Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Osteoarthrosis | Research

Paxlovid accelerates cartilage degeneration and senescence through activating endoplasmic reticulum stress and interfering redox homeostasis

Authors: Keyu Kong, Yongyun Chang, Hua Qiao, Chen Zhao, Xuzhuo Chen, Kewei Rong, Pu Zhang, Minghao Jin, Jingwei Zhang, Huiwu Li, Zanjing Zhai

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Background

The COVID-19 pandemic has become a huge threat to human health, infecting millions of people worldwide and causing enormous economic losses. Many novel small molecule drugs have been developed to treat patients with COVID-19, including Paxlovid, which block the synthesis of virus-related proteins and replication of viral RNA, respectively. Despite satisfactory clinical trial results, attention is now being paid to the long-term side effects of these antiviral drugs on the musculoskeletal system. To date, no study has reported the possible side effects, such as osteoarthritis, of Paxlovid. This study explored the effects of antiviral drug, Paxlovid, on chondrocyte proliferation and differentiation.

Methods

In this study, both in vitro and in vivo studies were performed to determine the effect of Paxlovid on chondrocyte degeneration and senescence. Furthermore, we explored the possible mechanism behind Paxlovid-induced acceleration of cartilage degeneration using transcriptome sequencing and related inhibitors were adopted to verify the downstream pathways behind such phenomenon.

Results

Paxlovid significantly inhibited chondrocyte extracellular matrix protein secretion. Additionally, Paxlovid significantly induced endoplasmic reticulum stress, oxidative stress, and downstream ferroptosis, thus accelerating the senescence and degeneration of chondrocytes. In vivo experiments showed that intraperitoneal injection of Paxlovid for 1 week exacerbated cartilage abrasion and accelerated the development of osteoarthritis in a mouse model.

