Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2015

Open Access 01-12-2015 | Research

Segmented nitinol guidewires with stiffness-matched connectors for cardiovascular magnetic resonance catheterization: preserved mechanical performance and freedom from heating

Authors: Burcu Basar, Toby Rogers, Kanishka Ratnayaka, Adrienne E. Campbell-Washburn, Jonathan R. Mazal, William H. Schenke, Merdim Sonmez, Anthony Z. Faranesh, Robert J. Lederman, Ozgur Kocaturk

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2015

Login to get access

Abstract

Background

Conventional guidewires are not suitable for use during cardiovascular magnetic resonance (CMR) catheterization. They employ metallic shafts for mechanical performance, but which are conductors subject to radiofrequency (RF) induced heating. To date, non-metallic CMR guidewire designs have provided inadequate mechanical support, trackability, and torquability. We propose a metallic guidewire for CMR that is by design intrinsically safe and that retains mechanical performance of commercial guidewires.

Methods

The NHLBI passive guidewire is a 0.035” CMR-safe, segmented-core nitinol device constructed using short nitinol rod segments. The electrical length of each segment is less than one-quarter wavelength at 1.5 Tesla, which eliminates standing wave formation, and which therefore eliminates RF heating along the shaft. Each of the electrically insulated segments is connected with nitinol tubes for stiffness matching to assure uniform flexion. Iron oxide markers on the distal shaft impart conspicuity.
Mechanical integrity was tested according to International Organization for Standardization (ISO) standards. CMR RF heating safety was tested in vitro in a phantom according to American Society for Testing and Materials (ASTM) F-2182 standard, and in vivo in seven swine. Results were compared with a high-performance commercial nitinol guidewire.

Results

The NHLBI passive guidewire exhibited similar mechanical behavior to the commercial comparator. RF heating was reduced from 13 °C in the commercial guidewire to 1.2 °C in the NHLBI passive guidewire in vitro, using a flip angle of 75°. The maximum temperature increase was 1.1 ± 0.3 °C in vivo, using a flip angle of 45°. The guidewire was conspicuous during left heart catheterization in swine.

