Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2017

Open Access 01-12-2017 | Research

Aortic atheroma as a source of stroke – assessment of embolization risk using 3D CMR in stroke patients and controls

Authors: Thomas Wehrum, Iulius Dragonu, Christoph Strecker, Florian Schuchardt, Anja Hennemuth, Johann Drexl, Thomas Reinhard, Daniel Böhringer, Werner Vach, Jürgen Hennig, Andreas Harloff

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2017

Login to get access

Abstract

Background

It was our purpose to identify vulnerable plaques in the thoracic aorta using 3D multi-contrast CMR and estimate the risk of cerebral embolization using 4D flow CMR in cryptogenic stroke patients and controls.

Methods

One hundred patients (40 with cryptogenic stroke, 60 ophthalmologic controls matched for age, sex and presence of hypertension) underwent a novel 3D multi-contrast (T1w, T2w, PDw) CMR protocol at 3 Tesla for plaque detection and characterization within the thoracic aorta, which was combined with 4D flow CMR for mapping potential embolization pathways. Plaque morphology was assessed in consensus reading by two investigators and classified according to the modified American-Heart-Association (AHA) classification of atherosclerotic plaques.

Results

In the thoracic aorta, plaques <4 mm thickness were found in a similar number of stroke patients and controls [23 (57.5%) versus 33 (55.0%); p = 0.81]. However, plaques ≥4 mm were more frequent in stroke patients [22 (55.0%) versus 10 (16.7%); p < 0.001]. Of those patients with plaques ≥4 mm, seven (17.5%) stroke patients and two (3.3%) controls (p < 0.001) had potentially vulnerable AHA type VI plaques. Six stroke patients with vulnerable AHA type VI plaques ≥4 mm had potential embolization pathways connecting the plaque, located in the aortic arch (n = 3) and proximal descending aorta (n = 3), with the individual territory of stroke, which made them the most likely source of stroke in those patients.

Conclusions

Our findings underline the significance of ≥4 mm thick and vulnerable plaques in the aortic arch and descending aorta as a relevant etiology of stroke.

