Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2019

Open Access 01-12-2019 | Technical notes

Model-based myocardial T1 mapping with sparsity constraints using single-shot inversion-recovery radial FLASH cardiovascular magnetic resonance

Authors: Xiaoqing Wang, Florian Kohler, Christina Unterberg-Buchwald, Joachim Lotz, Jens Frahm, Martin Uecker

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2019

Login to get access

Abstract

Background

This study develops a model-based myocardial T1 mapping technique with sparsity constraints which employs a single-shot inversion-recovery (IR) radial fast low angle shot (FLASH) cardiovascular magnetic resonance (CMR) acquisition. The method should offer high resolution, accuracy, precision and reproducibility.

Methods

The proposed reconstruction estimates myocardial parameter maps directly from undersampled k-space which is continuously measured by IR radial FLASH with a 4 s breathhold and retrospectively sorted based on a cardiac trigger signal. Joint sparsity constraints are imposed on the parameter maps to further improve T1 precision. Validations involved studies of an experimental phantom and 8 healthy adult subjects.

Results

In comparison to an IR spin-echo reference method, phantom experiments with T1 values ranging from 300 to 1500 ms revealed good accuracy and precision at simulated heart rates between 40 and 100 bpm. In vivo T1 maps achieved better precision and qualitatively better preservation of image features for the proposed method than a real-time CMR approach followed by pixelwise fitting. Apart from good inter-observer reproducibility (0.6% of the mean), in vivo results confirmed good intra-subject reproducibility (1.05% of the mean for intra-scan and 1.17, 1.51% of the means for the two inter-scans, respectively) of the proposed method.

