Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Trisomy 18 | Research

Integrative analyses of maternal plasma cell-free DNA nucleosome footprint differences reveal chromosomal aneuploidy fetuses gene expression profile

Authors: Min Zhang, Kun Li, Shoufang Qu, Zhiwei Guo, Yuanli Wang, Xu Yang, Junhua Zhou, Guojun Ouyang, Rongtao Weng, Fenxia Li, Yingsong Wu, Xuexi Yang

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Background

Chromosomal aneuploidy is the most common birth defect. However, the developmental mechanism and gene expression profile of fetuses with chromosomal aneuploidy are relatively unknown, and the maternal immune changes induced by fetal aneuploidy remain unclear. The inability to obtain the placenta multiple times in real-time is a bottleneck in research on aneuploid pregnancies. Plasma cell-free DNA (cfDNA) carries the gene expression profile information of its source cells and may be used to evaluate the development of fetuses with aneuploidy and the immune changes induced in the mother owing to fetal aneuploidy.

Methods

Here, we carried out whole-genome sequencing of the plasma cfDNA of 101 pregnant women carrying a fetus with trisomy (trisomy 21, n = 42; trisomy 18, n = 28; trisomy 13, n = 31) based on non-invasive prenatal testing (NIPT) screening and 140 normal pregnant women to identify differential genes according to the cfDNA nucleosome profile in the region around the transcription start sites (TSSs).

Results

The plasma cfDNA promoter profiles were found to differ between aneuploid and euploid pregnancies. A total of 158 genes with significant differences were identified, of which 43 genes were upregulated and 98 genes were downregulated. Functional enrichment and signaling pathway analysis were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases found that these signal pathways were mainly related to the coordination of developmental signals during embryonic development, the control of cell growth and development, regulation of neuronal survival, and immune regulation, such as the MAPK, Hippo, TGF-β, and Rap1 signaling pathways, which play important roles in the development of embryonic tissues and organs. Furthermore, based on the results of differential gene analysis, a total of 14 immune-related genes with significant differences from the ImmPort database were collected and analyzed. These significantly different immune genes were mainly associated with the maintenance of embryonic homeostasis and normal development.

Conclusions

These results suggest that the distribution characteristics of cfDNA nucleosomes in maternal plasma can be used to reflect the status of fetal development and changes of the immune responses in trisomic pregnancies. Overall, our findings may provide research ideas for non-invasive detection of the physiological and pathological states of other diseases.
Appendix
Available only for authorised users
Literature
2.
go back to reference Skrzypek H, Hui L. Noninvasive prenatal testing for fetal aneuploidy and single gene disorders. Best Pract Res Clin Obstet Gynaecol. 2017;42:26–38.PubMedCrossRef Skrzypek H, Hui L. Noninvasive prenatal testing for fetal aneuploidy and single gene disorders. Best Pract Res Clin Obstet Gynaecol. 2017;42:26–38.PubMedCrossRef
3.
go back to reference Carbone L, Cariati F, Sarno L, Conforti A, Bagnulo F, Strina I, Pastore L, Maruotti GM, Alviggi C. Non-invasive prenatal testing: current perspectives and future challenges. Genes (Basel). 2020;12(1):15.CrossRef Carbone L, Cariati F, Sarno L, Conforti A, Bagnulo F, Strina I, Pastore L, Maruotti GM, Alviggi C. Non-invasive prenatal testing: current perspectives and future challenges. Genes (Basel). 2020;12(1):15.CrossRef
4.
go back to reference Rozovski U, Jonish-Grossman A, Bar-Shira A, Ochshorn Y, Goldstein M, Yaron Y. Genome-wide expression analysis of cultured trophoblast with trisomy 21 karyotype. Hum Reprod. 2007;22:2538–45.PubMedCrossRef Rozovski U, Jonish-Grossman A, Bar-Shira A, Ochshorn Y, Goldstein M, Yaron Y. Genome-wide expression analysis of cultured trophoblast with trisomy 21 karyotype. Hum Reprod. 2007;22:2538–45.PubMedCrossRef
5.