Clinical trial registration

Unique identifier: DRKS00006234; date of registration: 11/06/2014
Appendix
Available only for authorised users
Literature
2.
go back to reference Harloff A, Handke M, Reinhard M, Geibel A, Hetzel A. Therapeutic strategies after examination by transesophageal echocardiography in 503 patients with ischemic stroke. Stroke. 2006;37:859–64.CrossRefPubMed Harloff A, Handke M, Reinhard M, Geibel A, Hetzel A. Therapeutic strategies after examination by transesophageal echocardiography in 503 patients with ischemic stroke. Stroke. 2006;37:859–64.CrossRefPubMed
3.
go back to reference Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation. 2003;108:1772–8.CrossRefPubMed Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation. 2003;108:1772–8.CrossRefPubMed
4.
go back to reference Harloff A, Strecker C, Dudler P, Nussbaumer A, Frydrychowicz A, Olschewski M, et al. Retrograde embolism from the descending aorta: visualization by multidirectional 3D velocity mapping in cryptogenic stroke. Stroke. 2009;40:1505–8.CrossRefPubMed Harloff A, Strecker C, Dudler P, Nussbaumer A, Frydrychowicz A, Olschewski M, et al. Retrograde embolism from the descending aorta: visualization by multidirectional 3D velocity mapping in cryptogenic stroke. Stroke. 2009;40:1505–8.CrossRefPubMed
5.
go back to reference Harloff A, Simon J, Brendecke S, Assefa D, Helbing T, Frydrychowicz A, et al. Complex plaques in the proximal descending aorta: an underestimated embolic source of stroke. Stroke. 2010;41:1145–50.CrossRefPubMed Harloff A, Simon J, Brendecke S, Assefa D, Helbing T, Frydrychowicz A, et al. Complex plaques in the proximal descending aorta: an underestimated embolic source of stroke. Stroke. 2010;41:1145–50.CrossRefPubMed
6.
go back to reference Wehrum T, Kams M, Strecker C, Dragonu I, Günther F, Geibel A, et al. Prevalence of potential retrograde Embolization pathways in the proximal descending aorta in stroke patients and controls. Cerebrovasc Dis. 2014;38:410–7.CrossRefPubMed Wehrum T, Kams M, Strecker C, Dragonu I, Günther F, Geibel A, et al. Prevalence of potential retrograde Embolization pathways in the proximal descending aorta in stroke patients and controls. Cerebrovasc Dis. 2014;38:410–7.CrossRefPubMed
7.
go back to reference Katz ES, Konecky N, Tunick PA, Rosenzweig BP, Freedberg RS, Kronzon I. Visualization and identification of the left common carotid and left subclavian arteries: a transesophageal echocardiographic approach. J Am Soc Echocardiogr. 1996;9:58–61.CrossRefPubMed Katz ES, Konecky N, Tunick PA, Rosenzweig BP, Freedberg RS, Kronzon I. Visualization and identification of the left common carotid and left subclavian arteries: a transesophageal echocardiographic approach. J Am Soc Echocardiogr. 1996;9:58–61.CrossRefPubMed
8.
go back to reference Wehrum T, Kams M, Günther F, Beryl P, Vach W, Dragonu I, et al. Quantification of retrograde blood flow in the descending aorta using transesophageal echocardiography in comparison to 4D flow MRI. Cerebrovasc Dis. 2015;39:287–92.CrossRefPubMed Wehrum T, Kams M, Günther F, Beryl P, Vach W, Dragonu I, et al. Quantification of retrograde blood flow in the descending aorta using transesophageal echocardiography in comparison to 4D flow MRI. Cerebrovasc Dis. 2015;39:287–92.CrossRefPubMed
9.
go back to reference Wehrum T, Dragonu I, Strecker C, Hennig J, Harloff A. Multi-contrast and three-dimensional assessment of the aortic wall using 3 T MRI. Eur J Radiol. 2017;91:148–54.CrossRefPubMed Wehrum T, Dragonu I, Strecker C, Hennig J, Harloff A. Multi-contrast and three-dimensional assessment of the aortic wall using 3 T MRI. Eur J Radiol. 2017;91:148–54.CrossRefPubMed
10.
