Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2016

Open Access 01-12-2016 | Research

Neuroprotective effects of the immunomodulatory drug FK506 in a model of HIV1-gp120 neurotoxicity

Authors: Jerel A. Fields, Cassia Overk, Anthony Adame, Jazmin Florio, Michael Mante, Andrea Pineda, Paula Desplats, Edward Rockenstein, Cristian Achim, Eliezer Masliah

Published in: Journal of Neuroinflammation | Issue 1/2016

Login to get access

Abstract

Background

HIV-associated neurocognitive disorders (HAND) continue to be a common morbidity associated with chronic HIV infection. It has been shown that HIV proteins (e.g., gp120) released from infected microglial/macrophage cells can cause neuronal damage by triggering inflammation and oxidative stress, activating aberrant kinase pathways, and by disrupting mitochondrial function and biogenesis. Previous studies have shown that FK506, an immunophilin ligand that modulates inflammation and mitochondrial function and inhibits calcineurin, is capable of rescuing the neurodegenerative pathology in models of Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease. In this context, the main objective of this study was to evaluate if FK506 could rescue the neuronal degeneration and mitochondrial alterations in a transgenic (tg) animal model of HIV1-gp120 neurotoxicity.

Methods

GFAP-gp120 tg mice were treated with FK506 and analyzed for neuropathology, behavior, mitochondrial markers, and calcium flux by two-photon microscopy.

Results

We found that FK506 reduced the neuronal cell loss and neuro-inflammation in the gp120 tg mice. Moreover, while vehicle-treated gp120 tg mice displayed damaged mitochondria and increased neuro-inflammatory markers, FK506 rescued the morphological mitochondrial alterations and neuro-inflammation while increasing levels of optic atrophy 1 and mitofusin 1. By two-photon microscopy, calcium levels were not affected in the gp120 tg mice and no effects of FK506 were detected. However, at a functional level, FK506 ameliorated the gp120 tg mice hyperactivity in the open field.