go back to reference Lim JH, Kim SY, Han JY, Kim MY, Park SY, Ryu HM. Comprehensive investigation of DNA methylation and gene expression in trisomy 21 placenta. Placenta. 2016;42:17–24.PubMedCrossRef Lim JH, Kim SY, Han JY, Kim MY, Park SY, Ryu HM. Comprehensive investigation of DNA methylation and gene expression in trisomy 21 placenta. Placenta. 2016;42:17–24.PubMedCrossRef
6.
go back to reference Volk M, Maver A, Hodžić A, Lovrečić L, Peterlin B. Transcriptome profiling uncovers potential common mechanisms in fetal trisomies 18 and 21. OMICS. 2017;21:565–70.PubMedPubMedCentralCrossRef Volk M, Maver A, Hodžić A, Lovrečić L, Peterlin B. Transcriptome profiling uncovers potential common mechanisms in fetal trisomies 18 and 21. OMICS. 2017;21:565–70.PubMedPubMedCentralCrossRef
7.
go back to reference Zedníková I, Chylíková B, Šeda O, Korabečná M, Pazourková E, Břešťák M, Krkavcová M, Calda P, Hořínek A. Genome-wide miRNA profiling in plasma of pregnant women with down syndrome fetuses. Mol Biol Rep. 2020;47:4531–40.PubMedPubMedCentralCrossRef Zedníková I, Chylíková B, Šeda O, Korabečná M, Pazourková E, Břešťák M, Krkavcová M, Calda P, Hořínek A. Genome-wide miRNA profiling in plasma of pregnant women with down syndrome fetuses. Mol Biol Rep. 2020;47:4531–40.PubMedPubMedCentralCrossRef
8.
go back to reference Tabor A, Alfirevic Z. Update on procedure-related risks for prenatal diagnosis techniques. Fetal Diagn Ther. 2010;27:1–7.PubMedCrossRef Tabor A, Alfirevic Z. Update on procedure-related risks for prenatal diagnosis techniques. Fetal Diagn Ther. 2010;27:1–7.PubMedCrossRef
10.
go back to reference Lui YY, Chik KW, Chiu RW, Ho CY, Lam CW, Lo YM. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin Chem. 2002;48:421–7.PubMedCrossRef Lui YY, Chik KW, Chiu RW, Ho CY, Lam CW, Lo YM. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin Chem. 2002;48:421–7.PubMedCrossRef
11.
go back to reference Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164:57–68.PubMedPubMedCentralCrossRef Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164:57–68.PubMedPubMedCentralCrossRef
12.
go back to reference Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, Diaz LA Jr, Goodman SN, David KA, Juhl H, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci. 2005;102:16368–73.PubMedPubMedCentralCrossRef Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, Diaz LA Jr, Goodman SN, David KA, Juhl H, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci. 2005;102:16368–73.PubMedPubMedCentralCrossRef
13.
go back to reference Lo YM, Chan KC, Sun H, Chen EZ, Jiang P, Lun FM, Zheng YW, Leung TY, Lau TK, Cantor CR, Chiu RW. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med. 2010;2(61):ra91.CrossRef Lo YM, Chan KC, Sun H, Chen EZ, Jiang P, Lun FM, Zheng YW, Leung TY, Lau TK, Cantor CR, Chiu RW. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med. 2010;2(61):ra91.CrossRef
15.
go back to reference Sun K, Jiang P, Cheng SH, Cheng THT, Wong J, Wong VWS, Ng SSM, Ma BBY, Leung TY, Chan SL, et al. Orientation-aware plasma cell-free DNA fragmentation analysis in open chromatin regions informs tissue of origin. Genome Res. 2019;29:418–27.PubMedPubMedCentralCrossRef Sun K, Jiang P, Cheng SH, Cheng THT, Wong J, Wong VWS, Ng SSM, Ma BBY, Leung TY, Chan SL, et al. Orientation-aware plasma cell-free DNA fragmentation analysis in open chromatin regions informs tissue of origin. Genome Res. 2019;29:418–27.PubMedPubMedCentralCrossRef
16.