Conclusions

Paxlovid accelerated cartilage degeneration and osteoarthritis development, potentially by inducing endoplasmic reticulum stress and oxidative stress. Long-term follow-up is needed with special attention to the occurrence and development of osteoarthritis in patients treated with Paxlovid.
Appendix
Available only for authorised users
Literature
2.
go back to reference He X, Hong W, Pan X, Lu G, Wei X. SARS-CoV-2 Omicron variant: characteristics and prevention. MedComm. 2020;2(4):838–45.CrossRef He X, Hong W, Pan X, Lu G, Wei X. SARS-CoV-2 Omicron variant: characteristics and prevention. MedComm. 2020;2(4):838–45.CrossRef
3.
go back to reference Kannan S, Shaik Syed Ali P, Sheeza A. Omicron (B.1.1.529)–variant of concern–molecular profile and epidemiology: a mini review. Eur Rev Med Pharmacol Sci. 2021;25(24):8019–22.PubMed Kannan S, Shaik Syed Ali P, Sheeza A. Omicron (B.1.1.529)–variant of concern–molecular profile and epidemiology: a mini review. Eur Rev Med Pharmacol Sci. 2021;25(24):8019–22.PubMed
4.
go back to reference Nyberg T, Ferguson NM, Nash SG, Webster HH, Flaxman S, Andrews N, et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617 2) variants in England: a cohort study. Lancet. 2022;399(10332):1303–12.CrossRefPubMedPubMedCentral Nyberg T, Ferguson NM, Nash SG, Webster HH, Flaxman S, Andrews N, et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617 2) variants in England: a cohort study. Lancet. 2022;399(10332):1303–12.CrossRefPubMedPubMedCentral
5.
go back to reference Joshi A, Kaur M, Kaur R, Grover A, Nash D, El-Mohandes A. Predictors of COVID-19 vaccine acceptance, intention, and hesitancy: a scoping review. Front Public Health. 2021;9: 698111.CrossRefPubMedPubMedCentral Joshi A, Kaur M, Kaur R, Grover A, Nash D, El-Mohandes A. Predictors of COVID-19 vaccine acceptance, intention, and hesitancy: a scoping review. Front Public Health. 2021;9: 698111.CrossRefPubMedPubMedCentral
6.
go back to reference Mitjà O, Corbacho-Monné M, Ubals M, Alemany A, Suñer C, Tebé C, et al. A cluster-randomized trial of hydroxychloroquine for prevention of covid-19. N Engl J Med. 2021;384(5):417–27.CrossRefPubMed Mitjà O, Corbacho-Monné M, Ubals M, Alemany A, Suñer C, Tebé C, et al. A cluster-randomized trial of hydroxychloroquine for prevention of covid-19. N Engl J Med. 2021;384(5):417–27.CrossRefPubMed
7.
go back to reference Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of Lopinavir-Ritonavir in adults hospitalized with severe covid-19. N Engl J Med. 2020;382(19):1787–99.CrossRefPubMed Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of Lopinavir-Ritonavir in adults hospitalized with severe covid-19. N Engl J Med. 2020;382(19):1787–99.CrossRefPubMed
8.
go back to reference Rezagholizadeh A, Khiali S, Sarbakhsh P, Entezari-Maleki T. Remdesivir for treatment of COVID-19; an updated systematic review and meta-analysis. Eur J Pharmacol. 2021;897: 173926.CrossRefPubMedPubMedCentral Rezagholizadeh A, Khiali S, Sarbakhsh P, Entezari-Maleki T. Remdesivir for treatment of COVID-19; an updated systematic review and meta-analysis. Eur J Pharmacol. 2021;897: 173926.CrossRefPubMedPubMedCentral
10.
go back to reference Jayk Bernal A, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, Delos Reyes V, et al. Molnupiravir for oral treatment of covid-19 in nonhospitalized patients. N Engl J Med. 2022;386(6):509–20.CrossRefPubMed Jayk Bernal A, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, Delos Reyes V, et al. Molnupiravir for oral treatment of covid-19 in nonhospitalized patients. N Engl J Med. 2022;386(6):509–20.CrossRefPubMed
11.
go back to reference Mahase E. Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ. 2021;375: n2713.CrossRefPubMed Mahase E. Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ. 2021;375: n2713.CrossRefPubMed
12.
go back to reference Wang Z, Yang L. In the age of omicron variant: paxlovid raises new hopes of COVID-19 recovery. J Med Virol. 2022;94(5):1766–7.CrossRefPubMed Wang Z, Yang L. In the age of omicron variant: paxlovid raises new hopes of COVID-19 recovery. J Med Virol. 2022;94(5):1766–7.CrossRefPubMed
13.
go back to reference Drożdżal S, Rosik J, Lechowicz K, Machaj F, Szostak B, Przybyciński J, et al. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist Updat. 2021;59: 100794.CrossRefPubMedPubMedCentral Drożdżal S, Rosik J, Lechowicz K, Machaj F, Szostak B, Przybyciński J, et al. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist Updat. 2021;59: 100794.CrossRefPubMedPubMedCentral
