Skip to main content
Top
Published in: Pediatric Rheumatology 1/2019

Open Access 01-12-2019 | Juvenile Rheumatoid Arthritis | Short Report

An unusual presentation of purine nucleoside phosphorylase deficiency mimicking systemic juvenile idiopathic arthritis complicated by macrophage activation syndrome

Authors: Alessia Arduini, Emiliano Marasco, Giulia Marucci, Manuela Pardeo, Antonella Insalaco, Ivan Caiello, Gian Marco Moneta, Giusi Prencipe, Fabrizio De Benedetti, Claudia Bracaglia

Published in: Pediatric Rheumatology | Issue 1/2019

Login to get access

Abstract

Background

Systemic juvenile idiopathic arthritis (sJIA) is an inflammatory condition that presents with fever, rash and arthritis. At onset systemic features are predominant and the diagnosis may be a challenge. Secondary hemophagocytic lymphohistiocytosis (sHLH) forms may be associated with different disorders, including rheumatic diseases, and this form is called macrophage activation syndrome (MAS). CXCL9 levels, a chemokine induced by IFNγ, are significantly elevated in patients with sHLH or MAS and are correlated with laboratory features of disease activity. High levels of IL-18 have been reported in patients with MAS during sJIA, as well as in some patients with sHLH and IL-18 is indeed known to induce IFNγ production.

Findings

We report a patient with a clinical presentation highly suggestive for systemic juvenile idiopathic arthritis (sJIA) onset complicated by MAS, and was later diagnosed with purine nucleoside phosphorylase (PNP)-deficiency with HLH. Some unusual features appeared when HLH was controlled and further investigations provided the correct diagnosis. Serum CXCL9 and IL-18 levels were found markedly elevated at disease onset, during the active phase of MAS and decreased progressively during the course.