Conclusion

Model-based reconstructions with sparsity constraints allow for single-shot myocardial T1 maps with high spatial resolution, accuracy, precision and reproducibility within a 4 s breathhold. Clinical trials are warranted.
Appendix
Available only for authorised users
Literature
1.
go back to reference Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, et al. Myocardial T1 mapping and extracellular volume quantification: a society for cardiovascular magnetic resonance (SCMR) and CMR working group of the european society of cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92.CrossRef Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, et al. Myocardial T1 mapping and extracellular volume quantification: a society for cardiovascular magnetic resonance (SCMR) and CMR working group of the european society of cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92.CrossRef
2.
go back to reference Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson. 2014;16:2.CrossRef Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson. 2014;16:2.CrossRef
3.
go back to reference Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004;52:141–6.CrossRef Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004;52:141–6.CrossRef
4.
go back to reference Piechnik SK, Ferreira VM, Dall'Armellina E, Cochlin LE, Greiser A, Neubauer S, Robson MD. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12:1.CrossRef Piechnik SK, Ferreira VM, Dall'Armellina E, Cochlin LE, Greiser A, Neubauer S, Robson MD. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12:1.CrossRef
5.
go back to reference Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn Reson Med. 2014;71:2082–95.CrossRef Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn Reson Med. 2014;71:2082–95.CrossRef
6.
go back to reference Weingärtner S, Akçakaya M, Basha T, Kissinger KV, Goddu B, Berg S, Manning WJ, Nezafat R. Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability. Magn Reson Med. 2014;71:1024–34.CrossRef Weingärtner S, Akçakaya M, Basha T, Kissinger KV, Goddu B, Berg S, Manning WJ, Nezafat R. Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability. Magn Reson Med. 2014;71:1024–34.CrossRef
7.
go back to reference Rodgers CT, Piechnik SK, DelaBarre LJ, Van de Moortele P-F, Snyder CJ, Neubauer S, Robson MD, Vaughan JT. Inversion recovery at 7 t in the human myocardium: measurement of T1, inversion efficiency and B1+. Magn Reson Med. 2013;70:1038–46.CrossRef Rodgers CT, Piechnik SK, DelaBarre LJ, Van de Moortele P-F, Snyder CJ, Neubauer S, Robson MD, Vaughan JT. Inversion recovery at 7 t in the human myocardium: measurement of T1, inversion efficiency and B1+. Magn Reson Med. 2013;70:1038–46.CrossRef
8.
go back to reference Shao J, Rapacchi S, Nguyen K-L, Hu P. Myocardial T1 mapping at 3.0 tesla using an inversion recovery spoiled gradient echo readout and Bloch equation simulation with slice profile correction (BLESSPC) T1 estimation algorithm. J Magn Reson Imaging. 2016;43:414–25.CrossRef Shao J, Rapacchi S, Nguyen K-L, Hu P. Myocardial T1 mapping at 3.0 tesla using an inversion recovery spoiled gradient echo readout and Bloch equation simulation with slice profile correction (BLESSPC) T1 estimation algorithm. J Magn Reson Imaging. 2016;43:414–25.CrossRef
9.
go back to reference Marty B, Coppa B, Carlier P. Fast, precise, and accurate myocardial T1 mapping using a radial MOLLI sequence with FLASH readout. Magn Reson Med. 2018;79:1387–98.CrossRef Marty B, Coppa B, Carlier P. Fast, precise, and accurate myocardial T1 mapping using a radial MOLLI sequence with FLASH readout. Magn Reson Med. 2018;79:1387–98.CrossRef
10.
go back to reference Gensler D, Mörchel P, Fidler F, Ritter O, Quick HH, Ladd ME, Bauer WR, Ertl G, Jakob PM, Nordbeck P. Myocardial T1: quantification by using an ECG-triggered radial single-shot inversion-recovery MR imaging sequence. Radiology. 2014;274:879–87.CrossRef Gensler D, Mörchel P, Fidler F, Ritter O, Quick HH, Ladd ME, Bauer WR, Ertl G, Jakob PM, Nordbeck P. Myocardial T1: quantification by using an ECG-triggered radial single-shot inversion-recovery MR imaging sequence. Radiology. 2014;274:879–87.CrossRef
