Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2017

Open Access 01-12-2017 | Research

Quantification of aortic stenosis diagnostic parameters: comparison of fast 3 direction and 1 direction phase contrast CMR and transthoracic echocardiography

Authors: Juliana Serafim da Silveira, Matthew Smyke, Adam V. Rich, Yingmin Liu, Ning Jin, Debbie Scandling, Jennifer A. Dickerson, Carlos E. Rochitte, Subha V. Raman, Lee C. Potter, Rizwan Ahmad, Orlando P. Simonetti

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2017

Login to get access

Abstract

Background

Aortic stenosis (AS) is a common valvular disorder, and disease severity is currently assessed by transthoracic echocardiography (TTE). However, TTE results can be inconsistent in some patients, thus other diagnostic modalities such as cardiovascular magnetic resonance (CMR) are demanded. While traditional unidirectional phase-contrast CMR (1Dir PC-CMR) underestimates velocity if the imaging plane is misaligned to the flow direction, multi-directional acquisitions are expected to improve velocity measurement accuracy. Nonetheless, clinical use of multidirectional techniques has been hindered by long acquisition times. Our goal was to quantify flow parameters in patients using 1Dir PC-CMR and a faster multi-directional technique (3Dir PC-CMR), and compare to TTE.

Methods

Twenty-three patients were prospectively assessed with TTE and CMR. Slices above the aortic valve were acquired for both PC-CMR techniques and cine SSFP images were acquired to quantify left ventricular stroke volume. 3Dir PC-CMR implementation included a variable density sampling pattern with acceleration rate of 8 and a reconstruction method called ReVEAL, to significantly accelerate acquisition. 3Dir PC-CMR reconstruction was performed offline and ReVEAL-based image recovery was performed on the three (x, y, z) encoding pairs. 1Dir PC-CMR was acquired with GRAPPA acceleration rate of 2 and reconstructed online. CMR derived flow parameters and aortic valve area estimates were compared to TTE.

Results

ReVEAL based 3Dir PC-CMR derived parameters correlated better with TTE than 1Dir PC-CMR. Correlations ranged from 0.61 to 0.81 between TTE and 1Dir PC-CMR and from 0.61 to 0.87 between TTE and 3Dir-PC-CMR. The correlation coefficients between TTE, 1Dir and 3Dir PC-CMR Vpeakwere 0.81 and 0.87, respectively. In comparison to ReVEAL, TTE slightly underestimates peak velocities, which is not surprising as TTE is only sensitive to flow that is parallel to the acoustic beam.

