Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2017

Open Access 01-12-2016 | Research

Analyzing myocardial torsion based on tissue phase mapping cardiovascular magnetic resonance

Authors: Teodora Chitiboi, Susanne Schnell, Jeremy Collins, James Carr, Varun Chowdhary, Amir Reza Honarmand, Anja Hennemuth, Lars Linsen, Horst K. Hahn, Michael Markl

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2017

Login to get access

Abstract

Background

The purpose of this work is to analyze differences in left ventricular torsion between volunteers and patients with non-ischemic cardiomyopathy based on tissue phase mapping (TPM) cardiovascular magnetic resonance (CMR).

Methods

TPM was performed on 27 patients with non-ischemic cardiomyopathy and 14 normal volunteers. Patients underwent a standard CMR including late gadolinium enhancement (LGE) for the assessment of myocardial scar and ECG-gated cine CMR for global cardiac function. TPM was acquired in short-axis orientation at base, mid, and apex for all subjects. After evaluation by experienced observers, the patients were divided in subgroups according to the presence or absence of LGE (LGE+/LGE-), local wall motion abnormalities (WM+/WM-), and having a preserved (≥50 %) or reduced (<50 %) ejection fraction (EF+/EF-). TPM data was semi-automatically segmented and global LV torsion was computed for each cardiac time frame for endocardial and epicardial layers, and for the entire myocardium.

Results

Maximum myocardial torsion was significantly lower for patients with reduced EF compared to controls (0.21 ± 0.15°/mm vs. 0.36 ± 0.11°/mm, p = 0.018), but also for patients with wall motion abnormalities (0.21 ± 0.13°/mm vs. 0.36 ± 0.11°/mm, p = 0.004). Global myocardial torsion showed a positive correlation (r = 0.54, p < 0.001) with EF. Moreover, endocardial torsion was significantly higher than epicardial torsion for EF+ subjects (0.56 ± 0.33°/mm vs. 0.34 ± 0.18°/mm, p = 0.039) and for volunteers (0.46 ± 0.16°/mm vs. 0.30 ± 0.09°/mm, p = 0.004). The difference in maximum torsion between endo- and epicardial layers was positively correlated with EF (r = 0.47, p = 0.002) and age (r = 0.37, p = 0.016) for all subjects.