Conclusions

Together, these results suggest that FK506 might be potentially neuroprotective in patients with HAND by mitigating inflammation and mitochondrial alterations.
Literature
1.
go back to reference Potula R, Dhillion N, Sui Y, Zien CA, Funa K, Pinson D, et al. Association of platelet-derived growth factor-B chain with simian human immunodeficiency virus encephalitis. Am J Pathol. 2004;165:815–24.CrossRefPubMedPubMedCentral Potula R, Dhillion N, Sui Y, Zien CA, Funa K, Pinson D, et al. Association of platelet-derived growth factor-B chain with simian human immunodeficiency virus encephalitis. Am J Pathol. 2004;165:815–24.CrossRefPubMedPubMedCentral
3.
go back to reference Bingham R, Ahmed N, Rangi P, Johnson M, Tyrer M, Green J. HIV encephalitis despite suppressed viraemia: a case of compartmentalized viral escape. Int J STD AIDS. 2011;22:608–9.CrossRefPubMed Bingham R, Ahmed N, Rangi P, Johnson M, Tyrer M, Green J. HIV encephalitis despite suppressed viraemia: a case of compartmentalized viral escape. Int J STD AIDS. 2011;22:608–9.CrossRefPubMed
4.
go back to reference Ellis R, Langford D, Masliah E. HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci. 2007;8:33–44.CrossRefPubMed Ellis R, Langford D, Masliah E. HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci. 2007;8:33–44.CrossRefPubMed
6.
go back to reference Etherton MR, Lyons JL, Ard KL. HIV-associated neurocognitive disorders and antiretroviral therapy: current concepts and controversies. Curr Infect Dis Rep. 2015;17:485.CrossRefPubMed Etherton MR, Lyons JL, Ard KL. HIV-associated neurocognitive disorders and antiretroviral therapy: current concepts and controversies. Curr Infect Dis Rep. 2015;17:485.CrossRefPubMed
7.
go back to reference Mocchetti I, Bachis A, Avdoshina V. Neurotoxicity of human immunodeficiency virus-1: viral proteins and axonal transport. Neurotox Res. 2012;21:79–89.CrossRefPubMedPubMedCentral Mocchetti I, Bachis A, Avdoshina V. Neurotoxicity of human immunodeficiency virus-1: viral proteins and axonal transport. Neurotox Res. 2012;21:79–89.CrossRefPubMedPubMedCentral
8.
9.
go back to reference Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature. 2001;410:988–94.CrossRefPubMed Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature. 2001;410:988–94.CrossRefPubMed
10.
11.
go back to reference Nath A, Haughey NJ, Jones M, Anderson C, Bell JE, Geiger JD. Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: protection by memantine. Ann Neurol. 2000;47:186–94.CrossRefPubMed Nath A, Haughey NJ, Jones M, Anderson C, Bell JE, Geiger JD. Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: protection by memantine. Ann Neurol. 2000;47:186–94.CrossRefPubMed
12.
go back to reference Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994;330:613–22.CrossRefPubMed Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994;330:613–22.CrossRefPubMed
13.
go back to reference Rempel HC, Pulliam L. HIV-1 Tat inhibits neprilysin and elevates amyloid beta. AIDS. 2005;19:127–35.CrossRefPubMed Rempel HC, Pulliam L. HIV-1 Tat inhibits neprilysin and elevates amyloid beta. AIDS. 2005;19:127–35.CrossRefPubMed
14.
go back to reference Nath A. Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis. 2002;186 Suppl 2:S193–8.CrossRefPubMed Nath A. Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis. 2002;186 Suppl 2:S193–8.CrossRefPubMed
15.
go back to reference Norman JP, Perry SW, Reynolds HM, Kiebala M, De Mesy Bentley KL, Trejo M, et al. HIV-1 Tat activates neuronal ryanodine receptors with rapid induction of the unfolded protein response and mitochondrial hyperpolarization. PLoS One. 2008;3:e3731.CrossRefPubMedPubMedCentral Norman JP, Perry SW, Reynolds HM, Kiebala M, De Mesy Bentley KL, Trejo M, et al. HIV-1 Tat activates neuronal ryanodine receptors with rapid induction of the unfolded protein response and mitochondrial hyperpolarization. PLoS One. 2008;3:e3731.CrossRefPubMedPubMedCentral
16.