Conclusions

We describe a simple and intrinsically safe design of a metallic guidewire for CMR cardiovascular catheterization. The guidewire exhibits negligible heating at high flip angles in conformance with regulatory guidelines, yet mechanically resembles a high-performance commercial guidewire. Iron oxide markers along the length of the guidewire impart passive visibility during real-time CMR. Clinical translation is imminent.
Literature
1.
go back to reference Ratnayaka K, Faranesh AZ, Hansen MS,Stine AM, Halabi M, Barbash IM, et al. Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur Heart J. 2013;34(5):380–9.PubMedCentralCrossRefPubMed Ratnayaka K, Faranesh AZ, Hansen MS,Stine AM, Halabi M, Barbash IM, et al. Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur Heart J. 2013;34(5):380–9.PubMedCentralCrossRefPubMed
2.
go back to reference Saikus CE, Lederman RJ. Interventional Cardiovascular Magnetic Resonance Imaging: A New Opportunity for Image-Guided Interventions. J Am Coll Cardiol Img. 2009;2(11):1321–31.CrossRef Saikus CE, Lederman RJ. Interventional Cardiovascular Magnetic Resonance Imaging: A New Opportunity for Image-Guided Interventions. J Am Coll Cardiol Img. 2009;2(11):1321–31.CrossRef
4.
go back to reference Krämer NA, Kruger S, Schmitz S, Linssen M,Schade H, Weiss S, et al. Preclinical evaluation of a novel fiber compound MR guidewire in vivo. Investig Radiol. 2009;44(7):390–7.CrossRef Krämer NA, Kruger S, Schmitz S, Linssen M,Schade H, Weiss S, et al. Preclinical evaluation of a novel fiber compound MR guidewire in vivo. Investig Radiol. 2009;44(7):390–7.CrossRef
5.
go back to reference Krueger S, Schmitz S, Weiss S, Wirtz D, Linssen M, Schade H, et al. An MR guidewire based on micropultruded fiber-reinforced material. Magn Reson Med. 2008;60(5):1190–6.CrossRefPubMed Krueger S, Schmitz S, Weiss S, Wirtz D, Linssen M, Schade H, et al. An MR guidewire based on micropultruded fiber-reinforced material. Magn Reson Med. 2008;60(5):1190–6.CrossRefPubMed
6.
go back to reference Yeung CJ, Susil RC, Atalar E. RF safety of wires in interventional MRI: using a safety index. Magn Reson Med. 2002;47(1):187–93.CrossRefPubMed Yeung CJ, Susil RC, Atalar E. RF safety of wires in interventional MRI: using a safety index. Magn Reson Med. 2002;47(1):187–93.CrossRefPubMed
7.
go back to reference Buecker A, Spuentrup E, Schmitz-Rode T, Kinzel S, Pfeffer J, Hohl C, et al. Use of a nonmetallic guide wire for magnetic resonance-guided coronary artery catheterization. Invest Radiol. 2004;39(11):656–60.CrossRefPubMed Buecker A, Spuentrup E, Schmitz-Rode T, Kinzel S, Pfeffer J, Hohl C, et al. Use of a nonmetallic guide wire for magnetic resonance-guided coronary artery catheterization. Invest Radiol. 2004;39(11):656–60.CrossRefPubMed
8.
go back to reference Wolska-Krawczyk M, Rube MA, Immel E, Melzer A, Buecker A. Heating and safety of a new MR-compatible guidewire prototype versus a standard nitinol guidewire. Radiol Phys Technol. 2014;7(1):95–101.CrossRefPubMed Wolska-Krawczyk M, Rube MA, Immel E, Melzer A, Buecker A. Heating and safety of a new MR-compatible guidewire prototype versus a standard nitinol guidewire. Radiol Phys Technol. 2014;7(1):95–101.CrossRefPubMed
9.
go back to reference Tzifa A , Krombach GA, Kramer A, Kruger S, Schutte A, Von Walter M, et al. Magnetic resonance-guided cardiac interventions using magnetic resonance-compatible devices: a preclinical study and first-in-man congenital interventions. Circ Cardiovasc Interv. 2010;3(6):585–92.CrossRefPubMed Tzifa A , Krombach GA, Kramer A, Kruger S, Schutte A, Von Walter M, et al. Magnetic resonance-guided cardiac interventions using magnetic resonance-compatible devices: a preclinical study and first-in-man congenital interventions. Circ Cardiovasc Interv. 2010;3(6):585–92.CrossRefPubMed
10.
go back to reference Fratz, S. Invasive pressure measurement by CMR without flouroscopy. in Interventional Cardiovascular MRI Workshop at the Society for Cardiovascular Magnetic Resonance Imaging Annual Scientific Sessions. 2015. Nice, France. Fratz, S. Invasive pressure measurement by CMR without flouroscopy. in Interventional Cardiovascular MRI Workshop at the Society for Cardiovascular Magnetic Resonance Imaging Annual Scientific Sessions. 2015. Nice, France.
11.
go back to reference Sonmez M, Saikus CE, Bell JA, Franson DN, Halabi M, Faranesh AZ, et al. MRI active guidewire with an embedded temperature probe and providing a distinct tip signal to enhance clinical safety. J Cardiovasc Magn Reson. 2012;14:38.PubMedCentralCrossRefPubMed Sonmez M, Saikus CE, Bell JA, Franson DN, Halabi M, Faranesh AZ, et al. MRI active guidewire with an embedded temperature probe and providing a distinct tip signal to enhance clinical safety. J Cardiovasc Magn Reson. 2012;14:38.PubMedCentralCrossRefPubMed
12.
go back to reference Ladd ME, Quick HH. Reduction of resonant RF heating in intravascular catheters using coaxial chokes. Magn Reson Med. 2000;43(4):615–9.CrossRefPubMed Ladd ME, Quick HH. Reduction of resonant RF heating in intravascular catheters using coaxial chokes. Magn Reson Med. 2000;43(4):615–9.CrossRefPubMed
13.
go back to reference Weiss S, Vernickel P, Schaeffter T, Schulz V, Gleich B. Transmission line for improved RF safety of interventional devices. Magn Reson Med. 2005;54(1):182–9.CrossRefPubMed Weiss S, Vernickel P, Schaeffter T, Schulz V, Gleich B. Transmission line for improved RF safety of interventional devices. Magn Reson Med. 2005;54(1):182–9.CrossRefPubMed
