Skip to main content
Top
Published in: Neurotherapeutics 1/2011

01-01-2011

MRI in Rodent Models of Brain Disorders

Authors: Aleksandar Denic, Slobodan I. Macura, Prasanna Mishra, Jeffrey D. Gamez, Moses Rodriguez, Istvan Pirko

Published in: Neurotherapeutics | Issue 1/2011

Login to get access

Summary

Magnetic resonance imaging (MRI) is a well-established tool in clinical practice and research on human neurological disorders. Translational MRI research utilizing rodent models of central nervous system (CNS) diseases is becoming popular with the increased availability of dedicated small animal MRI systems. Projects utilizing this technology typically fall into one of two categories: 1) true “pre-clinical” studies involving the use of MRI as a noninvasive disease monitoring tool which serves as a biomarker for selected aspects of the disease and 2) studies investigating the pathomechanism of known human MRI findings in CNS disease models. Most small animal MRI systems operate at 4.7–11.7 Tesla field strengths. Although the higher field strength clearly results in a higher signal-to-noise ratio, which enables higher resolution acquisition, a variety of artifacts and limitations related to the specific absorption rate represent significant challenges in these experiments. In addition to standard T1-, T2-, and T2*-weighted MRI methods, all of the currently available advanced MRI techniques have been utilized in experimental animals, including diffusion, perfusion, and susceptibility weighted imaging, functional magnetic resonance imaging, chemical shift imaging, heteronuclear imaging, and 1H or 31P MR spectroscopy. Selected MRI techniques are also exclusively utilized in experimental research, including manganese-enhanced MRI, and cell-specific/molecular imaging techniques utilizing negative contrast materials. In this review, we describe technical and practical aspects of small animal MRI and provide examples of different MRI techniques in anatomical imaging and tract tracing as well as several models of neurological disorders, including inflammatory, neurodegenerative, vascular, and traumatic brain and spinal cord injury models, and neoplastic diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hansen G, Crooks LE, Davis P, et al. In vivo imaging of the rat anatomy with nuclear magnetic resonance. Radiology 1980;136:695–700.PubMed Hansen G, Crooks LE, Davis P, et al. In vivo imaging of the rat anatomy with nuclear magnetic resonance. Radiology 1980;136:695–700.PubMed
2.
go back to reference Andjus RK, Dzakula Z, Markley JL, Macura S. Brain energetics and tolerance to anoxia in deep hypothermia. Ann N Y Acad Sci 2005;1048:10–35.PubMedCrossRef Andjus RK, Dzakula Z, Markley JL, Macura S. Brain energetics and tolerance to anoxia in deep hypothermia. Ann N Y Acad Sci 2005;1048:10–35.PubMedCrossRef
3.
go back to reference Raghunand N. Tissue pH measurement by magnetic resonance spectroscopy and imaging. Methods Mol Med 2006;124:347–364.PubMed Raghunand N. Tissue pH measurement by magnetic resonance spectroscopy and imaging. Methods Mol Med 2006;124:347–364.PubMed
4.
5.
go back to reference Robb RA. The virtualization of medicine: a decade of pitfalls and progress. Stud Health Technol Inform 2002;85:1–7.PubMed Robb RA. The virtualization of medicine: a decade of pitfalls and progress. Stud Health Technol Inform 2002;85:1–7.PubMed
6.
go back to reference Turner R, Howseman A, Rees GE, Josephs O, Friston K. Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Exp Brain Res 1998;123:5–12.PubMedCrossRef Turner R, Howseman A, Rees GE, Josephs O, Friston K. Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Exp Brain Res 1998;123:5–12.PubMedCrossRef
7.
go back to reference Ge Y, Grossman RI, Udupa JK, et al. Brain atrophy in relapsing-remitting multiple sclerosis: fractional volumetric analysis of gray matter and white matter. Radiology 2001;220:606–610.PubMedCrossRef Ge Y, Grossman RI, Udupa JK, et al. Brain atrophy in relapsing-remitting multiple sclerosis: fractional volumetric analysis of gray matter and white matter. Radiology 2001;220:606–610.PubMedCrossRef
9.
go back to reference Suidan GL, Pirko I, Johnson AJ. A potential role for CD8+ T-cells as regulators of CNS vascular permeability. Neurol Res 2006;28:250–255.PubMedCrossRef Suidan GL, Pirko I, Johnson AJ. A potential role for CD8+ T-cells as regulators of CNS vascular permeability. Neurol Res 2006;28:250–255.PubMedCrossRef
10.
go back to reference Lukasik VM, Gillies RJ. Animal anaesthesia for in vivo magnetic resonance. NMR Biomed 2003;16:459–467.PubMedCrossRef Lukasik VM, Gillies RJ. Animal anaesthesia for in vivo magnetic resonance. NMR Biomed 2003;16:459–467.PubMedCrossRef
11.
go back to reference Kannurpatti SS, Biswal BB. Effect of anesthesia on CBF, MAP and fMRI-BOLD signal in response to apnea. Brain Res 2004;1011:141–147.PubMedCrossRef Kannurpatti SS, Biswal BB. Effect of anesthesia on CBF, MAP and fMRI-BOLD signal in response to apnea. Brain Res 2004;1011:141–147.PubMedCrossRef
12.
go back to reference Fricke ST, Vink R, Chiodo C, et al. Consistent and reproducible slice selection in rodent brain using a novel stereotaxic device for MRI. J Neurosci Methods 2004;136:99–102.PubMedCrossRef Fricke ST, Vink R, Chiodo C, et al. Consistent and reproducible slice selection in rodent brain using a novel stereotaxic device for MRI. J Neurosci Methods 2004;136:99–102.PubMedCrossRef
13.
go back to reference Bernstein MA, Huston J, 3rd, Ward HA. Imaging artifacts at 3.0T. J Magn Reson Imaging 2006;24:735–746.PubMedCrossRef Bernstein MA, Huston J, 3rd, Ward HA. Imaging artifacts at 3.0T. J Magn Reson Imaging 2006;24:735–746.PubMedCrossRef
14.
go back to reference Yang QX, Williams GD, Demeure RJ, Mosher TJ, Smith MB. Removal of local field gradient artifacts in T2*-weighted images at high fields by gradient-echo slice excitation profile imaging. Magn Reson Med 1998;39:402–409.PubMedCrossRef Yang QX, Williams GD, Demeure RJ, Mosher TJ, Smith MB. Removal of local field gradient artifacts in T2*-weighted images at high fields by gradient-echo slice excitation profile imaging. Magn Reson Med 1998;39:402–409.PubMedCrossRef
15.
go back to reference Yang QX, Demeure RJ, Dardzinski BJ, Arnold BW, Smith MB. Multiple echo frequency-domain image contrast: improved signal-to-noise ratio and T2 (T2*) weighting. Magn Reson Med 1999;41:423–428.PubMedCrossRef Yang QX, Demeure RJ, Dardzinski BJ, Arnold BW, Smith MB. Multiple echo frequency-domain image contrast: improved signal-to-noise ratio and T2 (T2*) weighting. Magn Reson Med 1999;41:423–428.PubMedCrossRef
16.
go back to reference Frahm J, Merboldt KD, Hanicke W. Direct FLASH MR imaging of magnetic field inhomogeneities by gradient compensation. Magn Reson Med 1988;6:474–480.PubMedCrossRef Frahm J, Merboldt KD, Hanicke W. Direct FLASH MR imaging of magnetic field inhomogeneities by gradient compensation. Magn Reson Med 1988;6:474–480.PubMedCrossRef
17.
go back to reference Ordidge RJ, Gorell JM, Deniau JC, Knight RA, Helpern JA. Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla. Magn Reson Med 1994;32:335–341.PubMedCrossRef Ordidge RJ, Gorell JM, Deniau JC, Knight RA, Helpern JA. Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla. Magn Reson Med 1994;32:335–341.PubMedCrossRef
18.