go back to reference Fields J, Dumaop W, Eleuteri S, Campos S, Serger E, Trejo M, et al. HIV-1 Tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: implications for HIV-associated neurocognitive disorders. J Neurosci. 2015;35:1921–38.CrossRefPubMedPubMedCentral Fields J, Dumaop W, Eleuteri S, Campos S, Serger E, Trejo M, et al. HIV-1 Tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: implications for HIV-associated neurocognitive disorders. J Neurosci. 2015;35:1921–38.CrossRefPubMedPubMedCentral
17.
18.
go back to reference Campbell GR, Rawat P, Bruckman RS, Spector SA. Human immunodeficiency virus type 1 Nef inhibits autophagy through transcription factor EB sequestration. PLoS Pathog. 2015;11:e1005018.CrossRefPubMedPubMedCentral Campbell GR, Rawat P, Bruckman RS, Spector SA. Human immunodeficiency virus type 1 Nef inhibits autophagy through transcription factor EB sequestration. PLoS Pathog. 2015;11:e1005018.CrossRefPubMedPubMedCentral
19.
go back to reference Patrick C, Crews L, Desplats P, Dumaop W, Rockenstein E, Achim CL, et al. Increased CDK5 expression in HIV encephalitis contributes to neurodegeneration via tau phosphorylation and is reversed with Roscovitine. Am J Pathol. 2011;178:1646–61.CrossRefPubMedPubMedCentral Patrick C, Crews L, Desplats P, Dumaop W, Rockenstein E, Achim CL, et al. Increased CDK5 expression in HIV encephalitis contributes to neurodegeneration via tau phosphorylation and is reversed with Roscovitine. Am J Pathol. 2011;178:1646–61.CrossRefPubMedPubMedCentral
20.
go back to reference Kehn-Hall K, Guendel I, Carpio L, Skaltsounis L, Meijer L, Al-Harthi L, et al. Inhibition of Tat-mediated HIV-1 replication and neurotoxicity by novel GSK3-beta inhibitors. Virology. 2011;415:56–68.CrossRefPubMedPubMedCentral Kehn-Hall K, Guendel I, Carpio L, Skaltsounis L, Meijer L, Al-Harthi L, et al. Inhibition of Tat-mediated HIV-1 replication and neurotoxicity by novel GSK3-beta inhibitors. Virology. 2011;415:56–68.CrossRefPubMedPubMedCentral
21.
go back to reference Fields JA, Serger E, Campos S, Divakaruni AS, Kim C, Smith K, et al. HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders. Neurobiol Dis. 2016;86:154–69.CrossRefPubMedPubMedCentral Fields JA, Serger E, Campos S, Divakaruni AS, Kim C, Smith K, et al. HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders. Neurobiol Dis. 2016;86:154–69.CrossRefPubMedPubMedCentral
22.
go back to reference Valcour V, Shiramizu B. HIV-associated dementia, mitochondrial dysfunction, and oxidative stress. Mitochondrion. 2004;4:119–29.CrossRefPubMed Valcour V, Shiramizu B. HIV-associated dementia, mitochondrial dysfunction, and oxidative stress. Mitochondrion. 2004;4:119–29.CrossRefPubMed
23.
go back to reference Chattopadhaya S, Harikishore A, Yoon HS. Role of FK506 binding proteins in neurodegenerative disorders. Curr Med Chem. 2011;18:5380–97.CrossRefPubMed Chattopadhaya S, Harikishore A, Yoon HS. Role of FK506 binding proteins in neurodegenerative disorders. Curr Med Chem. 2011;18:5380–97.CrossRefPubMed
24.
go back to reference Cao W, Konsolaki M. FKBP immunophilins and Alzheimer’s disease: a chaperoned affair. J Biosci. 2011;36:493–8.CrossRefPubMed Cao W, Konsolaki M. FKBP immunophilins and Alzheimer’s disease: a chaperoned affair. J Biosci. 2011;36:493–8.CrossRefPubMed
25.
go back to reference Rosenstock TR, de Brito OM, Lombardi V, Louros S, Ribeiro M, Almeida S, et al. FK506 ameliorates cell death features in Huntington’s disease striatal cell models. Neurochem Int. 2011;59:600–9.CrossRefPubMed Rosenstock TR, de Brito OM, Lombardi V, Louros S, Ribeiro M, Almeida S, et al. FK506 ameliorates cell death features in Huntington’s disease striatal cell models. Neurochem Int. 2011;59:600–9.CrossRefPubMed
26.
go back to reference Uittenbogaard M, Chiaramello A. Mitochondrial biogenesis: a therapeutic target for neurodevelopmental disorders and neurodegenerative diseases. Curr Pharm Des. 2014;20:5574–93.CrossRefPubMedPubMedCentral Uittenbogaard M, Chiaramello A. Mitochondrial biogenesis: a therapeutic target for neurodevelopmental disorders and neurodegenerative diseases. Curr Pharm Des. 2014;20:5574–93.CrossRefPubMedPubMedCentral