go back to reference Wehrum T, Kams M, Schroeder L, Drexl J, Hennemuth A, Harloff A. Accelerated analysis of three-dimensional blood flow of the thoracic aorta in stroke patients. Int J Cardiovasc Imaging. 2014;30:1571–7.CrossRefPubMed Wehrum T, Kams M, Schroeder L, Drexl J, Hennemuth A, Harloff A. Accelerated analysis of three-dimensional blood flow of the thoracic aorta in stroke patients. Int J Cardiovasc Imaging. 2014;30:1571–7.CrossRefPubMed
11.
12.
go back to reference Turetschek K, Wunderbaldinger P, Bankier AA, Zontsich T, Graf O, Mallek R, et al. Double inversion recovery imaging of the brain: initial experience and comparison with fluid attenuated inversion recovery imaging. Magn Reson Imaging. 1998;16:127–35.CrossRefPubMed Turetschek K, Wunderbaldinger P, Bankier AA, Zontsich T, Graf O, Mallek R, et al. Double inversion recovery imaging of the brain: initial experience and comparison with fluid attenuated inversion recovery imaging. Magn Reson Imaging. 1998;16:127–35.CrossRefPubMed
13.
go back to reference Cai J-M, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002;106:1368–73.CrossRefPubMed Cai J-M, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002;106:1368–73.CrossRefPubMed
14.
go back to reference Saam T, Ferguson MS, Yarnykh VL, Takaya N, Xu D, Polissar NL, et al. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol. 2005;25:234–9.CrossRefPubMed Saam T, Ferguson MS, Yarnykh VL, Takaya N, Xu D, Polissar NL, et al. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol. 2005;25:234–9.CrossRefPubMed
15.
go back to reference Katsanos AH, Giannopoulos S, Kosmidou M, Voumvourakis K, Parissis JT, Kyritsis AP, et al. Complex Atheromatous plaques in the descending aorta and the risk of stroke: a systematic review and meta-analysis. Stroke. 2014;45:1764–70.CrossRefPubMed Katsanos AH, Giannopoulos S, Kosmidou M, Voumvourakis K, Parissis JT, Kyritsis AP, et al. Complex Atheromatous plaques in the descending aorta and the risk of stroke: a systematic review and meta-analysis. Stroke. 2014;45:1764–70.CrossRefPubMed
16.
go back to reference Wehrum T, Harloff A. Letter by Wehrum and Harloff regarding article, “complex atheromatous plaques in the descending aorta and the risk of stroke: a systematic review and meta-analysis”. Stroke. 2014;45:e169.CrossRefPubMed Wehrum T, Harloff A. Letter by Wehrum and Harloff regarding article, “complex atheromatous plaques in the descending aorta and the risk of stroke: a systematic review and meta-analysis”. Stroke. 2014;45:e169.CrossRefPubMed
17.
go back to reference Markl M, Dudler P, Fydrychowicz A, Strecker C, Weiller C, Hennig J, et al. Optimized 3D bright blood MRI of aortic plaque at 3 T. Magn Reson Imaging. 2008;26:330–6.CrossRefPubMed Markl M, Dudler P, Fydrychowicz A, Strecker C, Weiller C, Hennig J, et al. Optimized 3D bright blood MRI of aortic plaque at 3 T. Magn Reson Imaging. 2008;26:330–6.CrossRefPubMed
18.
go back to reference Koops A, Ittrich H, Petri S, Priest A, Stork A, Lockemann U, et al. Multicontrast-weighted magnetic resonance imaging of atherosclerotic plaques at 3.0 and 1.5 Tesla: ex-vivo comparison with histopathologic correlation. Eur Radiol. 2007;17:279–86.CrossRefPubMed Koops A, Ittrich H, Petri S, Priest A, Stork A, Lockemann U, et al. Multicontrast-weighted magnetic resonance imaging of atherosclerotic plaques at 3.0 and 1.5 Tesla: ex-vivo comparison with histopathologic correlation. Eur Radiol. 2007;17:279–86.CrossRefPubMed
19.
go back to reference Chan SK, Jaffer FA, Botnar RM, Kissinger KV, Goepfert L, Chuang ML, et al. Scan reproducibility of magnetic resonance imaging assessment of aortic atherosclerosis burden. J Cardiovasc Magn Reson. 2001;3:331–8.CrossRefPubMed Chan SK, Jaffer FA, Botnar RM, Kissinger KV, Goepfert L, Chuang ML, et al. Scan reproducibility of magnetic resonance imaging assessment of aortic atherosclerosis burden. J Cardiovasc Magn Reson. 2001;3:331–8.CrossRefPubMed
20.