go back to reference Hennig J, Friedburg H. Clinical applications and methodological developments of the RARE technique. Magn Reson Imaging 1988;6:391–395.PubMedCrossRef Hennig J, Friedburg H. Clinical applications and methodological developments of the RARE technique. Magn Reson Imaging 1988;6:391–395.PubMedCrossRef
19.
go back to reference Haacke EM. Susceptibility weighted imaging (SWI). Z Med Phys 2006;16:237.PubMed Haacke EM. Susceptibility weighted imaging (SWI). Z Med Phys 2006;16:237.PubMed
20.
go back to reference Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 2009;30:19–30.PubMedCrossRef Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 2009;30:19–30.PubMedCrossRef
21.
go back to reference Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med 2004;52:612–618.PubMedCrossRef Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med 2004;52:612–618.PubMedCrossRef
22.
go back to reference Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005;23:1–25.PubMedCrossRef Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005;23:1–25.PubMedCrossRef
23.
go back to reference Lee BC, Vo KD, Kido DK, et al. MR high-resolution blood oxygenation level-dependent venography of occult (low-flow) vascular lesions. AJNR Am J Neuroradiol 1999;20:1239–1242.PubMed Lee BC, Vo KD, Kido DK, et al. MR high-resolution blood oxygenation level-dependent venography of occult (low-flow) vascular lesions. AJNR Am J Neuroradiol 1999;20:1239–1242.PubMed
24.
go back to reference Lin W, Mukherjee P, An H, et al. Improving high-resolution MR bold venographic imaging using a T1 reducing contrast agent. J Magn Reson Imaging 1999;10:118–123.PubMedCrossRef Lin W, Mukherjee P, An H, et al. Improving high-resolution MR bold venographic imaging using a T1 reducing contrast agent. J Magn Reson Imaging 1999;10:118–123.PubMedCrossRef
25.
go back to reference Reichenbach JR, Barth M, Haacke EM, et al. High-resolution MR venography at 3.0 Tesla. J Comput Assist Tomogr 2000;24:949–957.PubMedCrossRef Reichenbach JR, Barth M, Haacke EM, et al. High-resolution MR venography at 3.0 Tesla. J Comput Assist Tomogr 2000;24:949–957.PubMedCrossRef
26.
go back to reference Reichenbach JR, Jonetz-Mentzel L, Fitzek C, et al. High-resolution blood oxygen-level dependent MR venography (HRBV): a new technique. Neuroradiology 2001;43:364–369.PubMedCrossRef Reichenbach JR, Jonetz-Mentzel L, Fitzek C, et al. High-resolution blood oxygen-level dependent MR venography (HRBV): a new technique. Neuroradiology 2001;43:364–369.PubMedCrossRef
27.
go back to reference Essig M, Reichenbach JR, Schad LR, et al. High-resolution MR venography of cerebral arteriovenous malformations. Magn Reson Imaging 1999;17:1417–1425.PubMedCrossRef Essig M, Reichenbach JR, Schad LR, et al. High-resolution MR venography of cerebral arteriovenous malformations. Magn Reson Imaging 1999;17:1417–1425.PubMedCrossRef
28.
go back to reference Essig M, Reichenbach JR, Schad L, Debus J, Kaiser WA. [High resolution MR-venography of cerebral arteriovenous malformations]. Radiologe 2001;41:288–295.PubMedCrossRef Essig M, Reichenbach JR, Schad L, Debus J, Kaiser WA. [High resolution MR-venography of cerebral arteriovenous malformations]. Radiologe 2001;41:288–295.PubMedCrossRef
29.
go back to reference Tong KA, Ashwal S, Holshouser BA, et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology 2003;227:332–339.PubMedCrossRef Tong KA, Ashwal S, Holshouser BA, et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology 2003;227:332–339.PubMedCrossRef
30.
go back to reference Barth M, Nobauer-Huhmann IM, Reichenbach JR, et al. High-resolution three-dimensional contrast-enhanced blood oxygenation level-dependent magnetic resonance venography of brain tumors at 3 Tesla: first clinical experience and comparison with 1.5 Tesla. Invest Radiol 2003;38:409–414.PubMedCrossRef Barth M, Nobauer-Huhmann IM, Reichenbach JR, et al. High-resolution three-dimensional contrast-enhanced blood oxygenation level-dependent magnetic resonance venography of brain tumors at 3 Tesla: first clinical experience and comparison with 1.5 Tesla. Invest Radiol 2003;38:409–414.PubMedCrossRef
31.
go back to reference Hamans BC, Barth M, Leenders WP, Heerschap A. Contrast enhanced susceptibility weighted imaging (CE-SWI) of the mouse brain using ultrasmall superparamagnetic ironoxide particles (USPIO). Z Med Phys 2006;16:269–274.PubMed Hamans BC, Barth M, Leenders WP, Heerschap A. Contrast enhanced susceptibility weighted imaging (CE-SWI) of the mouse brain using ultrasmall superparamagnetic ironoxide particles (USPIO). Z Med Phys 2006;16:269–274.PubMed
32.
go back to reference Tan IL, van Schijndel RA, Pouwels PJ, et al. MR venography of multiple sclerosis. AJNR Am J Neuroradiol 2000;21:1039–1042.PubMed Tan IL, van Schijndel RA, Pouwels PJ, et al. MR venography of multiple sclerosis. AJNR Am J Neuroradiol 2000;21:1039–1042.PubMed
33.
go back to reference Jacobs RE, Papan C, Ruffins S, Tyszka JM, Fraser SE. MRI: volumetric imaging for vital imaging and atlas construction. Nat Rev Mol Cell Biol 2003; (Suppl):SS10–16. Jacobs RE, Papan C, Ruffins S, Tyszka JM, Fraser SE. MRI: volumetric imaging for vital imaging and atlas construction. Nat Rev Mol Cell Biol 2003; (Suppl):SS10–16.
34.
go back to reference Dhenain M, Ruffins SW, Jacobs RE. Three-dimensional digital mouse atlas using high-resolution MRI. Dev Biol 2001;232:458–470.PubMedCrossRef Dhenain M, Ruffins SW, Jacobs RE. Three-dimensional digital mouse atlas using high-resolution MRI. Dev Biol 2001;232:458–470.PubMedCrossRef
35.
go back to reference MacKenzie-Graham A, Lee EF, Dinov ID, et al. A multimodal, multidimensional atlas of the C57BL/6J mouse brain. J Anat 2004;204:93–102.PubMedCrossRef MacKenzie-Graham A, Lee EF, Dinov ID, et al. A multimodal, multidimensional atlas of the C57BL/6J mouse brain. J Anat 2004;204:93–102.PubMedCrossRef
36.
go back to reference Kovacevic N, Henderson JT, Chan E, et al. A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. Cereb Cortex 2004;15:639–645. Kovacevic N, Henderson JT, Chan E, et al. A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. Cereb Cortex 2004;15:639–645.