27.
go back to reference Dickey AS, Strack S. PKA/AKAP1 and PP2A/Bbeta2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci. 2011;31:15716–26.CrossRefPubMedPubMedCentral Dickey AS, Strack S. PKA/AKAP1 and PP2A/Bbeta2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci. 2011;31:15716–26.CrossRefPubMedPubMedCentral
28.
go back to reference Berthet A, Margolis EB, Zhang J, Hsieh I, Hnasko TS, Ahmad J, et al. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J Neurosci. 2014;34:14304–17.CrossRefPubMedPubMedCentral Berthet A, Margolis EB, Zhang J, Hsieh I, Hnasko TS, Ahmad J, et al. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J Neurosci. 2014;34:14304–17.CrossRefPubMedPubMedCentral
29.
go back to reference Guo X, Macleod GT, Wellington A, Hu F, Panchumarthi S, Schoenfield M, et al. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron. 2005;47:379–93.CrossRefPubMed Guo X, Macleod GT, Wellington A, Hu F, Panchumarthi S, Schoenfield M, et al. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron. 2005;47:379–93.CrossRefPubMed
30.
go back to reference Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol. 2003;160:1115–27.CrossRefPubMedPubMedCentral Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol. 2003;160:1115–27.CrossRefPubMedPubMedCentral
31.
go back to reference Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol. 2011;13:589–98.CrossRefPubMedPubMedCentral Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol. 2011;13:589–98.CrossRefPubMedPubMedCentral
32.
go back to reference Scorrano L. Keeping mitochondria in shape: a matter of life and death. Eur J Clin Invest. 2013;43:886–93.CrossRefPubMed Scorrano L. Keeping mitochondria in shape: a matter of life and death. Eur J Clin Invest. 2013;43:886–93.CrossRefPubMed
33.
go back to reference Cho DH, Nakamura T, Lipton SA. Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci. 2010;67:3435–47.CrossRefPubMed Cho DH, Nakamura T, Lipton SA. Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci. 2010;67:3435–47.CrossRefPubMed
34.
go back to reference Bertholet AM, Delerue T, Millet AM, Moulis MF, David C, Daloyau M, et al. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis. 2016;90:3-19. doi: 10.1016/j.nbd.2015.10.011. Epub 2015 Oct 19. Bertholet AM, Delerue T, Millet AM, Moulis MF, David C, Daloyau M, et al. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis. 2016;90:3-19. doi: 10.​1016/​j.​nbd.​2015.​10.​011. Epub 2015 Oct 19.
35.
go back to reference Avramut M, Achim CL. Immunophilins in nervous system degeneration and regeneration. Curr Top Med Chem. 2003;3:1376–82.CrossRefPubMed Avramut M, Achim CL. Immunophilins in nervous system degeneration and regeneration. Curr Top Med Chem. 2003;3:1376–82.CrossRefPubMed
36.
go back to reference Schreiber SL, Crabtree GR. The mechanism of action of cyclosporin A and FK506. Immunol Today. 1992;13:136–42.CrossRefPubMed Schreiber SL, Crabtree GR. The mechanism of action of cyclosporin A and FK506. Immunol Today. 1992;13:136–42.CrossRefPubMed
37.
go back to reference Yokoyama T, Tanoue T, Hasegawa E, Ikeda Y, Ohta S, Omi A, et al. Evaluation of the protective effects of cyclosporin a and FK506 on abnormal cytosolic and mitochondrial Ca(2)(+) dynamics during ischemia and exposure to high glutamate concentration in mouse brain slice preparations. J Pharmacol Sci. 2012;120:228–40.CrossRefPubMed Yokoyama T, Tanoue T, Hasegawa E, Ikeda Y, Ohta S, Omi A, et al. Evaluation of the protective effects of cyclosporin a and FK506 on abnormal cytosolic and mitochondrial Ca(2)(+) dynamics during ischemia and exposure to high glutamate concentration in mouse brain slice preparations. J Pharmacol Sci. 2012;120:228–40.CrossRefPubMed
38.
go back to reference Clipstone NA, Crabtree GR. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature. 1992;357:695–7.CrossRefPubMed Clipstone NA, Crabtree GR. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature. 1992;357:695–7.CrossRefPubMed