Conclusions

TPM can be used to detect significant differences in LV torsion in patients with reduced EF and in the presence of local wall motion abnormalities. We were able to quantify torsion differences between the endocardium and epicardium, which vary between patient subgroups and are correlated to age and EF.
Literature
2.
go back to reference Buckberg GD, Mahajan A, Jung B, Markl M, Hennig J, Ballester-Rodes M. MRI myocardial motion and fiber tracking: a confirmation of knowledge from different imaging modalities. Eur J Cardiothorac Surg. 2006;29(Supplement 1):S165–77.CrossRefPubMed Buckberg GD, Mahajan A, Jung B, Markl M, Hennig J, Ballester-Rodes M. MRI myocardial motion and fiber tracking: a confirmation of knowledge from different imaging modalities. Eur J Cardiothorac Surg. 2006;29(Supplement 1):S165–77.CrossRefPubMed
3.
go back to reference Young AA, Cowan BR. Evaluation of left ventricular torsion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:no. 49.CrossRefPubMed Young AA, Cowan BR. Evaluation of left ventricular torsion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:no. 49.CrossRefPubMed
4.
go back to reference Nagel E, Stuber M, Burkhard B, Fischer SE, Scheidegger MB, Boesiger P, Hess OM. Cardiac rotation and relaxation in patients with aortic valve stenosis. Eur Heart J. 2000;21(7):582–9.CrossRefPubMed Nagel E, Stuber M, Burkhard B, Fischer SE, Scheidegger MB, Boesiger P, Hess OM. Cardiac rotation and relaxation in patients with aortic valve stenosis. Eur Heart J. 2000;21(7):582–9.CrossRefPubMed
5.
go back to reference Buchalter MB, Rademakers FE, Weiss JL, Rogers WJ, Weisfeldt ML, Shapiro EP. Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischaemia, and pacing. Cardiovasc Res. 1994;28(5):629–35.CrossRefPubMed Buchalter MB, Rademakers FE, Weiss JL, Rogers WJ, Weisfeldt ML, Shapiro EP. Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischaemia, and pacing. Cardiovasc Res. 1994;28(5):629–35.CrossRefPubMed
6.
go back to reference Paetsch I, Föll D, Kaluza A, Luechinger R, Stuber M, Bornstedt A, Wahl A, Fleck E, Nagel E. Magnetic resonance stress tagging in ischemic heart disease. Am J Phys Heart Circ Phys. 2005;288(6):H2708–14. Paetsch I, Föll D, Kaluza A, Luechinger R, Stuber M, Bornstedt A, Wahl A, Fleck E, Nagel E. Magnetic resonance stress tagging in ischemic heart disease. Am J Phys Heart Circ Phys. 2005;288(6):H2708–14.
7.
go back to reference Götte MJ, Germans T, Rüssel IK, Zwanenburg JJ, Marcus JT, van Rossum AC, van Veldhuisen DJ. Myocardial strain and torsion quantified by cardiovascular magnetic resonance tissue tagging: studies in normal and impaired left ventricular function. J Am Coll Cardiol. 2006;48(10):2002–11.CrossRefPubMed Götte MJ, Germans T, Rüssel IK, Zwanenburg JJ, Marcus JT, van Rossum AC, van Veldhuisen DJ. Myocardial strain and torsion quantified by cardiovascular magnetic resonance tissue tagging: studies in normal and impaired left ventricular function. J Am Coll Cardiol. 2006;48(10):2002–11.CrossRefPubMed
8.
go back to reference Notomi Y, Setser RM, Shiota T, Martin-Miklovic MG, Weaver JA, Popovic ZB, Yamada H, Greenberg NL, White RD, Thomas JD. Assessment of left ventricular torsional deformation by Doppler tissue imaging validation study with tagged magnetic resonance imaging. Circulation. 2005;111(9):1141–7.CrossRefPubMed Notomi Y, Setser RM, Shiota T, Martin-Miklovic MG, Weaver JA, Popovic ZB, Yamada H, Greenberg NL, White RD, Thomas JD. Assessment of left ventricular torsional deformation by Doppler tissue imaging validation study with tagged magnetic resonance imaging. Circulation. 2005;111(9):1141–7.CrossRefPubMed
9.
go back to reference Omar AMS, Vallabhajosyula S, Sengupta PP. Left Ventricular Twist and Torsion Research Observations and Clinical Applications. Circ Cardiovasc Imaging. 2015;8(6):e003029.CrossRefPubMed Omar AMS, Vallabhajosyula S, Sengupta PP. Left Ventricular Twist and Torsion Research Observations and Clinical Applications. Circ Cardiovasc Imaging. 2015;8(6):e003029.CrossRefPubMed