37.
go back to reference Jacobs RE, Ahrens ET, Dickinson ME, Laidlaw D. Towards a microMRI atlas of mouse development. Comput Med Imaging Graph 1999;23:15–24.PubMedCrossRef Jacobs RE, Ahrens ET, Dickinson ME, Laidlaw D. Towards a microMRI atlas of mouse development. Comput Med Imaging Graph 1999;23:15–24.PubMedCrossRef
38.
go back to reference Dalton CM, Brex PA, Jenkins R, et al. Progressive ventricular enlargement in patients with clinically isolated syndromes is associated with the early development of multiple sclerosis. J Neurol Neurosurg Psychiatry 2002;73:141–147.PubMedCrossRef Dalton CM, Brex PA, Jenkins R, et al. Progressive ventricular enlargement in patients with clinically isolated syndromes is associated with the early development of multiple sclerosis. J Neurol Neurosurg Psychiatry 2002;73:141–147.PubMedCrossRef
40.
go back to reference Lin YJ, Koretsky AP. Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 1997;38:378–388.PubMedCrossRef Lin YJ, Koretsky AP. Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 1997;38:378–388.PubMedCrossRef
41.
go back to reference Drapeau P, Nachshen DA. Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain. J Physiol 1984;348:493–510.PubMed Drapeau P, Nachshen DA. Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain. J Physiol 1984;348:493–510.PubMed
42.
go back to reference Pautler RG, Mongeau R, Jacobs RE. In vivo trans-synaptic tract tracing from the murine striatum and amygdala utilizing manganese enhanced MRI (MEMRI). Magn Reson Med 2003;50:33–39.PubMedCrossRef Pautler RG, Mongeau R, Jacobs RE. In vivo trans-synaptic tract tracing from the murine striatum and amygdala utilizing manganese enhanced MRI (MEMRI). Magn Reson Med 2003;50:33–39.PubMedCrossRef
43.
go back to reference Pautler RG, Koretsky AP. Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. Neuroimage 2002;16:441–448.PubMedCrossRef Pautler RG, Koretsky AP. Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. Neuroimage 2002;16:441–448.PubMedCrossRef
44.
go back to reference Hu TC, Pautler RG, MacGowan GA, Koretsky AP. Manganese-enhanced MRI of mouse heart during changes in inotropy. Magn Reson Med 2001;46:884–890.PubMedCrossRef Hu TC, Pautler RG, MacGowan GA, Koretsky AP. Manganese-enhanced MRI of mouse heart during changes in inotropy. Magn Reson Med 2001;46:884–890.PubMedCrossRef
45.
go back to reference Pautler RG, Silva AC, Koretsky AP. In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Med 1998;40:740–748.PubMedCrossRef Pautler RG, Silva AC, Koretsky AP. In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Med 1998;40:740–748.PubMedCrossRef
46.
go back to reference Bilgen M, Dancause N, Al-Hafez B, He YY, Malone TM. Manganese-enhanced MRI of rat spinal cord injury. Magn Reson Imaging 2005;23:829–832.PubMedCrossRef Bilgen M, Dancause N, Al-Hafez B, He YY, Malone TM. Manganese-enhanced MRI of rat spinal cord injury. Magn Reson Imaging 2005;23:829–832.PubMedCrossRef
47.
go back to reference Bilgen M. Imaging corticospinal tract connectivity in injured rat spinal cord using manganese-enhanced MRI. BMC Med Imaging 2006;6:15.PubMedCrossRef Bilgen M. Imaging corticospinal tract connectivity in injured rat spinal cord using manganese-enhanced MRI. BMC Med Imaging 2006;6:15.PubMedCrossRef
48.
go back to reference Stieltjes B, Klussmann S, Bock M, et al. Manganese-enhanced magnetic resonance imaging for in vivo assessment of damage and functional improvement following spinal cord injury in mice. Magn Reson Med 2006;55:1124–1131.PubMedCrossRef Stieltjes B, Klussmann S, Bock M, et al. Manganese-enhanced magnetic resonance imaging for in vivo assessment of damage and functional improvement following spinal cord injury in mice. Magn Reson Med 2006;55:1124–1131.PubMedCrossRef
49.
go back to reference Yang J, Wu EX. Manganese-enhanced MRI detected the gray matter lesions in the late phase of mild hypoxic-ischemic injury in neonatal rat. Conf Proc IEEE Eng Med Biol Soc 2007;2007:51–54.PubMed Yang J, Wu EX. Manganese-enhanced MRI detected the gray matter lesions in the late phase of mild hypoxic-ischemic injury in neonatal rat. Conf Proc IEEE Eng Med Biol Soc 2007;2007:51–54.PubMed
50.
go back to reference Bock C, Schmitz B, Kerskens CM, et al. Functional MRI of somatosensory activation in rat: effect of hypercapnic up-regulation on perfusion- and BOLD-imaging. Magn Reson Med 1998;39:457–461.PubMedCrossRef Bock C, Schmitz B, Kerskens CM, et al. Functional MRI of somatosensory activation in rat: effect of hypercapnic up-regulation on perfusion- and BOLD-imaging. Magn Reson Med 1998;39:457–461.PubMedCrossRef
51.
go back to reference Mandeville JB, Marota JJ, Kosofsky BE, et al. Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn Reson Med 1998;39:615–624.PubMedCrossRef Mandeville JB, Marota JJ, Kosofsky BE, et al. Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn Reson Med 1998;39:615–624.PubMedCrossRef
52.
go back to reference Malisza KL, Stroman PW. Functional imaging of the rat cervical spinal cord. J Magn Reson Imaging 2002;16:553–558.PubMedCrossRef Malisza KL, Stroman PW. Functional imaging of the rat cervical spinal cord. J Magn Reson Imaging 2002;16:553–558.PubMedCrossRef
53.
go back to reference Malisza KL, Stroman PW, Turner A, et al. Functional MRI of the rat lumbar spinal cord involving painful stimulation and the effect of peripheral joint mobilization. J Magn Reson Imaging 2003;18:152–159.PubMedCrossRef Malisza KL, Stroman PW, Turner A, et al. Functional MRI of the rat lumbar spinal cord involving painful stimulation and the effect of peripheral joint mobilization. J Magn Reson Imaging 2003;18:152–159.PubMedCrossRef
54.
go back to reference Brinker G, Bock C, Busch E, et al. Simultaneous recording of evoked potentials and T2*-weighted MR images during somatosensory stimulation of rat. Magn Reson Med 1999;41:469–473.PubMedCrossRef Brinker G, Bock C, Busch E, et al. Simultaneous recording of evoked potentials and T2*-weighted MR images during somatosensory stimulation of rat. Magn Reson Med 1999;41:469–473.PubMedCrossRef
55.
go back to reference Hsu EW, Hedlund LW, MacFall JR. Functional MRI of the rat somatosensory cortex: effects of hyperventilation. Magn Reson Med 1998;40:421–426.PubMedCrossRef Hsu EW, Hedlund LW, MacFall JR. Functional MRI of the rat somatosensory cortex: effects of hyperventilation. Magn Reson Med 1998;40:421–426.PubMedCrossRef
56.
go back to reference Mandeville JB, Jenkins BG, Kosofsky BE, et al. Regional sensitivity and coupling of BOLD and CBV changes during stimulation of rat brain. Magn Reson Med 2001;45:443–447.PubMedCrossRef Mandeville JB, Jenkins BG, Kosofsky BE, et al. Regional sensitivity and coupling of BOLD and CBV changes during stimulation of rat brain. Magn Reson Med 2001;45:443–447.PubMedCrossRef
57.
go back to reference Wu EX, Wong KK, Andrassy M, Tang H. High-resolution in vivo CBV mapping with MRI in wild-type mice. Magn Reson Med 2003;49:765–770.PubMedCrossRef Wu EX, Wong KK, Andrassy M, Tang H. High-resolution in vivo CBV mapping with MRI in wild-type mice. Magn Reson Med 2003;49:765–770.PubMedCrossRef
58.
go back to reference Lawrence J, Stroman PW, Malisza KL. Functional MRI of the cervical spinal cord during noxious and innocuous thermal stimulation in the alpha-chloralose- and halothane-anesthetized rat. Magn Reson Imaging 2008;26:1–10.PubMedCrossRef Lawrence J, Stroman PW, Malisza KL. Functional MRI of the cervical spinal cord during noxious and innocuous thermal stimulation in the alpha-chloralose- and halothane-anesthetized rat. Magn Reson Imaging 2008;26:1–10.PubMedCrossRef
59.
go back to reference Majcher K, Tomanek B, Jasinski A, et al. Simultaneous functional magnetic resonance imaging in the rat spinal cord and brain. Exp Neurol 2006;197:458–464.PubMedCrossRef Majcher K, Tomanek B, Jasinski A, et al. Simultaneous functional magnetic resonance imaging in the rat spinal cord and brain. Exp Neurol 2006;197:458–464.PubMedCrossRef
60.
