Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2012

Open Access 01-12-2012 | Research

MRI active guidewire with an embedded temperature probe and providing a distinct tip signal to enhance clinical safety

Authors: Merdim Sonmez, Christina E Saikus, Jamie A Bell, Dominique N Franson, Majdi Halabi, Anthony Z Faranesh, Cengizhan Ozturk, Robert J Lederman, Ozgur Kocaturk

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2012

Login to get access

Abstract

Background

The field of interventional cardiovascular MRI is hampered by the unavailability of active guidewires that are both safe and conspicuous. Heating of conductive guidewires is difficult to predict in vivo and disruptive to measure using external probes. We describe a clinical-grade 0.035” (0.89 mm) guidewire for MRI right and left heart catheterization at 1.5 T that has an internal probe to monitor temperature in real-time, and that has both tip and shaft visibility as well as suitable flexibility.

Methods

The design has an internal fiberoptic temperature probe, as well as a distal solenoid to enhance tip visibility on a loopless antenna. We tested different tip-solenoid configurations to balance heating and signal profiles. We tested mechanical performance in vitro and in vivo in comparison with a popular clinical nitinol guidewire.

Results

The solenoid displaced the point of maximal heating (“hot spot”) from the tip to a more proximal location where it can be measured without impairing guidewire flexion. Probe pullback allowed creation of lengthwise guidewire temperature maps that allowed rapid evaluation of design prototypes. Distal-only solenoid attachment offered the best compromise between tip visibility and heating among design candidates. When fixed at the hot spot, the internal probe consistently reflected the maximum temperature compared external probes.
Real-time temperature monitoring was performed during porcine left heart catheterization. Heating was negligible using normal operating parameters (flip angle, 45°; SAR, 1.01 W/kg); the temperature increased by 4.2°C only during high RF power mode (flip angle, 90°; SAR, 3.96 W/kg) and only when the guidewire was isolated from blood cooling effects by an introducer sheath. The tip flexibility and in vivo performance of the final guidewire design were similar to a popular commercial guidewire.