Conclusion

The reported case underlines the potential difficulties in discriminating sJIA from other causes of systemic inflammation. Furthermore, this supports the notion that especially in young children with a sJIA-like disease other mimicking conditions should be actively sought for. CXCL9 and IL-18 levels suggested that patients with PNP-deficiency may have a subclinical activation of the IFNγ pathway and indeed they are predisposed to develop sHLH.
Literature
1.
go back to reference Martini A. Systemic juvenile idiopathic arthritis. Autoimmun Rev. 2012;12:56–9.CrossRef Martini A. Systemic juvenile idiopathic arthritis. Autoimmun Rev. 2012;12:56–9.CrossRef
2.
go back to reference Ravelli A, Grom AA, Behrens EM, Cron RQ. Macrophage activation syndrome as part of systemic juvenile idiopathic arthritis: diagnosis, genetics, pathophysiology and treatment. Genes Immun. 2012;13:289–98.CrossRef Ravelli A, Grom AA, Behrens EM, Cron RQ. Macrophage activation syndrome as part of systemic juvenile idiopathic arthritis: diagnosis, genetics, pathophysiology and treatment. Genes Immun. 2012;13:289–98.CrossRef
3.
go back to reference Xu XJ, Tang YM, Song H, Yang SL, Xu WQ, Zhao N, et al. Diagnostic accuracy of a specific cytokine pattern in hemophagocytic lymphohistiocytosis in children. J Pediatr. 2012;160:984–90.CrossRef Xu XJ, Tang YM, Song H, Yang SL, Xu WQ, Zhao N, et al. Diagnostic accuracy of a specific cytokine pattern in hemophagocytic lymphohistiocytosis in children. J Pediatr. 2012;160:984–90.CrossRef
4.
go back to reference Wersto RP, Chrest FJ, Leary JF, Morris C, Stetler-Stevenson MA, Gabrielson E. Doublet discrimination in DNA cell-cycle analysis. Cytometry. 2001 Oct 15;46:296–306.CrossRef Wersto RP, Chrest FJ, Leary JF, Morris C, Stetler-Stevenson MA, Gabrielson E. Doublet discrimination in DNA cell-cycle analysis. Cytometry. 2001 Oct 15;46:296–306.CrossRef
5.
go back to reference Cazzola M, Ponchio L, de Benedetti F, Ravelli A, Rosti V, Beguin Y, et al. Defective iron supply for erythropoiesis and adequate endogenous erythropoietin production in the anemia associated with systemic-onset juvenile chronic arthritis. Blood. 1996;87:4824–30.PubMed Cazzola M, Ponchio L, de Benedetti F, Ravelli A, Rosti V, Beguin Y, et al. Defective iron supply for erythropoiesis and adequate endogenous erythropoietin production in the anemia associated with systemic-onset juvenile chronic arthritis. Blood. 1996;87:4824–30.PubMed
6.
go back to reference Cohen A, Staal GE, Ammann AJ, Martin DW. JR. Orotic aciduria in two unrelated patients with inherited deficiencies of purine nucleoside phosphorylase. J Clin Invest. 1977;60:491–4.CrossRef Cohen A, Staal GE, Ammann AJ, Martin DW. JR. Orotic aciduria in two unrelated patients with inherited deficiencies of purine nucleoside phosphorylase. J Clin Invest. 1977;60:491–4.CrossRef
7.
go back to reference Markert ML, Finkel BD, McLaughlin TM, Watson TJ, Collard HR, McMahon CP, et al. Mutations in purine nucleoside phosphorylase deficiency. Hum Mutat. 1997;9:118–21.CrossRef Markert ML, Finkel BD, McLaughlin TM, Watson TJ, Collard HR, McMahon CP, et al. Mutations in purine nucleoside phosphorylase deficiency. Hum Mutat. 1997;9:118–21.CrossRef
8.
go back to reference Giblett ER, Ammann AJ, Wara DW, Sandman R, Diamond LK. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet. 1975;1:1010–3.CrossRef Giblett ER, Ammann AJ, Wara DW, Sandman R, Diamond LK. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet. 1975;1:1010–3.CrossRef
9.
go back to reference Parvaneh N, Ashrafi MR, Yeganeh M, Pouladi N, Sayarifar F, Parvaneh L. Progressive multifocal leukoencephalopathy in purine nucleoside phosphorylase deficiency. Brain and Development. 2007;29:124–6.CrossRef Parvaneh N, Ashrafi MR, Yeganeh M, Pouladi N, Sayarifar F, Parvaneh L. Progressive multifocal leukoencephalopathy in purine nucleoside phosphorylase deficiency. Brain and Development. 2007;29:124–6.CrossRef
10.
go back to reference Markert ML. Purine nucleoside phosphorylase deficiency. Immunodefic Rev. 1991;3:45–81.PubMed Markert ML. Purine nucleoside phosphorylase deficiency. Immunodefic Rev. 1991;3:45–81.PubMed
11.
go back to reference Grunebaum E, Roifman CM. Gene abnormalities in patients with Hemophagocytic Lymphohistiocytosis. Isr Med Assoc J. 2002;4:366–9.PubMed Grunebaum E, Roifman CM. Gene abnormalities in patients with Hemophagocytic Lymphohistiocytosis. Isr Med Assoc J. 2002;4:366–9.PubMed
12.
go back to reference Henter JI, Horne A, Aricó M, Egeler RM, Filipovich AH, Imashuku S, et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48:124–31.CrossRef Henter JI, Horne A, Aricó M, Egeler RM, Filipovich AH, Imashuku S, et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48:124–31.CrossRef
13.