go back to reference Pirko I, Ciric B, Gamez J, et al. A human antibody that promotes remyelination enters the CNS and decreases lesion load as detected by T2-weighted spinal cord MRI in a virus-induced murine model of MS. FASEB J 2004;18:1577–1579.PubMed Pirko I, Ciric B, Gamez J, et al. A human antibody that promotes remyelination enters the CNS and decreases lesion load as detected by T2-weighted spinal cord MRI in a virus-induced murine model of MS. FASEB J 2004;18:1577–1579.PubMed
61.
go back to reference Pirko I, Johnson A, Ciric B, et al. In vivo magnetic resonance imaging of immune cells in the central nervous system with superparamagnetic antibodies. FASEB J 2004;18:179–182.PubMed Pirko I, Johnson A, Ciric B, et al. In vivo magnetic resonance imaging of immune cells in the central nervous system with superparamagnetic antibodies. FASEB J 2004;18:179–182.PubMed
62.
go back to reference Pirko I, Ciric B, Johnson AJ, et al. Magnetic resonance imaging of immune cells in inflammation of central nervous system. Croat Med J 2003;44:463–468.PubMed Pirko I, Ciric B, Johnson AJ, et al. Magnetic resonance imaging of immune cells in inflammation of central nervous system. Croat Med J 2003;44:463–468.PubMed
63.
go back to reference Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004;17:484–499.PubMedCrossRef Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004;17:484–499.PubMedCrossRef
64.
go back to reference Bulte JW, Arbab AS, Douglas T, Frank JA. Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging. Methods Enzymol 2004;386:275–299.PubMedCrossRef Bulte JW, Arbab AS, Douglas T, Frank JA. Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging. Methods Enzymol 2004;386:275–299.PubMedCrossRef
65.
go back to reference Bulte JW, Ben-Hur T, Miller BR, et al. MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain. Magn Reson Med 2003;50:201–205.PubMedCrossRef Bulte JW, Ben-Hur T, Miller BR, et al. MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain. Magn Reson Med 2003;50:201–205.PubMedCrossRef
66.
go back to reference Anderson SA, Shukaliak-Quandt J, Jordan EK, et al. Magnetic resonance imaging of labeled T-cells in a mouse model of multiple sclerosis. Ann Neurol 2004;55:654–659.PubMedCrossRef Anderson SA, Shukaliak-Quandt J, Jordan EK, et al. Magnetic resonance imaging of labeled T-cells in a mouse model of multiple sclerosis. Ann Neurol 2004;55:654–659.PubMedCrossRef
67.
go back to reference Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 1990;175:489–493.PubMed Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 1990;175:489–493.PubMed
68.
go back to reference Shapiro EM, Skrtic S, Koretsky AP. Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 2005;53:329–338.PubMedCrossRef Shapiro EM, Skrtic S, Koretsky AP. Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 2005;53:329–338.PubMedCrossRef
69.
go back to reference Stark DD, Weissleder R, Elizondo G, et al. Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 1988;168:297–301.PubMed Stark DD, Weissleder R, Elizondo G, et al. Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 1988;168:297–301.PubMed
70.
go back to reference Weissleder R, Hahn PF, Stark DD, et al. Superparamagnetic iron oxide: enhanced detection of focal splenic tumors with MR imaging. Radiology 1988;169:399–403.PubMed Weissleder R, Hahn PF, Stark DD, et al. Superparamagnetic iron oxide: enhanced detection of focal splenic tumors with MR imaging. Radiology 1988;169:399–403.PubMed
71.
go back to reference Robinson KM, Njus JM, Phillips DA, et al. MR imaging of inflammation during myelin-specific T cell-mediated autoimmune attack in the EAE mouse spinal cord. Mol Imaging Biol 2010;12:240–249.PubMedCrossRef Robinson KM, Njus JM, Phillips DA, et al. MR imaging of inflammation during myelin-specific T cell-mediated autoimmune attack in the EAE mouse spinal cord. Mol Imaging Biol 2010;12:240–249.PubMedCrossRef
72.
go back to reference Ladewig G, Jestaedt L, Misselwitz B, et al. Spatial diversity of blood-brain barrier alteration and macrophage invasion in experimental autoimmune encephalomyelitis: a comparative MRI study. Exp Neurol 2009;220:207–211.PubMedCrossRef Ladewig G, Jestaedt L, Misselwitz B, et al. Spatial diversity of blood-brain barrier alteration and macrophage invasion in experimental autoimmune encephalomyelitis: a comparative MRI study. Exp Neurol 2009;220:207–211.PubMedCrossRef
73.
go back to reference Xu S, Jordan EK, Brocke S, et al. Study of relapsing remitting experimental allergic encephalomyelitis SJL mouse model using MION-46L enhanced in vivo MRI: early histopathological correlation. J Neurosci Res 1998;52:549–558.PubMedCrossRef Xu S, Jordan EK, Brocke S, et al. Study of relapsing remitting experimental allergic encephalomyelitis SJL mouse model using MION-46L enhanced in vivo MRI: early histopathological correlation. J Neurosci Res 1998;52:549–558.PubMedCrossRef
74.
go back to reference Dousset V, Ballarino L, Delalande C, et al. Comparison of ultrasmall particles of iron oxide (USPIO)-enhanced T2–weighted, conventional T2–weighted, and gadolinium-enhanced T1–weighted MR images in rats with experimental autoimmune encephalomyelitis. AJNR Am J Neuroradiol 1999;20:223–227.PubMed Dousset V, Ballarino L, Delalande C, et al. Comparison of ultrasmall particles of iron oxide (USPIO)-enhanced T2–weighted, conventional T2–weighted, and gadolinium-enhanced T1–weighted MR images in rats with experimental autoimmune encephalomyelitis. AJNR Am J Neuroradiol 1999;20:223–227.PubMed
75.
go back to reference Rausch M, Hiestand P, Baumann D, Cannet C, Rudin M. MRI-based monitoring of inflammation and tissue damage in acute and chronic relapsing EAE. Magn Reson Med 2003;50:309–314.PubMedCrossRef Rausch M, Hiestand P, Baumann D, Cannet C, Rudin M. MRI-based monitoring of inflammation and tissue damage in acute and chronic relapsing EAE. Magn Reson Med 2003;50:309–314.PubMedCrossRef
76.
go back to reference Pirko I, Nolan TK, Holland SK, Johnson AJ. Multiple sclerosis: pathogenesis and MR imaging features of T1 hypointensities in a [corrected] murine model. Radiology 2008;246:790–795.PubMedCrossRef Pirko I, Nolan TK, Holland SK, Johnson AJ. Multiple sclerosis: pathogenesis and MR imaging features of T1 hypointensities in a [corrected] murine model. Radiology 2008;246:790–795.PubMedCrossRef
77.
go back to reference OudeEngberink RD, van der Pol SM, Dopp EA, de Vries HE, Blezer EL. Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 2007;243:467–474.CrossRef OudeEngberink RD, van der Pol SM, Dopp EA, de Vries HE, Blezer EL. Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 2007;243:467–474.CrossRef
78.
go back to reference Thorek DL, Tsourkas A. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 2008;29:3583–3590.PubMedCrossRef Thorek DL, Tsourkas A. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 2008;29:3583–3590.PubMedCrossRef
79.
go back to reference Metz S, Bonaterra G, Rudelius M, et al. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 2004;14:1851–1858.PubMedCrossRef Metz S, Bonaterra G, Rudelius M, et al. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 2004;14:1851–1858.PubMedCrossRef
80.
go back to reference McAteer MA, Sibson NR, von Zur Muhlen C, et al. In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 2007;13:1253–1258.PubMedCrossRef McAteer MA, Sibson NR, von Zur Muhlen C, et al. In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 2007;13:1253–1258.PubMedCrossRef
81.