Conclusions

We integrated a fiberoptic temperature probe inside a 0.035” MRI guidewire. Real-time monitoring helps detect deleterious heating during use, without impairing mechanical guidewire operation, and without impairing MRI visibility. We therefore need not rely on prediction to ensure safe clinical operation. Future implementations may modulate specific absorption rate (SAR) based on temperature feedback.
Appendix
Available only for authorised users
Literature
1.
go back to reference Saikus CE, Lederman RJ: Interventional cardiovascular magnetic resonance imaging: a new opportunity for image-guided interventions. JACC Cardiovasc Imaging. 2009, 2: 1321-1331. 10.1016/j.jcmg.2009.09.002.PubMedCentralCrossRefPubMed Saikus CE, Lederman RJ: Interventional cardiovascular magnetic resonance imaging: a new opportunity for image-guided interventions. JACC Cardiovasc Imaging. 2009, 2: 1321-1331. 10.1016/j.jcmg.2009.09.002.PubMedCentralCrossRefPubMed
2.
go back to reference Yeung CJ, Karmarkar P, McVeigh ER: Minimizing RF heating of conducting wires in MRI. Magn Reson Med. 2007, 58: 1028-1034. 10.1002/mrm.21410.CrossRefPubMed Yeung CJ, Karmarkar P, McVeigh ER: Minimizing RF heating of conducting wires in MRI. Magn Reson Med. 2007, 58: 1028-1034. 10.1002/mrm.21410.CrossRefPubMed
3.
go back to reference Armenean C, Perrin E, Armenean M, Beuf O, Pilleul F, Saint-Jalmes H: RF-induced temperature elevation along metallic wires in clinical magnetic resonance imaging: influence of diameter and length. Magn Reson Med. 2004, 52: 1200-1206. 10.1002/mrm.20246.CrossRefPubMed Armenean C, Perrin E, Armenean M, Beuf O, Pilleul F, Saint-Jalmes H: RF-induced temperature elevation along metallic wires in clinical magnetic resonance imaging: influence of diameter and length. Magn Reson Med. 2004, 52: 1200-1206. 10.1002/mrm.20246.CrossRefPubMed
4.
go back to reference Martin AJ, Baek B, Acevedo-Bolton G, Higashida RT, Comstock J, Saloner DA: MR imaging during endovascular procedures: an evaluation of the potential for catheter heating. Magn Reson Med. 2009, 61: 45-53. 10.1002/mrm.21817.CrossRefPubMed Martin AJ, Baek B, Acevedo-Bolton G, Higashida RT, Comstock J, Saloner DA: MR imaging during endovascular procedures: an evaluation of the potential for catheter heating. Magn Reson Med. 2009, 61: 45-53. 10.1002/mrm.21817.CrossRefPubMed
5.
go back to reference Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J: On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging. 2001, 13: 105-114. 10.1002/1522-2586(200101)13:1<105::AID-JMRI1016>3.0.CO;2-0.CrossRefPubMed Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J: On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging. 2001, 13: 105-114. 10.1002/1522-2586(200101)13:1<105::AID-JMRI1016>3.0.CO;2-0.CrossRefPubMed
6.
go back to reference Akca IB, Ferhanoglu O, Yeung CJ, Guney S, Tasci TO, Atalar E: Measuring local RF heating in MRI: Simulating perfusion in a perfusionless phantom. J Magn Reson Imaging. 2007, 26: 1228-1235. 10.1002/jmri.21161.CrossRefPubMed Akca IB, Ferhanoglu O, Yeung CJ, Guney S, Tasci TO, Atalar E: Measuring local RF heating in MRI: Simulating perfusion in a perfusionless phantom. J Magn Reson Imaging. 2007, 26: 1228-1235. 10.1002/jmri.21161.CrossRefPubMed
7.
go back to reference Mattei E, Triventi M, Calcagnini G, Censi F, Kainz W, Bassen HI, Bartolini P: Temperature and SAR measurement errors in the evaluation of metallic linear structures heating during MRI using fluoroptic probes. Phys Med Biol. 2007, 52: 1633-1646. 10.1088/0031-9155/52/6/006.CrossRefPubMed Mattei E, Triventi M, Calcagnini G, Censi F, Kainz W, Bassen HI, Bartolini P: Temperature and SAR measurement errors in the evaluation of metallic linear structures heating during MRI using fluoroptic probes. Phys Med Biol. 2007, 52: 1633-1646. 10.1088/0031-9155/52/6/006.CrossRefPubMed
8.
go back to reference Liu CY, Farahani K, Lu DS, Duckwiler G, Oppelt A: Safety of MRI-guided endovascular guidewire applications. J Magn Reson Imaging. 2000, 12: 75-78. 10.1002/1522-2586(200007)12:1<75::AID-JMRI8>3.0.CO;2-#.CrossRefPubMed Liu CY, Farahani K, Lu DS, Duckwiler G, Oppelt A: Safety of MRI-guided endovascular guidewire applications. J Magn Reson Imaging. 2000, 12: 75-78. 10.1002/1522-2586(200007)12:1<75::AID-JMRI8>3.0.CO;2-#.CrossRefPubMed
9.
go back to reference Rubin DL, Ratner AV, Young SW: Magnetic susceptibility effects and their application in the development of new ferromagnetic catheters for magnetic resonance imaging. Invest Radiol. 1990, 25: 1325-1332. 10.1097/00004424-199012000-00010.CrossRefPubMed Rubin DL, Ratner AV, Young SW: Magnetic susceptibility effects and their application in the development of new ferromagnetic catheters for magnetic resonance imaging. Invest Radiol. 1990, 25: 1325-1332. 10.1097/00004424-199012000-00010.CrossRefPubMed
10.