10.
11.
go back to reference Buchalter MB, Weiss JL, Rogers WJ, Zerhouni EA, Weisfeldt ML, Beyar R, Shapiro EP. Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging. Circulation. 1990;81(4):1236–44.CrossRefPubMed Buchalter MB, Weiss JL, Rogers WJ, Zerhouni EA, Weisfeldt ML, Beyar R, Shapiro EP. Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging. Circulation. 1990;81(4):1236–44.CrossRefPubMed
12.
go back to reference Spottiswoode BS, Zhong X, Hess AT, Kramer CM, Meintjes EM, Mayosi BM, Epstein FH. Tracking myocardial motion from cine DENSE images using spatiotemporal phase unwrapping and temporal fitting. IEEE Trans Med Imaging. 2007;26(1):15–30.CrossRefPubMed Spottiswoode BS, Zhong X, Hess AT, Kramer CM, Meintjes EM, Mayosi BM, Epstein FH. Tracking myocardial motion from cine DENSE images using spatiotemporal phase unwrapping and temporal fitting. IEEE Trans Med Imaging. 2007;26(1):15–30.CrossRefPubMed
13.
go back to reference Jung B, Föll D, Böttler P, Petersen S, Hennig J, Markl M. Detailed analysis of myocardial motion in volunteers and patients using high-temporal-resolution MR tissue phase mapping. J Magn Reson Imaging. 2006;24(5):1033–9.CrossRefPubMed Jung B, Föll D, Böttler P, Petersen S, Hennig J, Markl M. Detailed analysis of myocardial motion in volunteers and patients using high-temporal-resolution MR tissue phase mapping. J Magn Reson Imaging. 2006;24(5):1033–9.CrossRefPubMed
14.
go back to reference Bauer S, Markl M, Föll D, Russe M, Stankovic Z, Jung B. K‐t GRAPPA accelerated phase contrast MRI: Improved assessment of blood flow and 3‐directional myocardial motion during breath‐hold. J Magn Reson Imaging. 2013;38(5):1054–62.CrossRefPubMed Bauer S, Markl M, Föll D, Russe M, Stankovic Z, Jung B. K‐t GRAPPA accelerated phase contrast MRI: Improved assessment of blood flow and 3‐directional myocardial motion during breath‐hold. J Magn Reson Imaging. 2013;38(5):1054–62.CrossRefPubMed
15.
go back to reference Simpson R, Keegan J, Gatehouse P, Hansen M, Firmin D. Spiral tissue phase velocity mapping in a breath‐hold with non‐cartesian SENSE. Magn Reson Med. 2014;72(3):659–68.CrossRefPubMedPubMedCentral Simpson R, Keegan J, Gatehouse P, Hansen M, Firmin D. Spiral tissue phase velocity mapping in a breath‐hold with non‐cartesian SENSE. Magn Reson Med. 2014;72(3):659–68.CrossRefPubMedPubMedCentral
16.
go back to reference Föll D, Jung B, Germann E, Staehle F, Bode C, Markl M. Hypertensive heart disease: MR tissue phase mapping reveals altered left ventricular rotation and regional myocardial long-axis velocities. Eur Radiol. 2013;23(2):339–47.CrossRef Föll D, Jung B, Germann E, Staehle F, Bode C, Markl M. Hypertensive heart disease: MR tissue phase mapping reveals altered left ventricular rotation and regional myocardial long-axis velocities. Eur Radiol. 2013;23(2):339–47.CrossRef
17.
go back to reference Föll D, Jung BA, Germann E, Staehle F, Bode C, Hennig J, Markl M. Segmental myocardial velocities in dilated cardiomyopathy with and without left bundle branch block. J Magn Reson Imaging. 2013;37(1):119–26.CrossRef Föll D, Jung BA, Germann E, Staehle F, Bode C, Hennig J, Markl M. Segmental myocardial velocities in dilated cardiomyopathy with and without left bundle branch block. J Magn Reson Imaging. 2013;37(1):119–26.CrossRef
18.
go back to reference Föll D, Markl M, Menza M, Usman A, Wengenmayer T, Anjarwalla AL, Bode C, Carr J, Jung B. Cold ischaemic time and time after transplantation alter segmental myocardial velocities after heart transplantation. Eur J Cardiothorac Surg. 2014;45(3):502–8.CrossRefPubMed Föll D, Markl M, Menza M, Usman A, Wengenmayer T, Anjarwalla AL, Bode C, Carr J, Jung B. Cold ischaemic time and time after transplantation alter segmental myocardial velocities after heart transplantation. Eur J Cardiothorac Surg. 2014;45(3):502–8.CrossRefPubMed
19.