go back to reference Querol M, Bogdanov A, Jr. Amplification strategies in MR imaging: activation and accumulation of sensing contrast agents (SCAs). J Magn Reson Imaging 2006;24:971–982.PubMedCrossRef Querol M, Bogdanov A, Jr. Amplification strategies in MR imaging: activation and accumulation of sensing contrast agents (SCAs). J Magn Reson Imaging 2006;24:971–982.PubMedCrossRef
82.
go back to reference Chen JW, Querol Sans M, Bogdanov A, Jr., Weissleder R. Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology 2006;240:473–481.PubMedCrossRef Chen JW, Querol Sans M, Bogdanov A, Jr., Weissleder R. Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology 2006;240:473–481.PubMedCrossRef
83.
go back to reference Kim JH, Budde MD, Liang HF, et al. Detecting axon damage in spinal cord from a mouse model of multiple sclerosis. Neurobiol Dis 2006;21:626–632.PubMedCrossRef Kim JH, Budde MD, Liang HF, et al. Detecting axon damage in spinal cord from a mouse model of multiple sclerosis. Neurobiol Dis 2006;21:626–632.PubMedCrossRef
84.
go back to reference MacKenzie-Graham A, Tiwari-Woodruff SK, Sharma G, et al. Purkinje cell loss in experimental autoimmune encephalomyelitis. Neuroimage 2009;48:637–651.PubMedCrossRef MacKenzie-Graham A, Tiwari-Woodruff SK, Sharma G, et al. Purkinje cell loss in experimental autoimmune encephalomyelitis. Neuroimage 2009;48:637–651.PubMedCrossRef
85.
go back to reference Pirko I, Johnson AJ, Lohrey AK, Chen Y, Ying J. Deep gray matter T2 hypointensity correlates with disability in a murine model of MS. J Neurol Sci 2009;282:34–38.PubMedCrossRef Pirko I, Johnson AJ, Lohrey AK, Chen Y, Ying J. Deep gray matter T2 hypointensity correlates with disability in a murine model of MS. J Neurol Sci 2009;282:34–38.PubMedCrossRef
86.
go back to reference Pirko I, Suidan GL, Rodriguez M, Johnson AJ. Acute hemorrhagic demyelination in a murine model of multiple sclerosis. J Neuroinflammation 2008;5:31.PubMedCrossRef Pirko I, Suidan GL, Rodriguez M, Johnson AJ. Acute hemorrhagic demyelination in a murine model of multiple sclerosis. J Neuroinflammation 2008;5:31.PubMedCrossRef
87.
go back to reference Wu QZ, Yang Q, Cate HS, et al. MRI identification of the rostral-caudal pattern of pathology within the corpus callosum in the cuprizone mouse model. J Magn Reson Imaging 2008;27:446–453.PubMedCrossRef Wu QZ, Yang Q, Cate HS, et al. MRI identification of the rostral-caudal pattern of pathology within the corpus callosum in the cuprizone mouse model. J Magn Reson Imaging 2008;27:446–453.PubMedCrossRef
88.
go back to reference Zaaraoui W, Deloire M, Merle M, et al. Monitoring demyelination and remyelination by magnetization transfer imaging in the mouse brain at 94T. Magma 2008;21:357–362.PubMedCrossRef Zaaraoui W, Deloire M, Merle M, et al. Monitoring demyelination and remyelination by magnetization transfer imaging in the mouse brain at 94T. Magma 2008;21:357–362.PubMedCrossRef
89.
go back to reference Sun SW, Liang HF, Trinkaus K, et al. Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magn Reson Med 2006;55:302–308.PubMedCrossRef Sun SW, Liang HF, Trinkaus K, et al. Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magn Reson Med 2006;55:302–308.PubMedCrossRef
90.
go back to reference Pirko I, Gamez J, Johnson AJ, Macura SI, Rodriguez M. Dynamics of MRI lesion development in an animal model of viral-induced acute progressive CNS demyelination. NeuroImage 2004;21:576–582.PubMedCrossRef Pirko I, Gamez J, Johnson AJ, Macura SI, Rodriguez M. Dynamics of MRI lesion development in an animal model of viral-induced acute progressive CNS demyelination. NeuroImage 2004;21:576–582.PubMedCrossRef
91.
go back to reference Pirko I, Johnson A, Gamez J, Macura SI, Rodriguez M. Disappearing "T1 black holes" in an animal model of multiple sclerosis. Front Biosci 2004;9:1222–1227.PubMedCrossRef Pirko I, Johnson A, Gamez J, Macura SI, Rodriguez M. Disappearing "T1 black holes" in an animal model of multiple sclerosis. Front Biosci 2004;9:1222–1227.PubMedCrossRef
92.
go back to reference Heide AC, Richards TL, Alvord EC, Jr., Peterson J, Rose LM. Diffusion imaging of experimental allergic encephalomyelitis. Magn Reson Med 1993;29:478–484.PubMedCrossRef Heide AC, Richards TL, Alvord EC, Jr., Peterson J, Rose LM. Diffusion imaging of experimental allergic encephalomyelitis. Magn Reson Med 1993;29:478–484.PubMedCrossRef
93.
go back to reference Ahrens ET, Laidlaw DH, Readhead C, et al. MR microscopy of transgenic mice that spontaneously acquire experimental allergic encephalomyelitis. Magn Reson Med 1998;40:119–132.PubMedCrossRef Ahrens ET, Laidlaw DH, Readhead C, et al. MR microscopy of transgenic mice that spontaneously acquire experimental allergic encephalomyelitis. Magn Reson Med 1998;40:119–132.PubMedCrossRef
94.
go back to reference Schwarcz A, Natt O, Watanabe T, et al. Localized proton MRS of cerebral metabolite profiles in different mouse strains. Magn Reson Med 2003;49:822–827.PubMedCrossRef Schwarcz A, Natt O, Watanabe T, et al. Localized proton MRS of cerebral metabolite profiles in different mouse strains. Magn Reson Med 2003;49:822–827.PubMedCrossRef
95.
go back to reference Xu J, Sun SW, Naismith RT, et al. Assessing optic nerve pathology with diffusion MRI: from mouse to human. NMR Biomed 2008;21:928–940.PubMedCrossRef Xu J, Sun SW, Naismith RT, et al. Assessing optic nerve pathology with diffusion MRI: from mouse to human. NMR Biomed 2008;21:928–940.PubMedCrossRef
96.
go back to reference Wu Q, Butzkueven H, Gresle M, et al. MR diffusion changes correlate with ultra-structurally defined axonal degeneration in murine optic nerve. Neuroimage 2007;37:1138–1147.PubMedCrossRef Wu Q, Butzkueven H, Gresle M, et al. MR diffusion changes correlate with ultra-structurally defined axonal degeneration in murine optic nerve. Neuroimage 2007;37:1138–1147.PubMedCrossRef
97.
go back to reference Lee WT, Chang C. Magnetic resonance imaging and spectroscopy in assessing 3–nitropropionic acid-induced brain lesions: an animal model of Huntington's disease. Prog Neurobiol 2004;72:87–110.PubMedCrossRef Lee WT, Chang C. Magnetic resonance imaging and spectroscopy in assessing 3–nitropropionic acid-induced brain lesions: an animal model of Huntington's disease. Prog Neurobiol 2004;72:87–110.PubMedCrossRef
98.
go back to reference Choi IY, Lee SP, Guilfoyle DN, Helpern JA. In vivo NMR studies of neurodegenerative diseases in transgenic and rodent models. Neurochem Res 2003;28:987–1001.PubMedCrossRef Choi IY, Lee SP, Guilfoyle DN, Helpern JA. In vivo NMR studies of neurodegenerative diseases in transgenic and rodent models. Neurochem Res 2003;28:987–1001.PubMedCrossRef
99.