11.
go back to reference Wang X, Joseph AA, Kalentev O, Merboldt KD, Voit D, Roeloffs V, van Zalk M, Frahm J. High-resolution myocardial T1 mapping using single-shot inversion-recovery fast low-angle shot MRI with radial undersampling and iterative reconstruction. Br J Radiol. 2016;89:20160255.CrossRef Wang X, Joseph AA, Kalentev O, Merboldt KD, Voit D, Roeloffs V, van Zalk M, Frahm J. High-resolution myocardial T1 mapping using single-shot inversion-recovery fast low-angle shot MRI with radial undersampling and iterative reconstruction. Br J Radiol. 2016;89:20160255.CrossRef
12.
go back to reference Marty B, Vignaud A, Greiser A, Robert B, de Sousa PL, Carlier PG. Bloch equations-based reconstruction of myocardium T1 maps from modified look-locker inversion recovery sequence. PLoS One. 2015;10:0126766.CrossRef Marty B, Vignaud A, Greiser A, Robert B, de Sousa PL, Carlier PG. Bloch equations-based reconstruction of myocardium T1 maps from modified look-locker inversion recovery sequence. PLoS One. 2015;10:0126766.CrossRef
13.
go back to reference Block KT, Uecker M, Frahm J. Model-based iterative reconstruction for radial fast spin-Echo MRI. IEEE Trans Med Imaging. 2009;28:1759–69.CrossRef Block KT, Uecker M, Frahm J. Model-based iterative reconstruction for radial fast spin-Echo MRI. IEEE Trans Med Imaging. 2009;28:1759–69.CrossRef
14.
go back to reference Fessler JA. Model-based image reconstruction for MRI. IEEE Signal Process Mag. 2010;27:81–9.CrossRef Fessler JA. Model-based image reconstruction for MRI. IEEE Signal Process Mag. 2010;27:81–9.CrossRef
15.
go back to reference Sumpf T, Uecker M, Boretius S, Frahm J. Model-based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin-echo MRI. J Magn Reson Imaging. 2011;34:420–8.CrossRef Sumpf T, Uecker M, Boretius S, Frahm J. Model-based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin-echo MRI. J Magn Reson Imaging. 2011;34:420–8.CrossRef
16.
go back to reference Zhao B, Lam F, Liang ZP. Model-based MR parameter mapping with sparsity constraints: parameter estimation and performance bounds. IEEE Trans Med Imaging. 2014;33:1832–44.CrossRef Zhao B, Lam F, Liang ZP. Model-based MR parameter mapping with sparsity constraints: parameter estimation and performance bounds. IEEE Trans Med Imaging. 2014;33:1832–44.CrossRef
17.
go back to reference Tran-Gia J, Wech T, Bley T, Köstler H. Model-based acceleration of Look-Locker T1 mapping. PLoS One. 2015;10:e0122611.CrossRef Tran-Gia J, Wech T, Bley T, Köstler H. Model-based acceleration of Look-Locker T1 mapping. PLoS One. 2015;10:e0122611.CrossRef
18.
go back to reference Ben-Eliezer N, Sodickson DK, Block KT. Rapid and accurate T2 mapping from multi-spin-echo data using Bloch-simulation-based reconstruction. Magn Reson Med. 2015;73:809–17.CrossRef Ben-Eliezer N, Sodickson DK, Block KT. Rapid and accurate T2 mapping from multi-spin-echo data using Bloch-simulation-based reconstruction. Magn Reson Med. 2015;73:809–17.CrossRef
19.
go back to reference Roeloffs V, Wang X, Sumpf T, Untenberger M, Voit D, Frahm J. Model-based reconstruction for T1 mapping using single-shot inversion recovery radial FLASH. Int J Imaging Syst Technol. 2016;26:254–63.CrossRef Roeloffs V, Wang X, Sumpf T, Untenberger M, Voit D, Frahm J. Model-based reconstruction for T1 mapping using single-shot inversion recovery radial FLASH. Int J Imaging Syst Technol. 2016;26:254–63.CrossRef
20.
go back to reference Wang X, Roeloffs V, Klosowski J, Tan Z, Voit D, Uecker M, Frahm J. Model-based T1 mapping with sparsity constraints using single-shot inversion-recovery radial FLASH. Magn Reson Med. 2018;79:730–40.CrossRef Wang X, Roeloffs V, Klosowski J, Tan Z, Voit D, Uecker M, Frahm J. Model-based T1 mapping with sparsity constraints using single-shot inversion-recovery radial FLASH. Magn Reson Med. 2018;79:730–40.CrossRef