go back to reference Jung B, Odening KE, Dall’Armellina E, Föll D, Menza M, Markl M, Schneider JE. A quantitative comparison of regional myocardial motion in mice, rabbits and humans using in-vivo phase contrast CMR. J Cardiovasc Magn Reson. 2012;87:no. 14. Jung B, Odening KE, Dall’Armellina E, Föll D, Menza M, Markl M, Schneider JE. A quantitative comparison of regional myocardial motion in mice, rabbits and humans using in-vivo phase contrast CMR. J Cardiovasc Magn Reson. 2012;87:no. 14.
20.
go back to reference Petitjean C, Rougon N, Cluzel P. Assessment of myocardial function: a review of quantification methods and results using tagged MRI. J Cardiovasc Magn Reson. 2005;7(2):501–16.CrossRefPubMed Petitjean C, Rougon N, Cluzel P. Assessment of myocardial function: a review of quantification methods and results using tagged MRI. J Cardiovasc Magn Reson. 2005;7(2):501–16.CrossRefPubMed
21.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–42.CrossRefPubMed Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–42.CrossRefPubMed
22.
go back to reference Ritter F, Boskamp T, Homeyer A, Laue H, Schwier M, Link F, Peitgen HO. Medical image analysis. IEEE Pulse. 2011;2(6):60–70.CrossRefPubMed Ritter F, Boskamp T, Homeyer A, Laue H, Schwier M, Link F, Peitgen HO. Medical image analysis. IEEE Pulse. 2011;2(6):60–70.CrossRefPubMed
23.
go back to reference Hennemuth A, Friman O, Schumann C, Bock J, Drexl J, Huellebrand M, et al. Fast interactive exploration of 4D MRI flow data. Proc. SPIE 7964 Med. Imaging. 2011:79640E-1–79640E-11. Hennemuth A, Friman O, Schumann C, Bock J, Drexl J, Huellebrand M, et al. Fast interactive exploration of 4D MRI flow data. Proc. SPIE 7964 Med. Imaging. 2011:79640E-1–79640E-11.
24.
go back to reference Cho J, Benkeser PJ. Cardiac segmentation by a velocity-aided active contour model. Comput Med Imaging Graph. 2006;30:31–41.CrossRefPubMed Cho J, Benkeser PJ. Cardiac segmentation by a velocity-aided active contour model. Comput Med Imaging Graph. 2006;30:31–41.CrossRefPubMed
25.
go back to reference Soille P. Morphological image analysis: principles and applications. Berlin, Heidelberg: Springer Science & Business Media; 2013. Soille P. Morphological image analysis: principles and applications. Berlin, Heidelberg: Springer Science & Business Media; 2013.
26.
go back to reference Chitiboi T, Hennemuth A, Schnell S, Chowdhary V, Honarmand A, Markl M et al. Contour Tracking and Probabilistic Segmentation of Tissue Phase Mapping MRI. Proc. SPIE Med. Imaging 2016;9784:978404–978404. Chitiboi T, Hennemuth A, Schnell S, Chowdhary V, Honarmand A, Markl M et al. Contour Tracking and Probabilistic Segmentation of Tissue Phase Mapping MRI. Proc. SPIE Med. Imaging 2016;9784:978404–978404.
27.
go back to reference Selle D, Preim B, Schenk A, Peitgen H-O. Analysis of vasculature for liver surgical planning. IEEE Trans Med Imaging. 2002;21(11):1344–57.CrossRefPubMed Selle D, Preim B, Schenk A, Peitgen H-O. Analysis of vasculature for liver surgical planning. IEEE Trans Med Imaging. 2002;21(11):1344–57.CrossRefPubMed
28.
go back to reference Hennig J, Schneider B, Peschl S, Markl M, Krause T, Laubenberger J. Analysis of myocardial motion based on velocity measurements with a black blood prepared segmented gradient‐echo sequence: Methodology and applications to normal volunteers and patients. J Magn Reson Imaging. 1998;8(4):868–77.CrossRefPubMed Hennig J, Schneider B, Peschl S, Markl M, Krause T, Laubenberger J. Analysis of myocardial motion based on velocity measurements with a black blood prepared segmented gradient‐echo sequence: Methodology and applications to normal volunteers and patients. J Magn Reson Imaging. 1998;8(4):868–77.CrossRefPubMed
29.
go back to reference Wilcoxon F. Individual comparisons by ranking methods. Biom Bull. 1945;1(6):80–3.CrossRef Wilcoxon F. Individual comparisons by ranking methods. Biom Bull. 1945;1(6):80–3.CrossRef
30.