go back to reference Kathiresan S, Larson MG, Keyes MJ, Polak JF, Wolf PA, D’Agostino RB, et al. Assessment by cardiovascular magnetic resonance, electron beam computed tomography, and carotid ultrasonography of the distribution of subclinical atherosclerosis across Framingham risk strata. Am J Cardiol. 2007;99:310–4.CrossRefPubMed Kathiresan S, Larson MG, Keyes MJ, Polak JF, Wolf PA, D’Agostino RB, et al. Assessment by cardiovascular magnetic resonance, electron beam computed tomography, and carotid ultrasonography of the distribution of subclinical atherosclerosis across Framingham risk strata. Am J Cardiol. 2007;99:310–4.CrossRefPubMed
21.
go back to reference Momiyama Y, Fayad ZA. Aortic plaque imaging and monitoring atherosclerotic plaque interventions. Top Magn Reson Imaging. 2007;18:349–55.CrossRefPubMed Momiyama Y, Fayad ZA. Aortic plaque imaging and monitoring atherosclerotic plaque interventions. Top Magn Reson Imaging. 2007;18:349–55.CrossRefPubMed
22.
go back to reference Kramer CM, Cerilli LA, Hagspiel K, DiMaria JM, Epstein FH, Kern JA. Magnetic resonance imaging identifies the fibrous cap in atherosclerotic abdominal aortic aneurysm. Circulation. 2004;109:1016–21.CrossRefPubMedPubMedCentral Kramer CM, Cerilli LA, Hagspiel K, DiMaria JM, Epstein FH, Kern JA. Magnetic resonance imaging identifies the fibrous cap in atherosclerotic abdominal aortic aneurysm. Circulation. 2004;109:1016–21.CrossRefPubMedPubMedCentral
23.
go back to reference Hayashi K, Mani V, Nemade A, Aguiar S, Postley JE, Fuster V, et al. Variations in atherosclerosis and remodeling patterns in aorta and carotids. J Cardiovasc Magn Reson. 2010;12:10.CrossRefPubMedPubMedCentral Hayashi K, Mani V, Nemade A, Aguiar S, Postley JE, Fuster V, et al. Variations in atherosclerosis and remodeling patterns in aorta and carotids. J Cardiovasc Magn Reson. 2010;12:10.CrossRefPubMedPubMedCentral
24.
go back to reference Corti R, Fuster V. Imaging of atherosclerosis: magnetic resonance imaging. Eur Heart J. 2011;32:1709–19b.CrossRefPubMed Corti R, Fuster V. Imaging of atherosclerosis: magnetic resonance imaging. Eur Heart J. 2011;32:1709–19b.CrossRefPubMed
25.
go back to reference Harloff A, Dudler P, Frydrychowicz A, Strecker C, Stroh AL, Geibel A, et al. Reliability of aortic MRI at 3 Tesla in patients with acute cryptogenic stroke. J Neurol Neurosurg Psychiatry. 2008;79:540–6.CrossRefPubMed Harloff A, Dudler P, Frydrychowicz A, Strecker C, Stroh AL, Geibel A, et al. Reliability of aortic MRI at 3 Tesla in patients with acute cryptogenic stroke. J Neurol Neurosurg Psychiatry. 2008;79:540–6.CrossRefPubMed
26.
go back to reference Wehrum T, Guenther F, Vach W, Gladstone BP, Wendel S, Fuchs A, et al. Aortic atherosclerosis determines increased retrograde blood flow as a potential mechanism of retrograde embolic stroke. Cerebrovasc Dis. 2017;43:132–8.CrossRefPubMed Wehrum T, Guenther F, Vach W, Gladstone BP, Wendel S, Fuchs A, et al. Aortic atherosclerosis determines increased retrograde blood flow as a potential mechanism of retrograde embolic stroke. Cerebrovasc Dis. 2017;43:132–8.CrossRefPubMed
27.
go back to reference Friman O, Hennemuth A, Harloff A, Bock J, Markl M, Peitgen H-O. Probabilistic 4D blood flow tracking and uncertainty estimation. Med Image Anal. 2011;15:720–8.CrossRefPubMed Friman O, Hennemuth A, Harloff A, Bock J, Markl M, Peitgen H-O. Probabilistic 4D blood flow tracking and uncertainty estimation. Med Image Anal. 2011;15:720–8.CrossRefPubMed
Metadata
Title
Aortic atheroma as a source of stroke – assessment of embolization risk using 3D CMR in stroke patients and controls
Authors
Thomas Wehrum
Iulius Dragonu
Christoph Strecker
Florian Schuchardt
Anja Hennemuth
Johann Drexl
Thomas Reinhard
Daniel Böhringer
Werner Vach
Jürgen Hennig
Andreas Harloff
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2017
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-017-0379-x

Other articles of this Issue 1/2017

Journal of Cardiovascular Magnetic Resonance 1/2017 Go to the issue