39.
go back to reference Sanchez-Perez I, Rodriguez-Hernandez CJ, Manguan-Garcia C, Torres A, Perona R, Murguia JR. FK506 sensitizes mammalian cells to high osmolarity by modulating p38 MAP kinase activation. Cell Mol Life Sci. 2004;61:700–8.CrossRefPubMed Sanchez-Perez I, Rodriguez-Hernandez CJ, Manguan-Garcia C, Torres A, Perona R, Murguia JR. FK506 sensitizes mammalian cells to high osmolarity by modulating p38 MAP kinase activation. Cell Mol Life Sci. 2004;61:700–8.CrossRefPubMed
40.
go back to reference Aomatsu T, Imaeda H, Takahashi K, Fujimoto T, Kasumi E, Yoden A, et al. Tacrolimus (FK506) suppresses TNF-alpha-induced CCL2 (MCP-1) and CXCL10 (IP-10) expression via the inhibition of p38 MAP kinase activation in human colonic myofibroblasts. Int J Mol Med. 2012;30:1152–8.PubMed Aomatsu T, Imaeda H, Takahashi K, Fujimoto T, Kasumi E, Yoden A, et al. Tacrolimus (FK506) suppresses TNF-alpha-induced CCL2 (MCP-1) and CXCL10 (IP-10) expression via the inhibition of p38 MAP kinase activation in human colonic myofibroblasts. Int J Mol Med. 2012;30:1152–8.PubMed
41.
go back to reference Klettner A, Herdegen T. FK506 and its analogs—therapeutic potential for neurological disorders. Curr Drug Targets CNS Neurol Disord. 2003;2:153–62.CrossRefPubMed Klettner A, Herdegen T. FK506 and its analogs—therapeutic potential for neurological disorders. Curr Drug Targets CNS Neurol Disord. 2003;2:153–62.CrossRefPubMed
42.
go back to reference Overk CR, Rockenstein E, Florio J, Cheng Q, Masliah E. Differential calcium alterations in animal models of neurodegenerative disease: reversal by FK506. Neuroscience. 2015;310:549–60.CrossRefPubMed Overk CR, Rockenstein E, Florio J, Cheng Q, Masliah E. Differential calcium alterations in animal models of neurodegenerative disease: reversal by FK506. Neuroscience. 2015;310:549–60.CrossRefPubMed
43.
go back to reference Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L. Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature. 1994;367:188–93.CrossRefPubMed Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L. Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature. 1994;367:188–93.CrossRefPubMed
44.
go back to reference Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E, et al. Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One. 2010;5:e9313.CrossRefPubMedPubMedCentral Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E, et al. Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One. 2010;5:e9313.CrossRefPubMedPubMedCentral
45.
go back to reference Devor A, Tian P, Nishimura N, Teng IC, Hillman EM, Narayanan SN, et al. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. J Neurosci. 2007;27:4452–9.CrossRefPubMedPubMedCentral Devor A, Tian P, Nishimura N, Teng IC, Hillman EM, Narayanan SN, et al. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. J Neurosci. 2007;27:4452–9.CrossRefPubMedPubMedCentral
46.
47.
go back to reference Mucke L, Abraham C, Ruppe M, Rockenstein E, Toggas S, Alford M, et al. Protection against HIV-1 gp120-induced brain damage by neuronal overexpression of human amyloid precursor protein (hAPP). J Exp Med. 1995;181:1551–6.CrossRefPubMed Mucke L, Abraham C, Ruppe M, Rockenstein E, Toggas S, Alford M, et al. Protection against HIV-1 gp120-induced brain damage by neuronal overexpression of human amyloid precursor protein (hAPP). J Exp Med. 1995;181:1551–6.CrossRefPubMed
48.
go back to reference Overk CR, Cartier A, Shaked G, Rockenstein E, Ubhi K, Spencer B, et al. Hippocampal neuronal cells that accumulate alpha-synuclein fragments are more vulnerable to Abeta oligomer toxicity via mGluR5—implications for dementia with Lewy bodies. Mol Neurodegener. 2014;9:18.CrossRefPubMedPubMedCentral Overk CR, Cartier A, Shaked G, Rockenstein E, Ubhi K, Spencer B, et al. Hippocampal neuronal cells that accumulate alpha-synuclein fragments are more vulnerable to Abeta oligomer toxicity via mGluR5—implications for dementia with Lewy bodies. Mol Neurodegener. 2014;9:18.CrossRefPubMedPubMedCentral
49.