go back to reference Kim H-K, Sohn D-W, Lee S-E, Choi S-Y, Park i-S, Kim Y-J, Oh B-H, Park Y-B, Choi Y-S. Assessment of Left Ventricular Rotation and Torsion with Two-dimensional Speckle Tracking Echocardiography. J Am Soc Echocardiogr. 2007;20(no. 1):45–53.CrossRefPubMed Kim H-K, Sohn D-W, Lee S-E, Choi S-Y, Park i-S, Kim Y-J, Oh B-H, Park Y-B, Choi Y-S. Assessment of Left Ventricular Rotation and Torsion with Two-dimensional Speckle Tracking Echocardiography. J Am Soc Echocardiogr. 2007;20(no. 1):45–53.CrossRefPubMed
31.
go back to reference Kanzaki H, Nakatani S, Yamada N, Urayama S-i, Miyatake K, Kitakaze M. Impaired Systolic torsion in dilated cardiomyopathy: Reversal of apical rotation at mid-systole characterized with magnetic resonance tagging method. Basic Res Cardiol. 2006;101(6):465–70.CrossRefPubMed Kanzaki H, Nakatani S, Yamada N, Urayama S-i, Miyatake K, Kitakaze M. Impaired Systolic torsion in dilated cardiomyopathy: Reversal of apical rotation at mid-systole characterized with magnetic resonance tagging method. Basic Res Cardiol. 2006;101(6):465–70.CrossRefPubMed
32.
go back to reference Sandstede JJ, Johnson T, Harre K, Beer M, Hofmann S, Pabst T, Kenn W, Voelker W, Neubauer S, Hahn D. Cardiac systolic rotation and contraction before and after valve replacement for aortic stenosis: a myocardial tagging study using MR imaging. Am J Roentgenol. 2002;174(4):953–8.CrossRef Sandstede JJ, Johnson T, Harre K, Beer M, Hofmann S, Pabst T, Kenn W, Voelker W, Neubauer S, Hahn D. Cardiac systolic rotation and contraction before and after valve replacement for aortic stenosis: a myocardial tagging study using MR imaging. Am J Roentgenol. 2002;174(4):953–8.CrossRef
33.
go back to reference Sabbah HN, Marzilli M, Stein PD. The relative role of subendocardium and subepicardium in left ventricular mechanics. Am J Physiol Heart Circ Physiol. 1981;240(6):H920–6. Sabbah HN, Marzilli M, Stein PD. The relative role of subendocardium and subepicardium in left ventricular mechanics. Am J Physiol Heart Circ Physiol. 1981;240(6):H920–6.
34.
go back to reference Notomi Y, Srinath G, Shiota T, Martin-Miklovic M, Beachler L, Howell K, Oryszak S, Deserranno D, Freed A, Greenberg N, Younoszai A, Thomas J. Maturational and adaptive modulation of left ventricular torsional biomechanics: Doppler tissue imaging observation from infancy to adulthood. Circulation. 2006;113:2534–41.CrossRefPubMed Notomi Y, Srinath G, Shiota T, Martin-Miklovic M, Beachler L, Howell K, Oryszak S, Deserranno D, Freed A, Greenberg N, Younoszai A, Thomas J. Maturational and adaptive modulation of left ventricular torsional biomechanics: Doppler tissue imaging observation from infancy to adulthood. Circulation. 2006;113:2534–41.CrossRefPubMed
35.
go back to reference Bansal M, Leano RL, Marwick TH. Clinical Assessment of Left Ventricular Systolic Torsion: Effects of Myocardial Infarction and Ischemia. J Am Soc Echocardiogr. 2008;21(8):887–94.CrossRefPubMed Bansal M, Leano RL, Marwick TH. Clinical Assessment of Left Ventricular Systolic Torsion: Effects of Myocardial Infarction and Ischemia. J Am Soc Echocardiogr. 2008;21(8):887–94.CrossRefPubMed
36.
go back to reference Li W, Liu W, Zhong J, Yu X. Early manifestation of alteration in cardiac function in dystrophin deficient mdx mouse using 3D CMR tagging. J Cardiovasc Magn Reson. 2009;11:no. 40.CrossRefPubMed Li W, Liu W, Zhong J, Yu X. Early manifestation of alteration in cardiac function in dystrophin deficient mdx mouse using 3D CMR tagging. J Cardiovasc Magn Reson. 2009;11:no. 40.CrossRefPubMed
Metadata
Title
Analyzing myocardial torsion based on tissue phase mapping cardiovascular magnetic resonance
Authors
Teodora Chitiboi
Susanne Schnell
Jeremy Collins
James Carr
Varun Chowdhary
Amir Reza Honarmand
Anja Hennemuth
Lars Linsen
Horst K. Hahn
Michael Markl
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2017
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-016-0234-5

Other articles of this Issue 1/2017

Journal of Cardiovascular Magnetic Resonance 1/2017 Go to the issue