go back to reference Omary RA, Unal O, Koscielski DS, Frayne R, Korosec FR, Mistretta CA, Strother CM, Grist TM: Real-time MR imaging-guided passive catheter tracking with use of gadolinium-filled catheters. J Vasc Interv Radiol. 2000, 11: 1079-1085. 10.1016/S1051-0443(07)61343-8.CrossRefPubMed Omary RA, Unal O, Koscielski DS, Frayne R, Korosec FR, Mistretta CA, Strother CM, Grist TM: Real-time MR imaging-guided passive catheter tracking with use of gadolinium-filled catheters. J Vasc Interv Radiol. 2000, 11: 1079-1085. 10.1016/S1051-0443(07)61343-8.CrossRefPubMed
11.
go back to reference Bakker CJ, Hoogeveen RM, Weber J, van Vaals JJ, Viergever MA, Mali WP: Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions. Magn Reson Med. 1996, 36: 816-820. 10.1002/mrm.1910360603.CrossRefPubMed Bakker CJ, Hoogeveen RM, Weber J, van Vaals JJ, Viergever MA, Mali WP: Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions. Magn Reson Med. 1996, 36: 816-820. 10.1002/mrm.1910360603.CrossRefPubMed
12.
go back to reference Ocali O, Atalar E: Intravascular magnetic resonance imaging using a loopless catheter antenna. Magn Reson Med. 1997, 37: 112-118. 10.1002/mrm.1910370116.CrossRefPubMed Ocali O, Atalar E: Intravascular magnetic resonance imaging using a loopless catheter antenna. Magn Reson Med. 1997, 37: 112-118. 10.1002/mrm.1910370116.CrossRefPubMed
13.
go back to reference Qian D, El-Sharkawy AM, Atalar E, Bottomley PA: Interventional MRI: tapering improves the distal sensitivity of the loopless antenna. Magn Reson Med. 2010, 63: 797-802. 10.1002/mrm.22152.PubMedCentralCrossRefPubMed Qian D, El-Sharkawy AM, Atalar E, Bottomley PA: Interventional MRI: tapering improves the distal sensitivity of the loopless antenna. Magn Reson Med. 2010, 63: 797-802. 10.1002/mrm.22152.PubMedCentralCrossRefPubMed
14.
go back to reference Kocaturk O, Kim AH, Saikus CE, Guttman MA, Faranesh AZ, Ozturk C, Lederman RJ: Active Two-Channel 0.035 '' Guidewire for Interventional Cardiovascular MRI. J Magn Reson Imaging. 2009, 30: 461-465. 10.1002/jmri.21844.PubMedCentralCrossRefPubMed Kocaturk O, Kim AH, Saikus CE, Guttman MA, Faranesh AZ, Ozturk C, Lederman RJ: Active Two-Channel 0.035 '' Guidewire for Interventional Cardiovascular MRI. J Magn Reson Imaging. 2009, 30: 461-465. 10.1002/jmri.21844.PubMedCentralCrossRefPubMed
15.
go back to reference Karmarkar PV, Kraitchman DL, Izbudak I, Hofmann LV, Amado LC, Fritzges D, Young R, Pittenger M, Bulte JWM, Atalar E: MR-trackable intramyocardial injection catheter. Magnet Reson Med. 2004, 51: 1163-1172. 10.1002/mrm.20086.CrossRef Karmarkar PV, Kraitchman DL, Izbudak I, Hofmann LV, Amado LC, Fritzges D, Young R, Pittenger M, Bulte JWM, Atalar E: MR-trackable intramyocardial injection catheter. Magnet Reson Med. 2004, 51: 1163-1172. 10.1002/mrm.20086.CrossRef
16.
go back to reference Konings MK, Bartels LW, Smits HF, Bakker CJ: Heating around intravascular guidewires by resonating RF waves. J Magn Reson Imaging. 2000, 12: 79-85. 10.1002/1522-2586(200007)12:1<79::AID-JMRI9>3.0.CO;2-T.CrossRefPubMed Konings MK, Bartels LW, Smits HF, Bakker CJ: Heating around intravascular guidewires by resonating RF waves. J Magn Reson Imaging. 2000, 12: 79-85. 10.1002/1522-2586(200007)12:1<79::AID-JMRI9>3.0.CO;2-T.CrossRefPubMed
17.
go back to reference Susil RC, Yeung CJ, Atalar E: Intravascular extended sensitivity (IVES) MRI antennas. Magn Reson Med. 2003, 50: 383-390. 10.1002/mrm.10506.CrossRefPubMed Susil RC, Yeung CJ, Atalar E: Intravascular extended sensitivity (IVES) MRI antennas. Magn Reson Med. 2003, 50: 383-390. 10.1002/mrm.10506.CrossRefPubMed
18.
go back to reference Nordbeck P, Fidler F, Weiss I, Warmuth M, Friedrich MT, Ehses P, Geistert W, Ritter O, Jakob PM, Ladd ME: Spatial distribution of RF-induced E-fields and implant heating in MRI. Magn Reson Med. 2008, 60: 312-319. 10.1002/mrm.21475.CrossRefPubMed Nordbeck P, Fidler F, Weiss I, Warmuth M, Friedrich MT, Ehses P, Geistert W, Ritter O, Jakob PM, Ladd ME: Spatial distribution of RF-induced E-fields and implant heating in MRI. Magn Reson Med. 2008, 60: 312-319. 10.1002/mrm.21475.CrossRefPubMed
19.
go back to reference Weiss S, David B, Lips O, Wuelbern J, Krueger S: Comparison of RF Heating in Cables Equipped with Different Types of Current Limitations [e-poster]. 7-13 May 2011, , Montreal, CA Weiss S, David B, Lips O, Wuelbern J, Krueger S: Comparison of RF Heating in Cables Equipped with Different Types of Current Limitations [e-poster]. 7-13 May 2011, , Montreal, CA
Metadata
Title
MRI active guidewire with an embedded temperature probe and providing a distinct tip signal to enhance clinical safety
Authors
Merdim Sonmez
Christina E Saikus
Jamie A Bell
Dominique N Franson
Majdi Halabi
Anthony Z Faranesh
Cengizhan Ozturk
Robert J Lederman
Ozgur Kocaturk
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2012
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/1532-429X-14-38

Other articles of this Issue 1/2012

Journal of Cardiovascular Magnetic Resonance 1/2012 Go to the issue