go back to reference Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International league of associations for rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31:390–2.PubMed Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International league of associations for rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31:390–2.PubMed
14.
go back to reference Ravelli A, Minoia F, Davì S, Horne AC, Bovis F, Pistorio A, et al. 2016 classification criteria for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis: a European league against rheumatism/American College of Rheumatology/Paediatric rheumatology international trials organisation collaborative initiative. Ann Rheum Dis. 2016;75:481–9.CrossRef Ravelli A, Minoia F, Davì S, Horne AC, Bovis F, Pistorio A, et al. 2016 classification criteria for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis: a European league against rheumatism/American College of Rheumatology/Paediatric rheumatology international trials organisation collaborative initiative. Ann Rheum Dis. 2016;75:481–9.CrossRef
15.
go back to reference Minoia F, Bovis F, Davì S, Insalaco A, Lehmberg K, Shenoi S, et al. Development and initial validation of the macrophage activation syndrome/primary Hemophagocytic Lymphohistiocytosis score, a diagnostic tool that differentiates primary Hemophagocytic Lymphohistiocytosis from macrophage activation syndrome. J Pediatr. 2017;189:72–8.CrossRef Minoia F, Bovis F, Davì S, Insalaco A, Lehmberg K, Shenoi S, et al. Development and initial validation of the macrophage activation syndrome/primary Hemophagocytic Lymphohistiocytosis score, a diagnostic tool that differentiates primary Hemophagocytic Lymphohistiocytosis from macrophage activation syndrome. J Pediatr. 2017;189:72–8.CrossRef
16.
go back to reference Weiss ES, Girard-Guyonvarc'h C, Holzinger D, de Jesus AA, Tariq Z, Picarsic J, et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood. 2018;131:1442–55.CrossRef Weiss ES, Girard-Guyonvarc'h C, Holzinger D, de Jesus AA, Tariq Z, Picarsic J, et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood. 2018;131:1442–55.CrossRef
17.
go back to reference Yamamoto T, Moriwaki Y, Matsui K, Takahashi S, Tsutsui H, Yoshimoto T, et al. High IL-18 (interferon-gamma inducing factor) concentration in a purine nucleoside phosphorylase deficient patient. Arch Dis Child. 1999;81:179–80.CrossRef Yamamoto T, Moriwaki Y, Matsui K, Takahashi S, Tsutsui H, Yoshimoto T, et al. High IL-18 (interferon-gamma inducing factor) concentration in a purine nucleoside phosphorylase deficient patient. Arch Dis Child. 1999;81:179–80.CrossRef
18.
go back to reference Kawashima M, Novick D, Rubinstein M, Miossec P. Regulation of interleukin-18 binding protein production by blood and synovial cells from patients with rheumatoid arthritis. Arthritis Rheum. 2004;50:1800–5.CrossRef Kawashima M, Novick D, Rubinstein M, Miossec P. Regulation of interleukin-18 binding protein production by blood and synovial cells from patients with rheumatoid arthritis. Arthritis Rheum. 2004;50:1800–5.CrossRef
19.
go back to reference Grom AA, Horne A, De Benedetti F. Macrophage activation syndrome in the era of biologic therapy. Nat Rev Rheumatol. 2016;12:259–68.CrossRef Grom AA, Horne A, De Benedetti F. Macrophage activation syndrome in the era of biologic therapy. Nat Rev Rheumatol. 2016;12:259–68.CrossRef
20.
go back to reference Buatois V, Chatel L, Cons L, Lory S, Richard F, Guilhot F, et al. Use of a mouse model to identify a blood biomarker for IFNgamma activity in pediatric secondary hemophagocytic lymphohistiocytosis. Transl Res. 2017;180:37–52.CrossRef Buatois V, Chatel L, Cons L, Lory S, Richard F, Guilhot F, et al. Use of a mouse model to identify a blood biomarker for IFNgamma activity in pediatric secondary hemophagocytic lymphohistiocytosis. Transl Res. 2017;180:37–52.CrossRef
21.
go back to reference Bracaglia C, de Graaf K, Pires Marafon D, Guilhot F, Ferlin W, Prencipe G, et al. Elevated circulating levels of interferon-γ and interferon-γ induced chemokines characterize patients with macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Ann Rheum Dis. 2017;76:166–72.CrossRef Bracaglia C, de Graaf K, Pires Marafon D, Guilhot F, Ferlin W, Prencipe G, et al. Elevated circulating levels of interferon-γ and interferon-γ induced chemokines characterize patients with macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Ann Rheum Dis. 2017;76:166–72.CrossRef
Metadata
Title
An unusual presentation of purine nucleoside phosphorylase deficiency mimicking systemic juvenile idiopathic arthritis complicated by macrophage activation syndrome
Authors
Alessia Arduini
Emiliano Marasco
Giulia Marucci
Manuela Pardeo
Antonella Insalaco
Ivan Caiello
Gian Marco Moneta
Giusi Prencipe
Fabrizio De Benedetti
Claudia Bracaglia
Publication date
01-12-2019

Other articles of this Issue 1/2019

Pediatric Rheumatology 1/2019 Go to the issue