go back to reference Reznichenko L, Cheng Q, Nizar K, Gratiy SL, Saisan PA, Rockenstein EM, et al. In vivo alterations in calcium buffering capacity in transgenic mouse model of synucleinopathy. J Neurosci. 2012;32:9992–8.CrossRefPubMedPubMedCentral Reznichenko L, Cheng Q, Nizar K, Gratiy SL, Saisan PA, Rockenstein EM, et al. In vivo alterations in calcium buffering capacity in transgenic mouse model of synucleinopathy. J Neurosci. 2012;32:9992–8.CrossRefPubMedPubMedCentral
50.
go back to reference Aghdasi B, Ye K, Resnick A, Huang A, Ha HC, Guo X, et al. FKBP12, the 12-kDa FK506-binding protein, is a physiologic regulator of the cell cycle. Proc Natl Acad Sci U S A. 2001;98:2425–30.CrossRefPubMedPubMedCentral Aghdasi B, Ye K, Resnick A, Huang A, Ha HC, Guo X, et al. FKBP12, the 12-kDa FK506-binding protein, is a physiologic regulator of the cell cycle. Proc Natl Acad Sci U S A. 2001;98:2425–30.CrossRefPubMedPubMedCentral
51.
go back to reference Henry BL, Geyer MA, Buell M, Perry W, Young JW, Minassian A. Behavioral effects of chronic methamphetamine treatment in HIV-1 gp120 transgenic mice. Behav Brain Res. 2013;236:210–20.CrossRefPubMed Henry BL, Geyer MA, Buell M, Perry W, Young JW, Minassian A. Behavioral effects of chronic methamphetamine treatment in HIV-1 gp120 transgenic mice. Behav Brain Res. 2013;236:210–20.CrossRefPubMed
52.
go back to reference Gaali S, Gopalakrishnan R, Wang Y, Kozany C, Hausch F. The chemical biology of immunophilin ligands. Curr Med Chem. 2011;18:5355–79.CrossRefPubMed Gaali S, Gopalakrishnan R, Wang Y, Kozany C, Hausch F. The chemical biology of immunophilin ligands. Curr Med Chem. 2011;18:5355–79.CrossRefPubMed
53.
go back to reference Zawadzka M, Kaminska B. A novel mechanism of FK506-mediated neuroprotection: downregulation of cytokine expression in glial cells. Glia. 2005;49:36–51.CrossRefPubMed Zawadzka M, Kaminska B. A novel mechanism of FK506-mediated neuroprotection: downregulation of cytokine expression in glial cells. Glia. 2005;49:36–51.CrossRefPubMed
54.
go back to reference Saganova K, Galik J, Blasko J, Korimova A, Racekova E, Vanicky I. Immunosuppressant FK506: focusing on neuroprotective effects following brain and spinal cord injury. Life Sci. 2012;91:77–82.CrossRefPubMed Saganova K, Galik J, Blasko J, Korimova A, Racekova E, Vanicky I. Immunosuppressant FK506: focusing on neuroprotective effects following brain and spinal cord injury. Life Sci. 2012;91:77–82.CrossRefPubMed
55.
go back to reference Gerard M, Deleersnijder A, Daniels V, Schreurs S, Munck S, Reumers V, et al. Inhibition of FK506 binding proteins reduces alpha-synuclein aggregation and Parkinson’s disease-like pathology. J Neurosci. 2010;30:2454–63.CrossRefPubMed Gerard M, Deleersnijder A, Daniels V, Schreurs S, Munck S, Reumers V, et al. Inhibition of FK506 binding proteins reduces alpha-synuclein aggregation and Parkinson’s disease-like pathology. J Neurosci. 2010;30:2454–63.CrossRefPubMed
56.
go back to reference Van der Perren A, Macchi F, Toelen J, Carlon MS, Maris M, de Loor H, et al. FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an alpha-synuclein-based rat model for Parkinson’s disease. Neurobiol Aging. 2015;36:1559–68.CrossRefPubMed Van der Perren A, Macchi F, Toelen J, Carlon MS, Maris M, de Loor H, et al. FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an alpha-synuclein-based rat model for Parkinson’s disease. Neurobiol Aging. 2015;36:1559–68.CrossRefPubMed
57.
go back to reference Keswani SC, Chander B, Hasan C, Griffin JW, McArthur JC, Hoke A. FK506 is neuroprotective in a model of antiretroviral toxic neuropathy. Ann Neurol. 2003;53:57–64.CrossRefPubMed Keswani SC, Chander B, Hasan C, Griffin JW, McArthur JC, Hoke A. FK506 is neuroprotective in a model of antiretroviral toxic neuropathy. Ann Neurol. 2003;53:57–64.CrossRefPubMed
58.