go back to reference Weber CM, Ramachandran S, Henikoff S. Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. Mol Cell. 2014;53:819–30.PubMedCrossRef Weber CM, Ramachandran S, Henikoff S. Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. Mol Cell. 2014;53:819–30.PubMedCrossRef
17.
go back to reference Ulz P, Thallinger GG, Auer M, Graf R, Kashofer K, Jahn SW, Abete L, Pristauz G, Petru E, Geigl JB, et al. Inferring expressed genes by whole-genome sequencing of plasma DNA. Nat Genet. 2016;48:1273–8.PubMedCrossRef Ulz P, Thallinger GG, Auer M, Graf R, Kashofer K, Jahn SW, Abete L, Pristauz G, Petru E, Geigl JB, et al. Inferring expressed genes by whole-genome sequencing of plasma DNA. Nat Genet. 2016;48:1273–8.PubMedCrossRef
18.
go back to reference Lo YM, Tein MS, Lau TK, Haines CJ, Leung TN, Poon PM, Wainscoat JS, Johnson PJ, Chang AM, Hjelm NM. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998;62:768–75.PubMedPubMedCentralCrossRef Lo YM, Tein MS, Lau TK, Haines CJ, Leung TN, Poon PM, Wainscoat JS, Johnson PJ, Chang AM, Hjelm NM. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998;62:768–75.PubMedPubMedCentralCrossRef
19.
go back to reference Lun FM, Chiu RW, Chan KC, Leung TY, Lau TK, Lo YM. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem. 2008;54:1664–72.PubMedCrossRef Lun FM, Chiu RW, Chan KC, Leung TY, Lau TK, Lo YM. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem. 2008;54:1664–72.PubMedCrossRef
20.
go back to reference Aplin JD, Myers JE, Timms K, Westwood M. Tracking placental development in health and disease. Nat Rev Endocrinol. 2020;16:479–94.PubMedCrossRef Aplin JD, Myers JE, Timms K, Westwood M. Tracking placental development in health and disease. Nat Rev Endocrinol. 2020;16:479–94.PubMedCrossRef
21.
go back to reference Eggenhuizen GM, Go A, Koster MPH, Baart EB, Galjaard RJ. Confined placental mosaicism and the association with pregnancy outcome and fetal growth: a review of the literature. Hum Reprod Update. 2021;27:885–903.PubMedPubMedCentralCrossRef Eggenhuizen GM, Go A, Koster MPH, Baart EB, Galjaard RJ. Confined placental mosaicism and the association with pregnancy outcome and fetal growth: a review of the literature. Hum Reprod Update. 2021;27:885–903.PubMedPubMedCentralCrossRef
22.
go back to reference Han BW, Yang F, Guo ZW, Ouyang GJ, Liang ZK, Weng RT, Yang X, Huang LP, Wang K, Li FX, et al. Noninvasive inferring expressed genes and in vivo monitoring of the physiology and pathology of pregnancy using cell-free DNA. Am J Obstet Gynecol. 2021;224:300.e301-9.CrossRef Han BW, Yang F, Guo ZW, Ouyang GJ, Liang ZK, Weng RT, Yang X, Huang LP, Wang K, Li FX, et al. Noninvasive inferring expressed genes and in vivo monitoring of the physiology and pathology of pregnancy using cell-free DNA. Am J Obstet Gynecol. 2021;224:300.e301-9.CrossRef
23.
go back to reference Guo Z, Yang F, Zhang J, Zhang Z, Li K, Tian Q, Hou H, Xu C, Lu Q, Ren Z, et al. Whole-genome promoter profiling of plasma DNA exhibits diagnostic value for placenta-origin pregnancy complications. Adv Sci (Weinh). 2020;7:1901819.CrossRef Guo Z, Yang F, Zhang J, Zhang Z, Li K, Tian Q, Hou H, Xu C, Lu Q, Ren Z, et al. Whole-genome promoter profiling of plasma DNA exhibits diagnostic value for placenta-origin pregnancy complications. Adv Sci (Weinh). 2020;7:1901819.CrossRef
24.
