62.CrossRefPubMed
38.
go back to reference Pirko I, Nolan TK, Holland SK, Johnson AJ. Multiple sclerosis: pathogenesis and MR imaging features of T1 hypointensities in a [corrected] murine model. Radiology. 2008;246:790–5.CrossRefPubMed Pirko I, Nolan TK, Holland SK, Johnson AJ. Multiple sclerosis: pathogenesis and MR imaging features of T1 hypointensities in a [corrected] murine model. Radiology. 2008;246:790–5.CrossRefPubMed
40.
go back to reference Pirko I, Gamez J, Johnson AJ, Macura SI, Rodriguez M. Dynamics of MRI lesion development in an animal model of viral-induced acute progressive CNS demyelination. Neuroimage. 2004;21:576–82.CrossRefPubMed Pirko I, Gamez J, Johnson AJ, Macura SI, Rodriguez M. Dynamics of MRI lesion development in an animal model of viral-induced acute progressive CNS demyelination. Neuroimage. 2004;21:576–82.CrossRefPubMed
41.
go back to reference Pirko I, Johnson AJ, Chen Y, Lindquist DM, Lohrey AK, et al. Brain atrophy correlates with functional outcome in a murine model of multiple sclerosis. Neuroimage. 2011;54:802–6.CrossRefPubMed Pirko I, Johnson AJ, Chen Y, Lindquist DM, Lohrey AK, et al. Brain atrophy correlates with functional outcome in a murine model of multiple sclerosis. Neuroimage. 2011;54:802–6.CrossRefPubMed
42.
go back to reference Vadnie CA, Hinton DJ, Choi S, Choi Y, Ruby CL, et al. Activation of neurotensin receptor type 1 attenuates locomotor activity. Neuropharmacology. 2014;85:482–92.CrossRefPubMedPubMedCentral Vadnie CA, Hinton DJ, Choi S, Choi Y, Ruby CL, et al. Activation of neurotensin receptor type 1 attenuates locomotor activity. Neuropharmacology. 2014;85:482–92.CrossRefPubMedPubMedCentral
43.
go back to reference Johnson AJ, Njenga MK, Hansen MJ, Kuhns ST, Chen LP, et al. Prevalent class I-restricted T-cell response to the Thelier’s virus epitope D-b : VP2(121-130) in the absence of endogenous CD4 help, tumor necrosis factor alpha, gamma interferon, perforin, or costimulation through CD28. J Virol. 1999;73:3702–8.PubMedPubMedCentral Johnson AJ, Njenga MK, Hansen MJ, Kuhns ST, Chen LP, et al. Prevalent class I-restricted T-cell response to the Thelier’s virus epitope D-b : VP2(121-130) in the absence of endogenous CD4 help, tumor necrosis factor alpha, gamma interferon, perforin, or costimulation through CD28. J Virol. 1999;73:3702–8.PubMedPubMedCentral
44.
go back to reference Brennan AJ, Chia J, Trapani JA, Voskoboinik I. Perforin deficiency and susceptibility to cancer. Cell Death Differ. 2010;17:607–15.CrossRefPubMed Brennan AJ, Chia J, Trapani JA, Voskoboinik I. Perforin deficiency and susceptibility to cancer. Cell Death Differ. 2010;17:607–15.CrossRefPubMed
45.
go back to reference Urrea Moreno R, Gil J, Rodriguez-Sainz C, Cela E, LaFay V, et al. Functional assessment of perforin C2 domain mutations illustrates the critical role for calcium-dependent lipid binding in perforin cytotoxic function. Blood. 2009;113:338–46.CrossRefPubMedPubMedCentral Urrea Moreno R, Gil J, Rodriguez-Sainz C, Cela E, LaFay V, et al. Functional assessment of perforin C2 domain mutations illustrates the critical role for calcium-dependent lipid binding in perforin cytotoxic function. Blood. 2009;113:338–46.CrossRefPubMedPubMedCentral
46.
47.
go back to reference Terrell CE, Jordan MB. Perforin deficiency impairs a critical immunoregulatory loop involving murine CD8(+) T cells and dendritic cells. Blood. 2013;121:5184–91.CrossRefPubMedPubMedCentral Terrell CE, Jordan MB. Perforin deficiency impairs a critical immunoregulatory loop involving murine CD8(+) T cells and dendritic cells. Blood. 2013;121:5184–91.CrossRefPubMedPubMedCentral
48.
go back to reference Terrell CE, Jordan MB. Mixed hematopoietic or T-cell chimerism above a minimal threshold restores perforin-dependent immune regulation in perforin-deficient mice. Blood. 2013;122:2618–21.CrossRefPubMedPubMedCentral Terrell CE, Jordan MB. Mixed hematopoietic or T-cell chimerism above a minimal threshold restores perforin-dependent immune regulation in perforin-deficient mice. Blood. 2013;122:2618–21.CrossRefPubMedPubMedCentral
Metadata
Title
Modulatory effects of perforin gene dosage on pathogen-associated blood-brain barrier (BBB) disruption
Authors
Robin C. Willenbring
Fang Jin
David J. Hinton
Mike Hansen
Doo-Sup Choi
Kevin D. Pavelko
Aaron J. Johnson
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2016
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-016-0673-9

Other articles of this Issue 1/2016

Journal of Neuroinflammation 1/2016 Go to the issue