go back to reference Gilissen EP, Ghosh P, Jacobs RE, Allman JM. Topographical localization of iron in brains of the aged fat-tailed dwarf lemur (Cheirogaleus medius) and gray lesser mouse lemur (Microcebus murinus). Am J Primatol 1998;45:291–299.PubMedCrossRef Gilissen EP, Ghosh P, Jacobs RE, Allman JM. Topographical localization of iron in brains of the aged fat-tailed dwarf lemur (Cheirogaleus medius) and gray lesser mouse lemur (Microcebus murinus). Am J Primatol 1998;45:291–299.PubMedCrossRef
100.
go back to reference McDaniel B, Sheng H, Warner DS, Hedlund LW, Benveniste H. Tracking brain volume changes in C57BL/6J and ApoE-deficient mice in a model of neurodegeneration: a 5-week longitudinal micro-MRI study. NeuroImage 2001;14:1244–1255.PubMedCrossRef McDaniel B, Sheng H, Warner DS, Hedlund LW, Benveniste H. Tracking brain volume changes in C57BL/6J and ApoE-deficient mice in a model of neurodegeneration: a 5-week longitudinal micro-MRI study. NeuroImage 2001;14:1244–1255.PubMedCrossRef
101.
go back to reference Poduslo JF, Wengenack TM, Curran GL, et al. Molecular targeting of Alzheimer's amyloid plaques for contrast-enhanced magnetic resonance imaging. Neurobiol Dis 2002;11:315–329.PubMedCrossRef Poduslo JF, Wengenack TM, Curran GL, et al. Molecular targeting of Alzheimer's amyloid plaques for contrast-enhanced magnetic resonance imaging. Neurobiol Dis 2002;11:315–329.PubMedCrossRef
102.
go back to reference Poduslo JF, Curran GL, Peterson JA, et al. Design and chemical synthesis of a magnetic resonance contrast agent with enhanced in vitro binding, high blood-brain barrier permeability, and in vivo targeting to Alzheimer's disease amyloid plaques. Biochemistry 2004;43:6064–6075.PubMedCrossRef Poduslo JF, Curran GL, Peterson JA, et al. Design and chemical synthesis of a magnetic resonance contrast agent with enhanced in vitro binding, high blood-brain barrier permeability, and in vivo targeting to Alzheimer's disease amyloid plaques. Biochemistry 2004;43:6064–6075.PubMedCrossRef
103.
go back to reference Zhang J, Yarowsky P, Gordon MN, et al. Detection of amyloid plaques in mouse models of Alzheimer's disease by magnetic resonance imaging. Magn Reson Med 2004;51:452–457.PubMedCrossRef Zhang J, Yarowsky P, Gordon MN, et al. Detection of amyloid plaques in mouse models of Alzheimer's disease by magnetic resonance imaging. Magn Reson Med 2004;51:452–457.PubMedCrossRef
104.
go back to reference Dedeoglu A, Choi JK, Cormier K, Kowall NW, Jenkins BG. Magnetic resonance spectroscopic analysis of Alzheimer's disease mouse brain that express mutant human APP shows altered neurochemical profile. Brain Res 2004;1012:60–65.PubMedCrossRef Dedeoglu A, Choi JK, Cormier K, Kowall NW, Jenkins BG. Magnetic resonance spectroscopic analysis of Alzheimer's disease mouse brain that express mutant human APP shows altered neurochemical profile. Brain Res 2004;1012:60–65.PubMedCrossRef
105.
go back to reference Jack CR, Jr., Garwood M, Wengenack TM, et al. In vivo visualization of Alzheimer's amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent. Magn Reson Med 2004;52:1263–1271.PubMedCrossRef Jack CR, Jr., Garwood M, Wengenack TM, et al. In vivo visualization of Alzheimer's amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent. Magn Reson Med 2004;52:1263–1271.PubMedCrossRef
106.
go back to reference Jack CR, Jr., Marjanska M, Wengenack TM, et al. Magnetic resonance imaging of Alzheimer's pathology in the brains of living transgenic mice: a new tool in Alzheimer's disease research. Neuroscientist 2007;13:38–48.PubMedCrossRef Jack CR, Jr., Marjanska M, Wengenack TM, et al. Magnetic resonance imaging of Alzheimer's pathology in the brains of living transgenic mice: a new tool in Alzheimer's disease research. Neuroscientist 2007;13:38–48.PubMedCrossRef
107.
go back to reference Bakshi R, Dmochowski J, Shaikh ZA, Jacobs L. Gray matter T2 hypointensity is related to plaques and atrophy in the brains of multiple sclerosis patients. J Neurol Sci 2001;185:19–26.PubMedCrossRef Bakshi R, Dmochowski J, Shaikh ZA, Jacobs L. Gray matter T2 hypointensity is related to plaques and atrophy in the brains of multiple sclerosis patients. J Neurol Sci 2001;185:19–26.PubMedCrossRef
108.
go back to reference Pirko I, Johnson AJ, Lohrey AK, Chen Y, Ying J. Deep gray matter T2 hypointensity correlates with disability in a murine model of MS. J Neurol Sci 2009;282:34–38. Pirko I, Johnson AJ, Lohrey AK, Chen Y, Ying J. Deep gray matter T2 hypointensity correlates with disability in a murine model of MS. J Neurol Sci 2009;282:34–38.
109.
go back to reference Chamberlain R, Reyes D, Curran GL, et al. Comparison of amyloid plaque contrast generated by T2-weighted, T2*-weighted, and susceptibility-weighted imaging methods in transgenic mouse models of Alzheimer's disease. Magn Reson Med 2009;61:1158–1164.PubMedCrossRef Chamberlain R, Reyes D, Curran GL, et al. Comparison of amyloid plaque contrast generated by T2-weighted, T2*-weighted, and susceptibility-weighted imaging methods in transgenic mouse models of Alzheimer's disease. Magn Reson Med 2009;61:1158–1164.PubMedCrossRef
110.
go back to reference Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994;264:1772–1775.PubMedCrossRef Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994;264:1772–1775.PubMedCrossRef
111.
go back to reference Angenstein F, Niessen HG, Goldschmidt J, et al. Age-dependent changes in MRI of motor brain stem nuclei in a mouse model of ALS. Neuroreport 2004;15:2271–2274.PubMedCrossRef Angenstein F, Niessen HG, Goldschmidt J, et al. Age-dependent changes in MRI of motor brain stem nuclei in a mouse model of ALS. Neuroreport 2004;15:2271–2274.PubMedCrossRef
112.
go back to reference Zang DW, Yang Q, Wang HX, et al. Magnetic resonance imaging reveals neuronal degeneration in the brainstem of the superoxide dismutase 1 transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 2004;20:1745–1751.PubMedCrossRef Zang DW, Yang Q, Wang HX, et al. Magnetic resonance imaging reveals neuronal degeneration in the brainstem of the superoxide dismutase 1 transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 2004;20:1745–1751.PubMedCrossRef
113.
go back to reference Bucher S, Braunstein KE, Niessen HG, et al. Vacuolization correlates with spin-spin relaxation time in motor brainstem nuclei and behavioural tests in the transgenic G93A-SOD1 mouse model of ALS. Eur J Neurosci 2007;26:1895–1901.PubMedCrossRef Bucher S, Braunstein KE, Niessen HG, et al. Vacuolization correlates with spin-spin relaxation time in motor brainstem nuclei and behavioural tests in the transgenic G93A-SOD1 mouse model of ALS. Eur J Neurosci 2007;26:1895–1901.PubMedCrossRef
114.
go back to reference Niessen HG, Angenstein F, Sander K, et al. In vivo quantification of spinal and bulbar motor neuron degeneration in the G93A-SOD1 transgenic mouse model of ALS by T2 relaxation time and apparent diffusion coefficient. Exp Neurol 2006;201:293–300.PubMedCrossRef Niessen HG, Angenstein F, Sander K, et al. In vivo quantification of spinal and bulbar motor neuron degeneration in the G93A-SOD1 transgenic mouse model of ALS by T2 relaxation time and apparent diffusion coefficient. Exp Neurol 2006;201:293–300.PubMedCrossRef
115.