go back to reference Xu C, Guo Z, Zhang J, Lu Q, Tian Q, Liu S, Li K, Wang K, Tao Z, Li C, et al. Non-invasive prediction of fetal growth restriction by whole-genome promoter profiling of maternal plasma DNA: a nested case-control study. BJOG. 2021;128:458–66.PubMedCrossRef Xu C, Guo Z, Zhang J, Lu Q, Tian Q, Liu S, Li K, Wang K, Tao Z, Li C, et al. Non-invasive prediction of fetal growth restriction by whole-genome promoter profiling of maternal plasma DNA: a nested case-control study. BJOG. 2021;128:458–66.PubMedCrossRef
25.
go back to reference Yang X, Cai GX, Han BW, Guo ZW, Wu YS, Lyu X, Huang LM, Zhang YB, Li X, Ye GL, Yang XX. Association between the nucleosome footprint of plasma DNA and neoadjuvant chemotherapy response for breast cancer. NPJ Breast Cancer. 2021;7:35.PubMedPubMedCentralCrossRef Yang X, Cai GX, Han BW, Guo ZW, Wu YS, Lyu X, Huang LM, Zhang YB, Li X, Ye GL, Yang XX. Association between the nucleosome footprint of plasma DNA and neoadjuvant chemotherapy response for breast cancer. NPJ Breast Cancer. 2021;7:35.PubMedPubMedCentralCrossRef
26.
go back to reference Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. Genome project data processing S: the sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMedPubMedCentralCrossRef Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. Genome project data processing S: the sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMedPubMedCentralCrossRef
27.
go back to reference Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F, Manke T. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160-5.PubMedPubMedCentralCrossRef Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F, Manke T. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160-5.PubMedPubMedCentralCrossRef
29.
go back to reference O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733-45.PubMedCrossRef O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733-45.PubMedCrossRef
30.
go back to reference Gómez-Rubio V. ggplot2—elegant graphics for data analysis. J Stat Soft. 2017;77:1–3.CrossRef Gómez-Rubio V. ggplot2—elegant graphics for data analysis. J Stat Soft. 2017;77:1–3.CrossRef
31.
go back to reference Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. 2021;2:100141.PubMedPubMedCentral Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. 2021;2:100141.PubMedPubMedCentral
32.
go back to reference Binns D, Dimmer E, Huntley R, Barrell D, O’Donovan C, Apweiler R. QuickGO: a web-based tool for Gene ontology searching. Bioinformatics. 2009;25:3045–6.PubMedPubMedCentralCrossRef Binns D, Dimmer E, Huntley R, Barrell D, O’Donovan C, Apweiler R. QuickGO: a web-based tool for Gene ontology searching. Bioinformatics. 2009;25:3045–6.PubMedPubMedCentralCrossRef
34.
go back to reference Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, Hu Z, Zalocusky KA, Shankar RD, Shen-Orr SS, et al. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci Data. 2018;5:180015.PubMedPubMedCentralCrossRef Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, Hu Z, Zalocusky KA, Shankar RD, Shen-Orr SS, et al. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci Data. 2018;5:180015.PubMedPubMedCentralCrossRef
35.
go back to reference Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Nativ N, Bahir I, Doniger T, Krug H, et al. GeneCards version 3: the human gene integrator. Database (Oxford). 2010;2010:baq020.CrossRef Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Nativ N, Bahir I, Doniger T, Krug H, et al. GeneCards version 3: the human gene integrator. Database (Oxford). 2010;2010:baq020.CrossRef
38.
go back to reference Kepple JW, Fishler KP, Peeples ES. Surveillance guidelines for children with trisomy 13. Am J Med Genet A. 2021;185:1631–7.PubMedCrossRef Kepple JW, Fishler KP, Peeples ES. Surveillance guidelines for children with trisomy 13. Am J Med Genet A. 2021;185:1631–7.PubMedCrossRef
39.