14.
go back to reference FDA. Fact Sheet For Healthcare Providers: Emergency Use Authorization For Paxlovid. FDA. 2022. www.fda.gov. Accessed 30 Dec 2021. FDA. Fact Sheet For Healthcare Providers: Emergency Use Authorization For Paxlovid. FDA. 2022. www.​fda.​gov. Accessed 30 Dec 2021.
15.
16.
go back to reference Fishbane S, Hirsch JS, Nair V. Special considerations for paxlovid treatment among transplant recipients With SARS-CoV-2 infection. Am J Kidney Dis. 2022;79(4):480–2.CrossRefPubMedPubMedCentral Fishbane S, Hirsch JS, Nair V. Special considerations for paxlovid treatment among transplant recipients With SARS-CoV-2 infection. Am J Kidney Dis. 2022;79(4):480–2.CrossRefPubMedPubMedCentral
17.
go back to reference Gao J, Mei H, Sun J, Li H, Huang Y, Tang Y, et al. Neuropilin-1-mediated SARS-CoV-2 infection in bone marrow-derived macrophages inhibits osteoclast differentiation. Adv Biol (Weinh). 2022;6(5): e2200007.CrossRefPubMed Gao J, Mei H, Sun J, Li H, Huang Y, Tang Y, et al. Neuropilin-1-mediated SARS-CoV-2 infection in bone marrow-derived macrophages inhibits osteoclast differentiation. Adv Biol (Weinh). 2022;6(5): e2200007.CrossRefPubMed
18.
go back to reference Qiao W, Lau HE, Xie H, Poon VK, Chan CC, Chu H, et al. SARS-CoV-2 infection induces inflammatory bone loss in golden Syrian hamsters. Nat Commun. 2022;13(1):2539.CrossRefPubMedPubMedCentral Qiao W, Lau HE, Xie H, Poon VK, Chan CC, Chu H, et al. SARS-CoV-2 infection induces inflammatory bone loss in golden Syrian hamsters. Nat Commun. 2022;13(1):2539.CrossRefPubMedPubMedCentral
20.
go back to reference Xia R, Zhai Z, Zhang J, Yu D, Wang L, Mao Y, et al. Verification and clinical translation of a newly designed “Skywalker” robot for total knee arthroplasty: a prospective clinical study. J Orthop Translat. 2021;29:143–51.CrossRefPubMedPubMedCentral Xia R, Zhai Z, Zhang J, Yu D, Wang L, Mao Y, et al. Verification and clinical translation of a newly designed “Skywalker” robot for total knee arthroplasty: a prospective clinical study. J Orthop Translat. 2021;29:143–51.CrossRefPubMedPubMedCentral
21.
go back to reference Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarthritis. Lancet. 2015;386(9991):376–87.CrossRefPubMed Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarthritis. Lancet. 2015;386(9991):376–87.CrossRefPubMed
22.
go back to reference Zhen G, Guo Q, Li Y, Wu C, Zhu S, Wang R, et al. Mechanical stress determines the configuration of TGFβ activation in articular cartilage. Nat Commun. 2021;12(1):1706.CrossRefPubMedPubMedCentral Zhen G, Guo Q, Li Y, Wu C, Zhu S, Wang R, et al. Mechanical stress determines the configuration of TGFβ activation in articular cartilage. Nat Commun. 2021;12(1):1706.CrossRefPubMedPubMedCentral
23.
go back to reference Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, et al. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov. 2017;16(10):718–35.CrossRefPubMedPubMedCentral Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, et al. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov. 2017;16(10):718–35.CrossRefPubMedPubMedCentral
24.
go back to reference Rellmann Y, Eidhof E, Dreier R. Review: ER stress-induced cell death in osteoarthritic cartilage. Cell Signal. 2021;78: 109880.CrossRefPubMed Rellmann Y, Eidhof E, Dreier R. Review: ER stress-induced cell death in osteoarthritic cartilage. Cell Signal. 2021;78: 109880.CrossRefPubMed
27.
go back to reference Yang J, Hu S, Bian Y, Yao J, Wang D, Liu X, et al. Targeting cell death: pyroptosis, ferroptosis, apoptosis and necroptosis in osteoarthritis. Front Cell Dev Biol. 2021;9: 789948.CrossRefPubMed Yang J, Hu S, Bian Y, Yao J, Wang D, Liu X, et al. Targeting cell death: pyroptosis, ferroptosis, apoptosis and necroptosis in osteoarthritis. Front Cell Dev Biol. 2021;9: 789948.CrossRefPubMed
28.
go back to reference Miao Y, Chen Y, Xue F, Liu K, Zhu B, Gao J, et al. Contribution of ferroptosis and GPX4’s dual functions to osteoarthritis progression. EBioMedicine. 2022;76: 103847.CrossRefPubMedPubMedCentral Miao Y, Chen Y, Xue F, Liu K, Zhu B, Gao J, et al. Contribution of ferroptosis and GPX4’s dual functions to osteoarthritis progression. EBioMedicine. 2022;76: 103847.CrossRefPubMedPubMedCentral
29.