Conclusions

By exploiting structure unique to PC-CMR, ReVEAL enables multi-directional flow imaging in clinically feasible acquisition times. Results support the hypothesis that ReVEAL-based 3Dir PC-CMR provides better estimation of hemodynamic parameters in AS patients in comparison to 1Dir PC-CMR. While TTE can accurately measure velocity parallel to the acoustic beam, it is not sensitive to the other directions of flow. Therefore, multi-directional flow imaging, which encodes all three components of the velocity vector, can potentially outperform TTE in patients with eccentric or multiple jets.
Appendix
Available only for authorised users
Literature
1.
go back to reference Martinsson A, Li X, Andersson C, Nilsson J, Smith JG, Sundquist K. Temporal trends in the incidence and prognosis of aortic stenosis: a nationwide study of the Swedish population. Circulation. 2015;131(11):988–94.CrossRefPubMed Martinsson A, Li X, Andersson C, Nilsson J, Smith JG, Sundquist K. Temporal trends in the incidence and prognosis of aortic stenosis: a nationwide study of the Swedish population. Circulation. 2015;131(11):988–94.CrossRefPubMed
2.
go back to reference Saikrishnan N, Kumar G, Sawaya FJ, Lerakis S, Yoganathan AP. Accurate assessment of aortic stenosis: a review of diagnostic modalities and hemodynamics. Circulation. 2014;129(2):244–53.CrossRefPubMed Saikrishnan N, Kumar G, Sawaya FJ, Lerakis S, Yoganathan AP. Accurate assessment of aortic stenosis: a review of diagnostic modalities and hemodynamics. Circulation. 2014;129(2):244–53.CrossRefPubMed
3.
go back to reference Baumgartner H, Hung J, Bermejo J, et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr. 2009;22(1):1–23. quiz 101–102.CrossRefPubMed Baumgartner H, Hung J, Bermejo J, et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr. 2009;22(1):1–23. quiz 101–102.CrossRefPubMed
4.
go back to reference Otto CM. Valvular aortic stenosis: disease severity and timing of intervention. J Am Coll Cardiol. 2006;47(11):2141–51.CrossRefPubMed Otto CM. Valvular aortic stenosis: disease severity and timing of intervention. J Am Coll Cardiol. 2006;47(11):2141–51.CrossRefPubMed
5.
go back to reference Senior R, Dwivedi G, Hayat S, Lim TK. Clinical benefits of contrast-enhanced echocardiography during rest and stress examinations. Eur J Echocardiogr. 2005;6 Suppl 2:S6–13.CrossRefPubMed Senior R, Dwivedi G, Hayat S, Lim TK. Clinical benefits of contrast-enhanced echocardiography during rest and stress examinations. Eur J Echocardiogr. 2005;6 Suppl 2:S6–13.CrossRefPubMed
6.
7.
go back to reference Hodnett PA, Glielmi CB, Davarpanah AH, et al. Inline directionally independent peak velocity evaluation reduces error in peak antegrade velocity estimation in patients referred for cardiac valvular assessment. AJR Am J Roentgenol. 2012;198(2):344–50.CrossRefPubMed Hodnett PA, Glielmi CB, Davarpanah AH, et al. Inline directionally independent peak velocity evaluation reduces error in peak antegrade velocity estimation in patients referred for cardiac valvular assessment. AJR Am J Roentgenol. 2012;198(2):344–50.CrossRefPubMed
8.
go back to reference Schubert T, Bieri O, Pansini M, Stippich C, Santini F. Peak velocity measurements in tortuous arteries with phase contrast magnetic resonance imaging: the effect of multidirectional velocity encoding. Investig Radiol. 2014;49(4):189–94.CrossRef Schubert T, Bieri O, Pansini M, Stippich C, Santini F. Peak velocity measurements in tortuous arteries with phase contrast magnetic resonance imaging: the effect of multidirectional velocity encoding. Investig Radiol. 2014;49(4):189–94.CrossRef
9.
go back to reference Caruthers SD, Lin SJ, Brown P, et al. Practical value of cardiac magnetic resonance imaging for clinical quantification of aortic valve stenosis: comparison with echocardiography. Circulation. 2003;108(18):2236–43.CrossRefPubMed Caruthers SD, Lin SJ, Brown P, et al. Practical value of cardiac magnetic resonance imaging for clinical quantification of aortic valve stenosis: comparison with echocardiography. Circulation. 2003;108(18):2236–43.CrossRefPubMed
10.
go back to reference O'Brien KR, Gabriel RS, Greiser A, Cowan BR, Young AA, Kerr AJ. Aortic valve stenotic area calculation from phase contrast cardiovascular magnetic resonance: the importance of short echo time. J Cardiovasc Magn Reson. 2009;11:49.CrossRefPubMedPubMedCentral O'Brien KR, Gabriel RS, Greiser A, Cowan BR, Young AA, Kerr AJ. Aortic valve stenotic area calculation from phase contrast cardiovascular magnetic resonance: the importance of short echo time. J Cardiovasc Magn Reson. 2009;11:49.CrossRefPubMedPubMedCentral
11.
go back to reference Defrance C, Bollache E, Kachenoura N, et al. Evaluation of aortic valve stenosis using cardiovascular magnetic resonance: comparison of an original semiautomated analysis of phase-contrast cardiovascular magnetic resonance with Doppler echocardiography. Circ Cardiovasc Imaging. 2012;5(5):604–12.CrossRefPubMed Defrance C, Bollache E, Kachenoura N, et al. Evaluation of aortic valve stenosis using cardiovascular magnetic resonance: comparison of an original semiautomated analysis of phase-contrast cardiovascular magnetic resonance with Doppler echocardiography. Circ Cardiovasc Imaging. 2012;5(5):604–12.CrossRefPubMed
12.