go back to reference Kleefstra T, Brunner HG, Amiel J, Oudakker AR, Nillesen WM, Magee A, Geneviève D, Cormier-Daire V, van Esch H, Fryns JP, et al. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet. 2006;79:370–7.PubMedPubMedCentralCrossRef Kleefstra T, Brunner HG, Amiel J, Oudakker AR, Nillesen WM, Magee A, Geneviève D, Cormier-Daire V, van Esch H, Fryns JP, et al. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet. 2006;79:370–7.PubMedPubMedCentralCrossRef
40.
go back to reference Grozeva D, Carss K, Spasic-Boskovic O, Parker MJ, Archer H, Firth HV, Park SM, Canham N, Holder SE, Wilson M, et al. De novo loss-of-function mutations in SETD5, encoding a methyltransferase in a 3p25 microdeletion syndrome critical region, cause intellectual disability. Am J Hum Genet. 2014;94:618–24.PubMedPubMedCentralCrossRef Grozeva D, Carss K, Spasic-Boskovic O, Parker MJ, Archer H, Firth HV, Park SM, Canham N, Holder SE, Wilson M, et al. De novo loss-of-function mutations in SETD5, encoding a methyltransferase in a 3p25 microdeletion syndrome critical region, cause intellectual disability. Am J Hum Genet. 2014;94:618–24.PubMedPubMedCentralCrossRef
41.
go back to reference den Hoed J, de Boer E, Voisin N, Dingemans AJM, Guex N, Wiel L, Nellaker C, Amudhavalli SM, Banka S, Bena FS, et al. Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction. Am J Hum Genet. 2021;108:346–56.CrossRef den Hoed J, de Boer E, Voisin N, Dingemans AJM, Guex N, Wiel L, Nellaker C, Amudhavalli SM, Banka S, Bena FS, et al. Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction. Am J Hum Genet. 2021;108:346–56.CrossRef
42.
go back to reference Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.PubMedCrossRef Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.PubMedCrossRef
43.
go back to reference Yin M, Zhang L. Hippo signaling: a hub of growth control, tumor suppression and pluripotency maintenance. J Genet Genomics. 2011;38:471–81.PubMedCrossRef Yin M, Zhang L. Hippo signaling: a hub of growth control, tumor suppression and pluripotency maintenance. J Genet Genomics. 2011;38:471–81.PubMedCrossRef
44.
go back to reference Varelas X, Wrana JL. Coordinating developmental signaling: novel roles for the hippo pathway. Trends Cell Biol. 2012;22:88–96.PubMedCrossRef Varelas X, Wrana JL. Coordinating developmental signaling: novel roles for the hippo pathway. Trends Cell Biol. 2012;22:88–96.PubMedCrossRef
45.
go back to reference Ma S, Meng Z, Chen R, Guan KL. The hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88:577–604.PubMedCrossRef Ma S, Meng Z, Chen R, Guan KL. The hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88:577–604.PubMedCrossRef
46.
go back to reference Wu Z, Guan KL. Hippo signaling in embryogenesis and development. Trends Biochem Sci. 2021;46:51–63.PubMedCrossRef Wu Z, Guan KL. Hippo signaling in embryogenesis and development. Trends Biochem Sci. 2021;46:51–63.PubMedCrossRef
47.
go back to reference Liu C, Peng G, Jing N. TGF-β signaling pathway in early mouse development and embryonic stem cells. Acta Biochim Biophys Sin (Shanghai). 2018;50:68–73.CrossRef Liu C, Peng G, Jing N. TGF-β signaling pathway in early mouse development and embryonic stem cells. Acta Biochim Biophys Sin (Shanghai). 2018;50:68–73.CrossRef
48.
go back to reference Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7:295–308.PubMedCrossRef Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7:295–308.PubMedCrossRef
50.