go back to reference Soontornniyomkij V, Risbrough VB, Young JW, Wallace CK, Soontornniyomkij B, Jeste DV, et al. Short-term recognition memory impairment is associated with decreased expression of FK506 binding protein 51 in the aged mouse brain. Age (Dordr). 2010;32:309–22.CrossRef Soontornniyomkij V, Risbrough VB, Young JW, Wallace CK, Soontornniyomkij B, Jeste DV, et al. Short-term recognition memory impairment is associated with decreased expression of FK506 binding protein 51 in the aged mouse brain. Age (Dordr). 2010;32:309–22.CrossRef
59.
go back to reference Kaminska B, Gaweda-Walerych K, Zawadzka M. Molecular mechanisms of neuroprotective action of immunosuppressants—facts and hypotheses. J Cell Mol Med. 2004;8:45–58.CrossRefPubMed Kaminska B, Gaweda-Walerych K, Zawadzka M. Molecular mechanisms of neuroprotective action of immunosuppressants—facts and hypotheses. J Cell Mol Med. 2004;8:45–58.CrossRefPubMed
60.
go back to reference Nakagaki T, Satoh K, Ishibashi D, Fuse T, Sano K, Kamatari YO, et al. FK506 reduces abnormal prion protein through the activation of autolysosomal degradation and prolongs survival in prion-infected mice. Autophagy. 2013;9:1386–94.CrossRefPubMed Nakagaki T, Satoh K, Ishibashi D, Fuse T, Sano K, Kamatari YO, et al. FK506 reduces abnormal prion protein through the activation of autolysosomal degradation and prolongs survival in prion-infected mice. Autophagy. 2013;9:1386–94.CrossRefPubMed
61.
go back to reference Fields J, Dumaop W, Adame A, Ellis RJ, Letendre S, Grant I, et al. Alterations in the levels of vesicular trafficking proteins involved in HIV replication in the brains and CSF of patients with HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol. 2013;8:1197–209.CrossRefPubMedPubMedCentral Fields J, Dumaop W, Adame A, Ellis RJ, Letendre S, Grant I, et al. Alterations in the levels of vesicular trafficking proteins involved in HIV replication in the brains and CSF of patients with HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol. 2013;8:1197–209.CrossRefPubMedPubMedCentral
62.
go back to reference Kahraman S, Bambrick LL, Fiskum G. Effects of FK506 and cyclosporin a on calcium ionophore-induced mitochondrial depolarization and cytosolic calcium in astrocytes and neurons. J Neurosci Res. 2011;89:1973–8.CrossRefPubMedPubMedCentral Kahraman S, Bambrick LL, Fiskum G. Effects of FK506 and cyclosporin a on calcium ionophore-induced mitochondrial depolarization and cytosolic calcium in astrocytes and neurons. J Neurosci Res. 2011;89:1973–8.CrossRefPubMedPubMedCentral
63.
go back to reference Almeida S, Domingues A, Rodrigues L, Oliveira CR, Rego AC. FK506 prevents mitochondrial-dependent apoptotic cell death induced by 3-nitropropionic acid in rat primary cortical cultures. Neurobiol Dis. 2004;17:435–44.CrossRefPubMed Almeida S, Domingues A, Rodrigues L, Oliveira CR, Rego AC. FK506 prevents mitochondrial-dependent apoptotic cell death induced by 3-nitropropionic acid in rat primary cortical cultures. Neurobiol Dis. 2004;17:435–44.CrossRefPubMed
64.
go back to reference Masliah E, Rockenstein E, Mante M, Crews L, Spencer B, Adame A, et al. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One. 2011;6:e19338.CrossRefPubMedPubMedCentral Masliah E, Rockenstein E, Mante M, Crews L, Spencer B, Adame A, et al. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One. 2011;6:e19338.CrossRefPubMedPubMedCentral
65.
go back to reference Neuspiel M, Zunino R, Gangaraju S, Rippstein P, McBride H. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem. 2005;280:25060–70.CrossRefPubMed Neuspiel M, Zunino R, Gangaraju S, Rippstein P, McBride H. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem. 2005;280:25060–70.CrossRefPubMed
Metadata
Title
Neuroprotective effects of the immunomodulatory drug FK506 in a model of HIV1-gp120 neurotoxicity
Authors
Jerel A. Fields
Cassia Overk
Anthony Adame
Jazmin Florio
Michael Mante
Andrea Pineda
Paula Desplats
Edward Rockenstein
Cristian Achim
Eliezer Masliah
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2016
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-016-0585-8

Other articles of this Issue 1/2016

Journal of Neuroinflammation 1/2016 Go to the issue