22.
go back to reference Becker KM, Schulz-Menger J, Schaeffter T, Kolbitsch C. Simultaneous high-resolution cardiac T1 mapping and cine imaging using model-based iterative image reconstruction. Magn Reson Med. 2019;81:1080–91.CrossRef Becker KM, Schulz-Menger J, Schaeffter T, Kolbitsch C. Simultaneous high-resolution cardiac T1 mapping and cine imaging using model-based iterative image reconstruction. Magn Reson Med. 2019;81:1080–91.CrossRef
23.
go back to reference Maier O, Schoormans J, Schloegl M, Strijkers GJ, Lesch A, Benkert T, Block T, Coolen BF, Bredies K, Stollberge R. Rapid T1 quantification from high resolution 3D data with model-based reconstruction. Magn Reson Med. 2019;81:2072–89.CrossRef Maier O, Schoormans J, Schloegl M, Strijkers GJ, Lesch A, Benkert T, Block T, Coolen BF, Bredies K, Stollberge R. Rapid T1 quantification from high resolution 3D data with model-based reconstruction. Magn Reson Med. 2019;81:2072–89.CrossRef
24.
go back to reference Bakushinsky AB, Kokurin MY. Iterative methods for approximate solution of inverse problems. Dordrecht: Springer; 2004.CrossRef Bakushinsky AB, Kokurin MY. Iterative methods for approximate solution of inverse problems. Dordrecht: Springer; 2004.CrossRef
25.
go back to reference Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci. 2009;2:183–202.CrossRef Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci. 2009;2:183–202.CrossRef
26.
go back to reference Barral JK, Gudmundson E, Stikov N, Etezadi-Amoli M, Stoica P, Nishimura DG. A robust methodology for in vivo T1 mapping. Magn Reson Med. 2010;64:1057–67.CrossRef Barral JK, Gudmundson E, Stikov N, Etezadi-Amoli M, Stoica P, Nishimura DG. A robust methodology for in vivo T1 mapping. Magn Reson Med. 2010;64:1057–67.CrossRef
27.
go back to reference Wundrak S, Paul J, Ulrici J, Hell E, Geibel MA, Bernhardt P, Rottbauer W, Rasche V. Golden ratio sparse MRI using tiny golden angles. Magn Reson Med. 2016;75:2372–8.CrossRef Wundrak S, Paul J, Ulrici J, Hell E, Geibel MA, Bernhardt P, Rottbauer W, Rasche V. Golden ratio sparse MRI using tiny golden angles. Magn Reson Med. 2016;75:2372–8.CrossRef
28.
go back to reference Klosowski J, Frahm J. Image denoising for real-time MRI. Magn Reson Med. 2017;77:1340–52.CrossRef Klosowski J, Frahm J. Image denoising for real-time MRI. Magn Reson Med. 2017;77:1340–52.CrossRef
29.
go back to reference Block KT, Uecker M. Simple method for adaptive gradient-delay compensation in radial MRI. In: Proceedings of the 19th annual meeting of ISMRM. Montreal; 2011. p. 2816. Block KT, Uecker M. Simple method for adaptive gradient-delay compensation in radial MRI. In: Proceedings of the 19th annual meeting of ISMRM. Montreal; 2011. p. 2816.
30.
go back to reference Wajer F, Pruessmann KP. Major speedup of reconstruction for sensitivity encoding with arbitrary trajectories. In: Proceedings of the ISMRM 9th Annual Meeting. Glasgow; 2001. p. 767. Wajer F, Pruessmann KP. Major speedup of reconstruction for sensitivity encoding with arbitrary trajectories. In: Proceedings of the ISMRM 9th Annual Meeting. Glasgow; 2001. p. 767.
31.
go back to reference Uecker M, Ong F, Tamir J, Bahri D, Virtue P, Cheng J, Zhang T, Lustig M. Berkeley advanced reconstruction toolbox. In: Proceedings of the 23rd annual meeting of ISMRM. Toronto; 2015. p. 2486. Uecker M, Ong F, Tamir J, Bahri D, Virtue P, Cheng J, Zhang T, Lustig M. Berkeley advanced reconstruction toolbox. In: Proceedings of the 23rd annual meeting of ISMRM. Toronto; 2015. p. 2486.
32.
go back to reference Sumpf T, Unterberger M. arrayshow: a guide to an open source matlab tool for complex MRI data analysis. In: Proceedings of the 21st annual meeting ISMRM. Salt Lake City; 2013. p. 2719. Sumpf T, Unterberger M. arrayshow: a guide to an open source matlab tool for complex MRI data analysis. In: Proceedings of the 21st annual meeting ISMRM. Salt Lake City; 2013. p. 2719.