go back to reference Wang D, Bu F, Zhang W. The role of ubiquitination in regulating embryonic stem cell maintenance and cancer development. Int J Mol Sci. 2019;20(11):2667.PubMedCentralCrossRef Wang D, Bu F, Zhang W. The role of ubiquitination in regulating embryonic stem cell maintenance and cancer development. Int J Mol Sci. 2019;20(11):2667.PubMedCentralCrossRef
51.
go back to reference Samuels IS, Karlo JC, Faruzzi AN, Pickering K, Herrup K, Sweatt JD, Saitta SC, Landreth GE. Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci. 2008;28:6983–95.PubMedPubMedCentralCrossRef Samuels IS, Karlo JC, Faruzzi AN, Pickering K, Herrup K, Sweatt JD, Saitta SC, Landreth GE. Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci. 2008;28:6983–95.PubMedPubMedCentralCrossRef
52.
go back to reference Iroegbu JD, Ijomone OK, Femi-Akinlosotu OM, Ijomone OM. ERK/MAPK signalling in the developing brain: perturbations and consequences. Neurosci Biobehav Rev. 2021;131:792–805.PubMedCrossRef Iroegbu JD, Ijomone OK, Femi-Akinlosotu OM, Ijomone OM. ERK/MAPK signalling in the developing brain: perturbations and consequences. Neurosci Biobehav Rev. 2021;131:792–805.PubMedCrossRef
54.
go back to reference Calvo RM, Jauniaux E, Gulbis B, Asunción M, Gervy C, Contempré B, Morreale de Escobar G. Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development. J Clin Endocrinol Metab. 2002;87:1768–77.PubMedCrossRef Calvo RM, Jauniaux E, Gulbis B, Asunción M, Gervy C, Contempré B, Morreale de Escobar G. Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development. J Clin Endocrinol Metab. 2002;87:1768–77.PubMedCrossRef
56.
go back to reference Gilmour J, O’Connor L, Middleton CP, Keane P, Gillemans N, Cazier JB, Philipsen S, Bonifer C. Robust hematopoietic specification requires the ubiquitous Sp1 and Sp3 transcription factors. Epigenetics Chromatin. 2019;12:33.PubMedPubMedCentralCrossRef Gilmour J, O’Connor L, Middleton CP, Keane P, Gillemans N, Cazier JB, Philipsen S, Bonifer C. Robust hematopoietic specification requires the ubiquitous Sp1 and Sp3 transcription factors. Epigenetics Chromatin. 2019;12:33.PubMedPubMedCentralCrossRef
57.
go back to reference Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujimori T, Itoh N, Takada S. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev. 2002;16:870–9.PubMedPubMedCentralCrossRef Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujimori T, Itoh N, Takada S. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev. 2002;16:870–9.PubMedPubMedCentralCrossRef
58.
go back to reference Zhao Y, Ma CA, Wu L, Iwai K, Ashwell JD, Oltz EM, Ballard DW, Jain A. CYLD and the NEMO zinc finger regulate tumor necrosis factor signaling and early embryogenesis. J Biol Chem. 2015;290:22076–84.PubMedPubMedCentralCrossRef Zhao Y, Ma CA, Wu L, Iwai K, Ashwell JD, Oltz EM, Ballard DW, Jain A. CYLD and the NEMO zinc finger regulate tumor necrosis factor signaling and early embryogenesis. J Biol Chem. 2015;290:22076–84.PubMedPubMedCentralCrossRef
59.
go back to reference Hiby SE, Apps R, Sharkey AM, Farrell LE, Gardner L, Mulder A, Claas FH, Walker JJ, Redman CW, Morgan L, et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest. 2010;120:4102–10.PubMedPubMedCentralCrossRef Hiby SE, Apps R, Sharkey AM, Farrell LE, Gardner L, Mulder A, Claas FH, Walker JJ, Redman CW, Morgan L, et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest. 2010;120:4102–10.PubMedPubMedCentralCrossRef
60.