go back to reference Wilson JM, Petrik MS, Grant SC, et al. Quantitative measurement of neurodegeneration in an ALS-PDC model using MR microscopy. Neuroimage 2004;23:336–343.PubMedCrossRef Wilson JM, Petrik MS, Grant SC, et al. Quantitative measurement of neurodegeneration in an ALS-PDC model using MR microscopy. Neuroimage 2004;23:336–343.PubMedCrossRef
116.
go back to reference Hesselbarth D, Franke C, Hata R, Brinker G, Hoehn-Berlage M. High resolution MRI and MRS: a feasibility study for the investigation of focal cerebral ischemia in mice. NMR Biomed 1998;11:423–429.PubMedCrossRef Hesselbarth D, Franke C, Hata R, Brinker G, Hoehn-Berlage M. High resolution MRI and MRS: a feasibility study for the investigation of focal cerebral ischemia in mice. NMR Biomed 1998;11:423–429.PubMedCrossRef
117.
go back to reference Hoehn M, Nicolay K, Franke C, van der Sanden B. Application of magnetic resonance to animal models of cerebral ischemia. J Magn Reson Imaging 2001;14:491–509.PubMedCrossRef Hoehn M, Nicolay K, Franke C, van der Sanden B. Application of magnetic resonance to animal models of cerebral ischemia. J Magn Reson Imaging 2001;14:491–509.PubMedCrossRef
118.
go back to reference Hata R, Mies G, Wiessner C, et al. A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging. J Cereb Blood Flow Metab 1998;18:367–375.PubMedCrossRef Hata R, Mies G, Wiessner C, et al. A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging. J Cereb Blood Flow Metab 1998;18:367–375.PubMedCrossRef
119.
go back to reference Barber PA, Hoyte L, Kirk D, et al. Early T1– and T2–weighted MRI signatures of transient and permanent middle cerebral artery occlusion in a murine stroke model studied at 9.4T. Neurosci Lett 2005;388:54–59.PubMedCrossRef Barber PA, Hoyte L, Kirk D, et al. Early T1– and T2–weighted MRI signatures of transient and permanent middle cerebral artery occlusion in a murine stroke model studied at 9.4T. Neurosci Lett 2005;388:54–59.PubMedCrossRef
120.
go back to reference Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med 1999;42:1123–1127.PubMedCrossRef Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med 1999;42:1123–1127.PubMedCrossRef
121.
go back to reference Tatlisumak T, Strbian D, Abo Ramadan U, Li F. The role of diffusion- and perfusion-weighted magnetic resonance imaging in drug development for ischemic stroke: from laboratory to clinics. Curr Vasc Pharmacol 2004;2:343–355.PubMedCrossRef Tatlisumak T, Strbian D, Abo Ramadan U, Li F. The role of diffusion- and perfusion-weighted magnetic resonance imaging in drug development for ischemic stroke: from laboratory to clinics. Curr Vasc Pharmacol 2004;2:343–355.PubMedCrossRef
122.
go back to reference Pedrono E, Durukan A, Strbian D, et al. An optimized mouse model for transient ischemic attack. J Neuropathol Exp Neurol 2010;69:188–195.PubMedCrossRef Pedrono E, Durukan A, Strbian D, et al. An optimized mouse model for transient ischemic attack. J Neuropathol Exp Neurol 2010;69:188–195.PubMedCrossRef
123.
go back to reference Dreher W, Kuhn B, Gyngell ML, et al. Temporal and regional changes during focal ischemia in rat brain studied by proton spectroscopic imaging and quantitative diffusion NMR imaging. Magn Reson Med 1998;39:878–888.PubMedCrossRef Dreher W, Kuhn B, Gyngell ML, et al. Temporal and regional changes during focal ischemia in rat brain studied by proton spectroscopic imaging and quantitative diffusion NMR imaging. Magn Reson Med 1998;39:878–888.PubMedCrossRef
124.
go back to reference Malisza KL, Kozlowski P, Ning G, Bascaramurty S, Tuor UI. Metabolite changes in neonatal rat brain during and after cerebral hypoxia-ischemia: a magnetic resonance spectroscopic imaging study. NMR Biomed 1999;12:31–38.PubMedCrossRef Malisza KL, Kozlowski P, Ning G, Bascaramurty S, Tuor UI. Metabolite changes in neonatal rat brain during and after cerebral hypoxia-ischemia: a magnetic resonance spectroscopic imaging study. NMR Biomed 1999;12:31–38.PubMedCrossRef
125.
go back to reference Beckmann N. High resolution magnetic resonance angiography non-invasively reveals mouse strain differences in the cerebrovascular anatomy in vivo. Magn Reson Med 2000;44:252–258.PubMedCrossRef Beckmann N. High resolution magnetic resonance angiography non-invasively reveals mouse strain differences in the cerebrovascular anatomy in vivo. Magn Reson Med 2000;44:252–258.PubMedCrossRef
126.
go back to reference Illanes S, Zhou W, Heiland S, Markus Z, Veltkamp R. Kinetics of hematoma expansion in murine warfarin-associated intracerebral hemorrhage. Brain Res 2010;1320:135–142.PubMedCrossRef Illanes S, Zhou W, Heiland S, Markus Z, Veltkamp R. Kinetics of hematoma expansion in murine warfarin-associated intracerebral hemorrhage. Brain Res 2010;1320:135–142.PubMedCrossRef
127.
go back to reference Knight RA, Han Y, Nagaraja TN, et al. Temporal MRI assessment of intracerebral hemorrhage in rats. Stroke 2008;39:2596–2602.PubMedCrossRef Knight RA, Han Y, Nagaraja TN, et al. Temporal MRI assessment of intracerebral hemorrhage in rats. Stroke 2008;39:2596–2602.PubMedCrossRef
128.
go back to reference Goetz P, Blamire A, Rajagopalan B, et al. Increase in apparent diffusion coefficient in normal appearing white matter following human traumatic brain injury correlates with injury severity. J Neurotrauma 2004;21:645–654.PubMedCrossRef Goetz P, Blamire A, Rajagopalan B, et al. Increase in apparent diffusion coefficient in normal appearing white matter following human traumatic brain injury correlates with injury severity. J Neurotrauma 2004;21:645–654.PubMedCrossRef
129.
go back to reference Stoffel M, Blau C, Reinl H, et al. Identification of brain tissue necrosis by MRI: validation by histomorphometry. J Neurotrauma 2004;21:733–740.PubMedCrossRef Stoffel M, Blau C, Reinl H, et al. Identification of brain tissue necrosis by MRI: validation by histomorphometry. J Neurotrauma 2004;21:733–740.PubMedCrossRef
130.
go back to reference Mac Donald CL, Dikranian K, Bayly P, Holtzman D, Brody D. Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury. J Neurosci 2007;27:11869–11876.PubMedCrossRef Mac Donald CL, Dikranian K, Bayly P, Holtzman D, Brody D. Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury. J Neurosci 2007;27:11869–11876.PubMedCrossRef
131.
go back to reference Mac Donald CL, Dikranian K, Song SK, et al. Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Exp Neurol 2007;205:116–131.PubMedCrossRef Mac Donald CL, Dikranian K, Song SK, et al. Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Exp Neurol 2007;205:116–131.PubMedCrossRef
132.
go back to reference Van Putten HP, Bouwhuis MG, Muizelaar JP, Lyeth BG, Berman RF. Diffusion-weighted imaging of edema following traumatic brain injury in rats: effects of secondary hypoxia. J Neurotrauma 2005;22:857–872.PubMedCrossRef Van Putten HP, Bouwhuis MG, Muizelaar JP, Lyeth BG, Berman RF. Diffusion-weighted imaging of edema following traumatic brain injury in rats: effects of secondary hypoxia. J Neurotrauma 2005;22:857–872.PubMedCrossRef
133.