14.
go back to reference Rogers T, Lederman R. Interventional CMR: Clinical Applications and Future Directions. Curr Cardiol Rep. 2015;17(5):1–9.CrossRef Rogers T, Lederman R. Interventional CMR: Clinical Applications and Future Directions. Curr Cardiol Rep. 2015;17(5):1–9.CrossRef
15.
go back to reference ISO 10555–1. Intravascular catheters -- Sterile and single-use catheters -- Part 1: General requirements. 2013. ISO 10555–1. Intravascular catheters -- Sterile and single-use catheters -- Part 1: General requirements. 2013.
16.
go back to reference FDA guidance document “Coronary and Cerebrovascular Guidewire Guidance” January, 1995. FDA guidance document “Coronary and Cerebrovascular Guidewire Guidance” January, 1995.
17.
go back to reference ASTM F2182-02a “Standard Test Method for Measurement of Radio Frequency Induced Heating Near Passive Implants During Magnetic Resonance Imaging”. ASTM F2182-02a “Standard Test Method for Measurement of Radio Frequency Induced Heating Near Passive Implants During Magnetic Resonance Imaging”.
18.
go back to reference ASTM F2119-07 “Standard Test Method for Evaluation of MR Image Artifacts from Passive Implants”. ASTM F2119-07 “Standard Test Method for Evaluation of MR Image Artifacts from Passive Implants”.
19.
go back to reference Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging. 2007;26(2):375–85.CrossRefPubMed Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging. 2007;26(2):375–85.CrossRefPubMed
20.
go back to reference Stadler A, Schima W, Ba-Salamah A, Kettenbach J, Eisenhuber E. Artifacts in body MR imaging: their appearance and how to eliminate them. Eur Radiol. 2007;17(5):1242–55.CrossRefPubMed Stadler A, Schima W, Ba-Salamah A, Kettenbach J, Eisenhuber E. Artifacts in body MR imaging: their appearance and how to eliminate them. Eur Radiol. 2007;17(5):1242–55.CrossRefPubMed
21.
go back to reference Mekle R et al. A polymer-based MR-compatible guidewire: a study to explore new prospects for interventional peripheral magnetic resonance angiography (ipMRA). J Magn Reson Imaging. 2006;23(2):145–55.CrossRefPubMed Mekle R et al. A polymer-based MR-compatible guidewire: a study to explore new prospects for interventional peripheral magnetic resonance angiography (ipMRA). J Magn Reson Imaging. 2006;23(2):145–55.CrossRefPubMed
22.
go back to reference Konings MK, Hofmann E, Scheffler K, Bilecen D. Heating Around Intravascular Guidewires by Resonating RF Waves. J Magn Reson Imaging. 2000;12(1):79–85.CrossRefPubMed Konings MK, Hofmann E, Scheffler K, Bilecen D. Heating Around Intravascular Guidewires by Resonating RF Waves. J Magn Reson Imaging. 2000;12(1):79–85.CrossRefPubMed
23.
go back to reference Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J. On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging. 2001;13(1):105–14.CrossRefPubMed Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J. On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging. 2001;13(1):105–14.CrossRefPubMed
24.
go back to reference Ehses P, Fidler F, Nordbeck P, Pracht ED, Warmuth M, Jakob PM, et al. MRI thermometry: Fast mapping of RF-induced heating along conductive wires. Magn Reson Med. 2008;60(2):457–61.CrossRefPubMed Ehses P, Fidler F, Nordbeck P, Pracht ED, Warmuth M, Jakob PM, et al. MRI thermometry: Fast mapping of RF-induced heating along conductive wires. Magn Reson Med. 2008;60(2):457–61.CrossRefPubMed
25.
go back to reference Gensler D, Fidler F, Ehses P, Warmuth M, Reiter T, During M, et al. MR safety: Fast T1 thermometry of the RF-induced heating of medical devices. Magn Reson Med. 2012;68(5):1593–9.CrossRefPubMed Gensler D, Fidler F, Ehses P, Warmuth M,  Reiter T, During M, et al. MR safety: Fast T1 thermometry of the RF-induced heating of medical devices. Magn Reson Med. 2012;68(5):1593–9.CrossRefPubMed
26.
go back to reference Campbell-Washburn A, Rogers T, Xue H, Hansen MS, Lederman RJ, Faranesh AZ. Dual echo positive contrast bSSFP for real-time visualization of passive devices duringmagnetic resonance guided cardiovascular catheterization. J Cardiovasc Magn Reson. 2014;16(1):1–7.CrossRef Campbell-Washburn A, Rogers T, Xue H, Hansen MS, Lederman RJ, Faranesh AZ. Dual echo positive contrast bSSFP for real-time visualization of passive devices duringmagnetic resonance guided cardiovascular catheterization. J Cardiovasc Magn Reson. 2014;16(1):1–7.CrossRef
27.
go back to reference Campbell-Washburn, A. Two-channel visualization of a passive nitinol guidewire with iron oxide maker created from a single image acquisition in ISMRM 23rd Annual Meeting 2015. Toronto, CA. Campbell-Washburn, A. Two-channel visualization of a passive nitinol guidewire with iron oxide maker created from a single image acquisition in ISMRM 23rd Annual Meeting 2015. Toronto, CA.
Metadata
Title
Segmented nitinol guidewires with stiffness-matched connectors for cardiovascular magnetic resonance catheterization: preserved mechanical performance and freedom from heating
Authors
Burcu Basar
Toby Rogers
Kanishka Ratnayaka
Adrienne E. Campbell-Washburn
Jonathan R. Mazal
William H. Schenke
Merdim Sonmez
Anthony Z. Faranesh
Robert J. Lederman
Ozgur Kocaturk
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2015
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-015-0210-5

Other articles of this Issue 1/2015

Journal of Cardiovascular Magnetic Resonance 1/2015 Go to the issue