go back to reference Papúchová H, Meissner TB, Li Q, Strominger JL, Tilburgs T. The dual role of HLA-C in tolerance and immunity at the maternal-fetal interface. Front Immunol. 2019;10:2730.PubMedPubMedCentralCrossRef Papúchová H, Meissner TB, Li Q, Strominger JL, Tilburgs T. The dual role of HLA-C in tolerance and immunity at the maternal-fetal interface. Front Immunol. 2019;10:2730.PubMedPubMedCentralCrossRef
61.
go back to reference Jiang R, Lan Y, Chapman HD, Shawber C, Norton CR, Serreze DV, Weinmaster G, Gridley T. Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev. 1998;12:1046–57.PubMedPubMedCentralCrossRef Jiang R, Lan Y, Chapman HD, Shawber C, Norton CR, Serreze DV, Weinmaster G, Gridley T. Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev. 1998;12:1046–57.PubMedPubMedCentralCrossRef
62.
go back to reference Zhang S, Shi M, Hui CC, Rommens JM. Loss of the mouse ortholog of the shwachman-diamond syndrome gene (Sbds) results in early embryonic lethality. Mol Cell Biol. 2006;26:6656–63.PubMedPubMedCentralCrossRef Zhang S, Shi M, Hui CC, Rommens JM. Loss of the mouse ortholog of the shwachman-diamond syndrome gene (Sbds) results in early embryonic lethality. Mol Cell Biol. 2006;26:6656–63.PubMedPubMedCentralCrossRef
63.
go back to reference Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE, Neveux LM, Ehrich M, van den Boom D, Bombard AT, Deciu C, Grody WW, et al. DNA sequencing of maternal plasma to detect down syndrome: an international clinical validation study. Genet Med. 2011;13:913–20.PubMedCrossRef Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE, Neveux LM, Ehrich M, van den Boom D, Bombard AT, Deciu C, Grody WW, et al. DNA sequencing of maternal plasma to detect down syndrome: an international clinical validation study. Genet Med. 2011;13:913–20.PubMedCrossRef
64.
go back to reference Liang D, Cram DS, Tan H, Linpeng S, Liu Y, Sun H, Zhang Y, Tian F, Zhu H, Xu M, et al. Clinical utility of noninvasive prenatal screening for expanded chromosome disease syndromes. Genet Med. 2019;21:1998–2006.PubMedCrossRef Liang D, Cram DS, Tan H, Linpeng S, Liu Y, Sun H, Zhang Y, Tian F, Zhu H, Xu M, et al. Clinical utility of noninvasive prenatal screening for expanded chromosome disease syndromes. Genet Med. 2019;21:1998–2006.PubMedCrossRef
65.
go back to reference Straver R, Oudejans CB, Sistermans EA, Reinders MJ. Calculating the fetal fraction for noninvasive prenatal testing based on genome-wide nucleosome profiles. Prenat Diagn. 2016;36:614–21.PubMedPubMedCentralCrossRef Straver R, Oudejans CB, Sistermans EA, Reinders MJ. Calculating the fetal fraction for noninvasive prenatal testing based on genome-wide nucleosome profiles. Prenat Diagn. 2016;36:614–21.PubMedPubMedCentralCrossRef
66.
go back to reference McGovern N, Shin A, Low G, Low D, Duan K, Yao LJ, Msallam R, Low I, Shadan NB, Sumatoh HR, et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature. 2017;546:662–6.PubMedPubMedCentralCrossRef McGovern N, Shin A, Low G, Low D, Duan K, Yao LJ, Msallam R, Low I, Shadan NB, Sumatoh HR, et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature. 2017;546:662–6.PubMedPubMedCentralCrossRef
Metadata
Title
Integrative analyses of maternal plasma cell-free DNA nucleosome footprint differences reveal chromosomal aneuploidy fetuses gene expression profile
Authors
Min Zhang
Kun Li
Shoufang Qu
Zhiwei Guo
Yuanli Wang
Xu Yang
Junhua Zhou
Guojun Ouyang
Rongtao Weng
Fenxia Li
Yingsong Wu
Xuexi Yang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03735-7

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.