go back to reference Schuhmann MU, Stiller D, Skardelly M, et al. Metabolic changes in the vicinity of brain contusions: a proton magnetic resonance spectroscopy and histology study. J Neurotrauma 2003;20:725–743.PubMedCrossRef Schuhmann MU, Stiller D, Skardelly M, et al. Metabolic changes in the vicinity of brain contusions: a proton magnetic resonance spectroscopy and histology study. J Neurotrauma 2003;20:725–743.PubMedCrossRef
134.
go back to reference Schuhmann MU, Stiller D, Skardelly M, et al. Long-time in-vivo metabolic monitoring following experimental brain contusion using proton magnetic resonance spectroscopy. Acta Neurochir Suppl 2002;81:209–212.PubMed Schuhmann MU, Stiller D, Skardelly M, et al. Long-time in-vivo metabolic monitoring following experimental brain contusion using proton magnetic resonance spectroscopy. Acta Neurochir Suppl 2002;81:209–212.PubMed
135.
go back to reference Tsai EC, van Bendegem RL, Hwang SW, Tator CH. A novel method for simultaneous anterograde and retrograde labeling of spinal cord motor tracts in the same animal. J Histochem Cytochem 2001;49:1111–1122.PubMed Tsai EC, van Bendegem RL, Hwang SW, Tator CH. A novel method for simultaneous anterograde and retrograde labeling of spinal cord motor tracts in the same animal. J Histochem Cytochem 2001;49:1111–1122.PubMed
136.
go back to reference Raineteau O, Fouad K, Bareyre FM, Schwab ME. Reorganization of descending motor tracts in the rat spinal cord. Eur J Neurosci 2002;16:1761–1771.PubMedCrossRef Raineteau O, Fouad K, Bareyre FM, Schwab ME. Reorganization of descending motor tracts in the rat spinal cord. Eur J Neurosci 2002;16:1761–1771.PubMedCrossRef
137.
go back to reference Rosenzweig ES, McDonald JW. Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair. Curr Opin Neurol 2004;17:121–131.PubMedCrossRef Rosenzweig ES, McDonald JW. Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair. Curr Opin Neurol 2004;17:121–131.PubMedCrossRef
138.
go back to reference Nevo U, Hauben E, Yoles E, et al. Diffusion anisotropy MRI for quantitative assessment of recovery in injured rat spinal cord. Magn Reson Med 2001;45:1–9.PubMedCrossRef Nevo U, Hauben E, Yoles E, et al. Diffusion anisotropy MRI for quantitative assessment of recovery in injured rat spinal cord. Magn Reson Med 2001;45:1–9.PubMedCrossRef
139.
go back to reference Lawrence J, Stroman PW, Bascaramurty S, Jordan LM, Malisza KL. Correlation of functional activation in the rat spinal cord with neuronal activation detected by immunohistochemistry. Neuroimage 2004;22:1802–1807.PubMedCrossRef Lawrence J, Stroman PW, Bascaramurty S, Jordan LM, Malisza KL. Correlation of functional activation in the rat spinal cord with neuronal activation detected by immunohistochemistry. Neuroimage 2004;22:1802–1807.PubMedCrossRef
140.
go back to reference Keen CL, Ensunsa JL, Clegg MS. Manganese metabolism in animals and humans including the toxicity of manganese. Met Ions Biol Syst 2000;37:89–121.PubMed Keen CL, Ensunsa JL, Clegg MS. Manganese metabolism in animals and humans including the toxicity of manganese. Met Ions Biol Syst 2000;37:89–121.PubMed
141.
go back to reference Hirakawa K, Naruse S, Higuchi T, et al. The investigation of experimental brain tumours using 31P-MRS and 1H-MRI. Acta Neurochir Suppl (Wien) 1988;43:140–144. Hirakawa K, Naruse S, Higuchi T, et al. The investigation of experimental brain tumours using 31P-MRS and 1H-MRI. Acta Neurochir Suppl (Wien) 1988;43:140–144.
142.
go back to reference Gyngell ML, Els T, Hoehn-Berlage M, Hossmann KA. Proton MR spectroscopy of experimental brain tumors in vivo. Acta Neurochir Suppl (Wien) 1994;60:350–352. Gyngell ML, Els T, Hoehn-Berlage M, Hossmann KA. Proton MR spectroscopy of experimental brain tumors in vivo. Acta Neurochir Suppl (Wien) 1994;60:350–352.
143.
go back to reference Phuong LK, Allen C, Peng KW, et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 2003;63:2462–2469.PubMed Phuong LK, Allen C, Peng KW, et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 2003;63:2462–2469.PubMed
144.
go back to reference Thu MS, Najbauer J, Kendall SE, et al. Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model. PLoS One 2009;4:e7218.PubMedCrossRef Thu MS, Najbauer J, Kendall SE, et al. Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model. PLoS One 2009;4:e7218.PubMedCrossRef
145.
go back to reference Howe FA, Robinson SP, McIntyre DJ, Stubbs M, Griffiths JR. Issues in flow and oxygenation dependent contrast (FLOOD) imaging of tumours. NMR Biomed 2001;14:497–506.PubMedCrossRef Howe FA, Robinson SP, McIntyre DJ, Stubbs M, Griffiths JR. Issues in flow and oxygenation dependent contrast (FLOOD) imaging of tumours. NMR Biomed 2001;14:497–506.PubMedCrossRef
146.
go back to reference Giannini C, Sarkaria JN, Saito A, et al. Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro Oncol 2005;7:164–176.PubMedCrossRef Giannini C, Sarkaria JN, Saito A, et al. Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro Oncol 2005;7:164–176.PubMedCrossRef
147.
go back to reference Jost SC, Hope A, Kiehl E, et al. A novel murine model for localized radiation necrosis and its characterization using advanced magnetic resonance imaging. Int J Radiat Oncol Biol Phys 2009;75:527–533.PubMedCrossRef Jost SC, Hope A, Kiehl E, et al. A novel murine model for localized radiation necrosis and its characterization using advanced magnetic resonance imaging. Int J Radiat Oncol Biol Phys 2009;75:527–533.PubMedCrossRef
148.
go back to reference Kato Y, Okollie B, Artemov D. Noninvasive 1H/13C magnetic resonance spectroscopic imaging of the intratumoral distribution of temozolomide. Magn Reson Med 2006;55:755–761.PubMedCrossRef Kato Y, Okollie B, Artemov D. Noninvasive 1H/13C magnetic resonance spectroscopic imaging of the intratumoral distribution of temozolomide. Magn Reson Med 2006;55:755–761.PubMedCrossRef
149.
go back to reference Kato Y, Holm DA, Okollie B, Artemov D. Noninvasive detection of temozolomide in brain tumor xenografts by magnetic resonance spectroscopy. Neuro Oncol 2010;12:71–79.PubMed Kato Y, Holm DA, Okollie B, Artemov D. Noninvasive detection of temozolomide in brain tumor xenografts by magnetic resonance spectroscopy. Neuro Oncol 2010;12:71–79.PubMed
150.
go back to reference Pirko I, Fricke ST, Johnson AJ, Rodriguez M, Macura SI. Magnetic resonance imaging, microscopy, and spectroscopy of the central nervous system in experimental animals. NeuroRx 2005;2:250–264.PubMedCrossRef Pirko I, Fricke ST, Johnson AJ, Rodriguez M, Macura SI. Magnetic resonance imaging, microscopy, and spectroscopy of the central nervous system in experimental animals. NeuroRx 2005;2:250–264.PubMedCrossRef
Metadata
Title
MRI in Rodent Models of Brain Disorders
Authors
Aleksandar Denic
Slobodan I. Macura
Prasanna Mishra
Jeffrey D. Gamez
Moses Rodriguez
Istvan Pirko
Publication date
01-01-2011
Publisher
Springer-Verlag
Published in
Neurotherapeutics / Issue 1/2011
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-010-0002-4

Other articles of this Issue 1/2011

Neurotherapeutics 1/2011 Go to the issue