33.
go back to reference Shao J, Liu D, Sung K, Nguyen K-L, Hu P. Accuracy, precision, and reproducibility of myocardial T1 mapping: a comparison of four T1 estimation algorithms for modified look-locker inversion recovery (MOLLI). Magn Reson Med. 2017;78:1746–56.CrossRef Shao J, Liu D, Sung K, Nguyen K-L, Hu P. Accuracy, precision, and reproducibility of myocardial T1 mapping: a comparison of four T1 estimation algorithms for modified look-locker inversion recovery (MOLLI). Magn Reson Med. 2017;78:1746–56.CrossRef
34.
go back to reference Ahmad R, Ding Y, Simonetti OP. Edge sharpness assessment by parametric modeling: application to magnetic resonance imaging. Concepts Magn Reson Part A. 2015;44:138–49.CrossRef Ahmad R, Ding Y, Simonetti OP. Edge sharpness assessment by parametric modeling: application to magnetic resonance imaging. Concepts Magn Reson Part A. 2015;44:138–49.CrossRef
35.
go back to reference Sumpf TJ, Petrovic A, Uecker M, Knoll F, Frahm J. Fast T2 mapping with improved accuracy using undersampled spin-echo MRI and model-based reconstructions with a generating function. IEEE Trans Med Imaging. 2014;33:2213–22.CrossRef Sumpf TJ, Petrovic A, Uecker M, Knoll F, Frahm J. Fast T2 mapping with improved accuracy using undersampled spin-echo MRI and model-based reconstructions with a generating function. IEEE Trans Med Imaging. 2014;33:2213–22.CrossRef
36.
go back to reference Rosenzweig S, Holme HCM, Wilke RN, Voit D, Frahm J, Uecker M. Simultaneous multi-slice MRI using cartesian and radial FLASH and regularized nonlinear inversion: SMS-NLINV. Magn Reson Med. 2018;79:2057–66.CrossRef Rosenzweig S, Holme HCM, Wilke RN, Voit D, Frahm J, Uecker M. Simultaneous multi-slice MRI using cartesian and radial FLASH and regularized nonlinear inversion: SMS-NLINV. Magn Reson Med. 2018;79:2057–66.CrossRef
37.
go back to reference Weingärtner S, Moeller S, Schmitter S, Auerbach E, Kellman P, Shenoy C, Akçakaya M. Simultaneous multislice imaging for native myocardial t1 mapping: improved spatial coverage in a single breath-hold. Magn Reson Med. 2017;78:462–71.CrossRef Weingärtner S, Moeller S, Schmitter S, Auerbach E, Kellman P, Shenoy C, Akçakaya M. Simultaneous multislice imaging for native myocardial t1 mapping: improved spatial coverage in a single breath-hold. Magn Reson Med. 2017;78:462–71.CrossRef
38.
go back to reference Tamir JI, Uecker M, Chen W, Lai P, Alley MT, Vasanawala SS, Lustig M. T2 shuffling: sharp, multicontrast, volumetric fast spin-echo imaging. Magn Reson Med. 2017;77:180–95.CrossRef Tamir JI, Uecker M, Chen W, Lai P, Alley MT, Vasanawala SS, Lustig M. T2 shuffling: sharp, multicontrast, volumetric fast spin-echo imaging. Magn Reson Med. 2017;77:180–95.CrossRef
39.
go back to reference Feng L, Axel L, Chandarana H, Block KT, Sodickson DK, Otazo R. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med. 2016;75:775–88.CrossRef Feng L, Axel L, Chandarana H, Block KT, Sodickson DK, Otazo R. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med. 2016;75:775–88.CrossRef
40.
go back to reference Christodoulou AG, Shaw JL, Nguyen C, Yang Q, Xie Y, Wang N, Li D. Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging. Nat Biomed Eng. 2018;2:215.CrossRef Christodoulou AG, Shaw JL, Nguyen C, Yang Q, Xie Y, Wang N, Li D. Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging. Nat Biomed Eng. 2018;2:215.CrossRef
Metadata
Title
Model-based myocardial T1 mapping with sparsity constraints using single-shot inversion-recovery radial FLASH cardiovascular magnetic resonance
Authors
Xiaoqing Wang
Florian Kohler
Christina Unterberg-Buchwald
Joachim Lotz
Jens Frahm
Martin Uecker
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2019
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-019-0570-3

Other articles of this Issue 1/2019

Journal of Cardiovascular Magnetic Resonance 1/2019 Go to the issue