go back to reference Guo Z, Lin J, Sun K, Guo J, Yao X, Wang G, et al. Deferoxamine alleviates osteoarthritis by inhibiting chondrocyte ferroptosis and activating the Nrf2 pathway. Front Pharmacol. 2022;13: 791376.CrossRefPubMedPubMedCentral Guo Z, Lin J, Sun K, Guo J, Yao X, Wang G, et al. Deferoxamine alleviates osteoarthritis by inhibiting chondrocyte ferroptosis and activating the Nrf2 pathway. Front Pharmacol. 2022;13: 791376.CrossRefPubMedPubMedCentral
30.
go back to reference Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 2012;22(1):66–79.CrossRefPubMed Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 2012;22(1):66–79.CrossRefPubMed
31.
go back to reference Mukhopadhyay S, Goswami D, Adiseshaiah PP, Burgan W, Yi M, Guerin TM, et al. Undermining glutaminolysis bolsters chemotherapy while NRF2 promotes chemoresistance in KRAS-driven pancreatic cancers. Cancer Res. 2020;80(8):1630–43.CrossRefPubMedPubMedCentral Mukhopadhyay S, Goswami D, Adiseshaiah PP, Burgan W, Yi M, Guerin TM, et al. Undermining glutaminolysis bolsters chemotherapy while NRF2 promotes chemoresistance in KRAS-driven pancreatic cancers. Cancer Res. 2020;80(8):1630–43.CrossRefPubMedPubMedCentral
32.
go back to reference Zhang Z, Zhang L, Zhou L, Lei Y, Zhang Y, Huang C. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol. 2019;25: 101047.CrossRefPubMed Zhang Z, Zhang L, Zhou L, Lei Y, Zhang Y, Huang C. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol. 2019;25: 101047.CrossRefPubMed
33.
go back to reference Sophocleous A, Huesa C. Osteoarthritis Mouse Model of Destabilization of the Medial Meniscus. Methods Mol Biol. 2019;1914:281–93.CrossRefPubMed Sophocleous A, Huesa C. Osteoarthritis Mouse Model of Destabilization of the Medial Meniscus. Methods Mol Biol. 2019;1914:281–93.CrossRefPubMed
34.
go back to reference Liu Z, Xu W, Xia S, Gu C, Wang X, Wang Q, et al. RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response. Signal Transduct Target Ther. 2020;5(1):282.CrossRefPubMedPubMedCentral Liu Z, Xu W, Xia S, Gu C, Wang X, Wang Q, et al. RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response. Signal Transduct Target Ther. 2020;5(1):282.CrossRefPubMedPubMedCentral
35.
go back to reference Cao Y, Wang J, Jian F, Xiao T, Song W, Yisimayi A, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature. 2022;602(7898):657–63.CrossRefPubMed Cao Y, Wang J, Jian F, Xiao T, Song W, Yisimayi A, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature. 2022;602(7898):657–63.CrossRefPubMed
36.
go back to reference Dam TT, Harrison S, Fink HA, Ramsdell J, Barrett-Connor E. Bone mineral density and fractures in older men with chronic obstructive pulmonary disease or asthma. Osteoporos Int. 2010;21(8):1341–9.CrossRefPubMed Dam TT, Harrison S, Fink HA, Ramsdell J, Barrett-Connor E. Bone mineral density and fractures in older men with chronic obstructive pulmonary disease or asthma. Osteoporos Int. 2010;21(8):1341–9.CrossRefPubMed
37.
go back to reference Shead EF, Haworth CS, Barker H, Bilton D, Compston JE. Osteoclast function, bone turnover and inflammatory cytokines during infective exacerbations of cystic fibrosis. J Cyst Fibros. 2010;9(2):93–8.CrossRefPubMed Shead EF, Haworth CS, Barker H, Bilton D, Compston JE. Osteoclast function, bone turnover and inflammatory cytokines during infective exacerbations of cystic fibrosis. J Cyst Fibros. 2010;9(2):93–8.CrossRefPubMed
38.
go back to reference Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, et al. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science. 2021;374(6575):1586–93.CrossRefPubMed Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, et al. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science. 2021;374(6575):1586–93.CrossRefPubMed
39.
go back to reference Kansanen E, Kivelä AM, Levonen AL. Regulation of Nrf2-dependent gene expression by 15-deoxy-Delta 12,14-prostaglandin J2. Free Radic Biol Med. 2009;47(9):1310–7.CrossRefPubMed Kansanen E, Kivelä AM, Levonen AL. Regulation of Nrf2-dependent gene expression by 15-deoxy-Delta 12,14-prostaglandin J2. Free Radic Biol Med. 2009;47(9):1310–7.CrossRefPubMed
40.
Metadata
Title
Paxlovid accelerates cartilage degeneration and senescence through activating endoplasmic reticulum stress and interfering redox homeostasis
Authors
Keyu Kong
Yongyun Chang
Hua Qiao
Chen Zhao
Xuzhuo Chen
Kewei Rong
Pu Zhang
Minghao Jin
Jingwei Zhang
Huiwu Li
Zanjing Zhai
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03770-4

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.