go back to reference Liu X, Weale P, Reiter G, et al. Breathhold time-resolved three-directional MR velocity mapping of aortic flow in patients after aortic valve-sparing surgery. J Magn Reson Imaging. 2009;29(3):569–75.CrossRefPubMed Liu X, Weale P, Reiter G, et al. Breathhold time-resolved three-directional MR velocity mapping of aortic flow in patients after aortic valve-sparing surgery. J Magn Reson Imaging. 2009;29(3):569–75.CrossRefPubMed
13.
go back to reference Nordmeyer S, Riesenkampff E, Messroghli D, et al. Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow. J Magn Reson Imaging. 2013;37(1):208–16.CrossRefPubMed Nordmeyer S, Riesenkampff E, Messroghli D, et al. Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow. J Magn Reson Imaging. 2013;37(1):208–16.CrossRefPubMed
14.
go back to reference Garcia J, Markl M, Schnell S, et al. Evaluation of aortic stenosis severity using 4D flow jet shear layer detection for the measurement of valve effective orifice area. Magn Reson Imaging. 2014;32(7):891–8.CrossRefPubMedPubMedCentral Garcia J, Markl M, Schnell S, et al. Evaluation of aortic stenosis severity using 4D flow jet shear layer detection for the measurement of valve effective orifice area. Magn Reson Imaging. 2014;32(7):891–8.CrossRefPubMedPubMedCentral
15.
go back to reference Marsan NA, Westenberg JJ, Ypenburg C, et al. Quantification of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. J Am Coll Cardiol Img. 2009;2(11):1245–52.CrossRef Marsan NA, Westenberg JJ, Ypenburg C, et al. Quantification of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. J Am Coll Cardiol Img. 2009;2(11):1245–52.CrossRef
16.
17.
go back to reference Ahmad R, Xue H, Giri S, Ding Y, Craft J, Simonetti OP. Variable density incoherent spatiotemporal acquisition (VISTA) for highly accelerated cardiac MRI. Magn Reson Med. 2015;74(5):1266–78.CrossRefPubMed Ahmad R, Xue H, Giri S, Ding Y, Craft J, Simonetti OP. Variable density incoherent spatiotemporal acquisition (VISTA) for highly accelerated cardiac MRI. Magn Reson Med. 2015;74(5):1266–78.CrossRefPubMed
18.
go back to reference Rich A, Potter LC, Jin N, Ash J, Simonetti OP, Ahmad R. A Bayesian model for highly accelerated phase-contrast MRI. Magn Reson Med. 2016;76(2):689–701.CrossRefPubMed Rich A, Potter LC, Jin N, Ash J, Simonetti OP, Ahmad R. A Bayesian model for highly accelerated phase-contrast MRI. Magn Reson Med. 2016;76(2):689–701.CrossRefPubMed
19.
go back to reference Palta S, Pai AM, Gill KS, Pai RG. New insights into the progression of aortic stenosis: implications for secondary prevention. Circulation. 2000;101(21):2497–502.CrossRefPubMed Palta S, Pai AM, Gill KS, Pai RG. New insights into the progression of aortic stenosis: implications for secondary prevention. Circulation. 2000;101(21):2497–502.CrossRefPubMed
20.
go back to reference Otto CM, Burwash IG, Legget ME, et al. Prospective study of asymptomatic valvular aortic stenosis. Clinical, echocardiographic, and exercise predictors of outcome. Circulation. 1997;95(9):2262–70.CrossRefPubMed Otto CM, Burwash IG, Legget ME, et al. Prospective study of asymptomatic valvular aortic stenosis. Clinical, echocardiographic, and exercise predictors of outcome. Circulation. 1997;95(9):2262–70.CrossRefPubMed
21.
go back to reference Heiberg E, Sjogren J, Ugander M, Carlsson M, Engblom H, Arheden H. Design and validation of Segment-freely available software for cardiovascular image analysis. BMC Med Imaging. 2010;10:1.CrossRefPubMedPubMedCentral Heiberg E, Sjogren J, Ugander M, Carlsson M, Engblom H, Arheden H. Design and validation of Segment-freely available software for cardiovascular image analysis. BMC Med Imaging. 2010;10:1.CrossRefPubMedPubMedCentral
22.
go back to reference Yap SC, van Geuns RJ, Meijboom FJ, et al. A simplified continuity equation approach to the quantification of stenotic bicuspid aortic valves using velocity-encoded cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007;9(6):899–906.CrossRefPubMed Yap SC, van Geuns RJ, Meijboom FJ, et al. A simplified continuity equation approach to the quantification of stenotic bicuspid aortic valves using velocity-encoded cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007;9(6):899–906.CrossRefPubMed
23.
go back to reference Garcia J, Kadem L, Larose E, Clavel MA, Pibarot P. Comparison between cardiovascular magnetic resonance and transthoracic Doppler echocardiography for the estimation of effective orifice area in aortic stenosis. J Cardiovasc Magn Reson. 2011;13:25.CrossRefPubMedPubMedCentral Garcia J, Kadem L, Larose E, Clavel MA, Pibarot P. Comparison between cardiovascular magnetic resonance and transthoracic Doppler echocardiography for the estimation of effective orifice area in aortic stenosis. J Cardiovasc Magn Reson. 2011;13:25.CrossRefPubMedPubMedCentral
Metadata
Title
Quantification of aortic stenosis diagnostic parameters: comparison of fast 3 direction and 1 direction phase contrast CMR and transthoracic echocardiography
Authors
Juliana Serafim da Silveira
Matthew Smyke
Adam V. Rich
Yingmin Liu
Ning Jin
Debbie Scandling
Jennifer A. Dickerson
Carlos E. Rochitte
Subha V. Raman
Lee C. Potter
Rizwan Ahmad
Orlando P. Simonetti
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2017
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-017-0339-5

Other articles of this Issue 1/2017

Journal of Cardiovascular Magnetic Resonance 1/2017 Go to the issue